Что такое ядерный процессор: Что такое Ядра и потоки в процессорах | Skol – Что такое ядра процессора и какую функцию они выполняют

Содержание

Что такое Ядра и потоки в процессорах | Skol

Практически каждый в современном мире имеет дело с компьютерами и наверняка сталкивался с терминами ядра и потоки. Давайте разберемся что это и так ли хорошо иметь много ядер и потоков. На рынке компьютерных комплектующих присутствует немало процессоров, у которых число потоков больше числа физических ядер. В некоторых задачах эти «виртуальные ядра» могут дать существенный прирост в производительности, в других они практически бесполезны.




Что такое ядро и поток

Ядро – упрощенно это физическая единица процессора, способная в определенно взятый момент времени выполнять одну последовательность команд. Если ядро одно, а команд много, ядро переключается между ними, выполняя задачи поочередно в зависимости от приоритета.

Поток его еще называют иногда виртуальным ядром – результат работы современных технологий (в процессорах производства компании Intel – эта технология называется Hyper Threading, а у компании AMD – SMT технологией), когда ядро, с помощью специальных технологий, способно разделять свою производительность. Выражение одно ядро и два потока говорит о том, что физически одно ядро, но это ядро виртуально делится на два и позволяет распараллеливать задачи и решать их одновременно. То есть при наличии двух сравнительно «простых задач» процессор сможет выполнить их в два раза быстрее, чем обычный процессор с одним ядром. Примером таких задач могут быть скачивание фоном файлов, работа антивируса. Технология создания потоков позволяют делать несколько параллельных вычислительных каналов, что позволяет использовать способности компьютеров более эффективно, так как если одно из виртуальных ядер закончило свою работу, то может присоединиться к работе другого ядра. Производительность повыситься, но повышение будет ограниченно, так как используются ресурсы (тактовая частота измеряется в МГц– то есть вычислительная способность) физического ядра, которое у нас одно. Только используя специальные программы, работающие с гиперпотоком и при правильной оптимизации можно прочувствовать прирост в производительности.

Можно сделать вывод, что при работе с «простыми» задачами одноядерный процессор с двумя потоками по производительности сопоставим с «настоящими» двухъядерными процессорами, но если задачи будут «сложными» например архивация, рендеринг видео, то для увеличения производительности стоит задуматься о приобретении процессора с большим количеством ядер. Так как многоядерные процессоры более предпочтительны для серьезных задач чем многопоточные.

Какой процессор выбрать

При выборе процессора естественно, что встает вопрос как выбрать оптимальное количество ядер и потоков и не переплачивать. Очевидно, что с количеством ядер и потоков стоимость такого процессора будет значительно возрастать. При выборе оптимального процессора, чтобы не переплачивать и чтобы работало все быстро стоит обратить внимание на задачи стоящие перед вашим компьютером:

1) Если компьютер будет офисным для работы без использования серьезных программ, то достаточно 2 «настоящих» ядра. Данный процессор вполне справляется с большинством задач в современных условиях.

2) Если вы собираетесь играть в игры, то многие игры поддерживают 2-4 ядра. Наличие большего количества ядер, не будет ускорять процесс, так как они будут работать в холостую, а учитывая, что в многоядерных процессорах частота у ядер ниже, то вы столкнетесь с тем, что ваш компьютер стоил кучу денег, а в итоге игры тормозят.

3) Если вы используете компьютер в проектировании и обработке видео в своей профессиональной деятельности, то от количества ядер напрямую будет зависеть производительность этого процесса и здесь лучше иметь не меньше 4 ядер. Большее количество ядер будет только преимуществом и если бюджет позволяет, то возьмите хотя бы 8 ядер.

Рекомендации на конкретные модели в зависимости от стоящих перед ним задач:

1. Офисные: Процессоры Intel: Pentium Dual-Core, Core i3 любого поколения; процессоры AMD: A-серии, Ryzen 3 1200.

2. Игровые: Процессоры Intel: Core i3/i5/i7 6-го и выше поколения; процессоры AMD: Ryzen-5/ Ryzen 7.

3. Профессиональные: Процессоры Intel: Core i7 6950X, Core i9 9980XE; процессоры AMD: Threadripper 2920X, Threadripper 2970WX.

Узнать, сколько у вас физических ядер можно, через встроенную утилиту msinfo32.exe

msiinfo32.exe

Другие новости

Как выбрать центральный процессор, и зачем это нужно? | Периферия | Блог

Пожалуй, ключевым достоинством персонального компьютера как платформы является его впечатляющая гибкость и возможности кастомизации, которые сегодня, благодаря появлению новых стандартов и типов комплектующих, кажутся практически безграничными. Если лет десять назад, произнося аббревиатуру «ПК», можно было с уверенностью представить себе белый железный ящик, опутанный проводами и жужжащий где-то под столом, то сегодня столь однозначных ассоциаций нет и быть не может.

Сегодняшний ПК может быть мощной рабочей станцией, ориентированной на производительность в вычислениях или рабочей машиной дизайнера, «заточенной» под качество двухмерной графики и быструю работу с данными. Может быть топовой игровой машиной или скромной мультимедийной системой, живущей под телевизором…

Иначе говоря, у каждого ПК сегодня свои задачи, которым соответствует тот или иной набор железа. Но как выбрать подходящее?

Начинать следует с центрального процессора. Видеокарта определит производительность системы в играх (и ряде рабочих приложений, использующих вычисления на GPU). Материнская плата — формат системы, её функционал «из коробки» и возможности подключения комплектующих и периферийных устройств. Однако именно процессор определит возможности системы в повседневных домашних задачах и работе.

Давайте рассмотрим, что важно при выборе процессора, а что — нет.

На что НИКОГДА не нужно обращать внимание

Производитель процессора

Как и в случае с видеокартами (да, впрочем, и со многими другими девайсами), наши соотечественники всегда рады превратить обыкновенный потребительский товар в нечто, что можно поднять на штандарты и пойти войной на сторонников противоположного лагеря. Можете представить себе ситуацию, в которой любители маринованных огурцов и консервированных помидоров разделили магазин баррикадой, покрывают друг друга последними словами и частенько прибегают к рукоприкладству? Согласитесь, звучит как полный бред… однако в сфере компьютерных комплектующих такое происходит сплошь и рядом!

Причем, как и любые сектанты, фанаты брендов видят мир исключительно разделенным на чёрное и белое. Все, абсолютно все товары с их любимым логотипом — это абсолютный идеал и само совершенство, а противоборствующие им решения — само воплощение зла, вместилище всех возможных недостатков.

О том, что у каждого из двух производителей центральных процессоров — соответственно, Intel и AMD, — есть полностью сформированные линейки продуктов, состоящие из совершенно разных по характеристикам девайсов с совершенно разной стоимостью, сектанты предпочитают умалчивать. Как, собственно, и о том, что в разных ценовых сегментах реальный лидер может меняться.

Рекомендация №1: Планируя сборку нового ПК или апгрейд старого, определитесь в первую очередь с бюджетом. Посчитайте сумму, которая у вас есть на руках, добавьте к ней некий резерв, который вы, в случае необходимости готовы добавить, а затем посмотрите, какие модели центральных процессоров в этот бюджет вписываются.

Чётко осознайте, что вы выбираете именно эти модели, и вам важны именно их характеристики. Что происходит, и кто лидирует в сегментах выше или ниже вашего бюджета — вас не касается. Вам важно только то, сколько производительности вы получите сейчас, за имеющиеся деньги.

«Игровой» или «не игровой» процессор

У процессора нет такой характеристики или функции, которая позволяла или не позволяла бы ему запускать игры (хотя родители некоторых покупателей с радостью бы за неё заплатили). У него есть производительность, которой может оказаться достаточно или недостаточно для комфортной игры. Разделение же на игровые и не игровые модели — не более чем искусственный маркетинг. Причём разделение весьма странно и зачастую не соответствует реальным возможностям ЦПУ.

Рекомендация №2: Какие бы цели вы ни ставили перед будущим ПК — будет ли он игровой системой, рабочей станцией или основным элементом домашней мультимедийной системы — руководствуйтесь самым простым параметром: тем, насколько производительности процессора достаточно для этих задач.

Раскрывашки

Кризисный 2016 год, в который упали доходы населения, а следовательно, и продажи всего и вся, включая центральные процессоры, «подарил» нам очередной миф, который теперь надолго засядет в интернетах. А уж в сознании рядовых покупателей — и того дольше.

Суть явления проста: «старые процессоры с новыми видеокартами работать не могут, бегите все покупать новые!». Особенно доставляют здесь рекомендации заменить вполне годные и актуальные процессоры Core i5 старых поколений на процессоры Core i3 новых поколений, которые по всем параметрам хуже. Ну, и, разумеется, советы потратить 40 тысяч на апгрейд платформы ради игр с видеокартой за 20 тысяч.

Рекомендация №3: Собственно, и рекомендовать тут нечего. Задача любой раскрывашки — не помочь вам выбрать подходящий процессор, а «втюхать» девайс поновее и подороже, желательно в комплекте с материнской платой и памятью. Увидите раскрывашку — отойдите в сторонку и не слушайте. Иначе себе дороже выйдет.

Что ИНОГДА может оказаться важным

OEM и BOX-комплектация, она же «система охлаждения в комплекте»

Центральные процессоры могут поставляться в двух вариантах: «боксовой» и OEM-комплектации

. Разница предельно проста: «бокс» — это, собственно, коробка, в которой, помимо самого процессора, находятся гарантийный талон и штатная система охлаждения (хотя в редких случаях вроде процессоров FX 9000-ой серии она может отсутствовать). OEM — это просто процессор, абсолютно без всего. Ни коробки, ни кулера, ни гарантийного талона.

Вызвано это тем, что OEM-комплектация по замыслу производителя процессора предназначается для фирм, собирающих и продающих готовые ПК. Процессоры в данном случае приобретаются большими партиями и поставляются в паллетах, вмещающих по 20 с лишним штук. Опять же, по логике производителя, из этих паллетов они должны попадать сразу в компьютеры.

Но в нашей стране процессор в OEM-комплектации можно свободно купить в рознице (см. гневные отзывы на тему «Вынесли процессор в пакетике»

). Такая комплектация дешевле боксовой, и порой — очень существенно.

Рекомендация №4: Боксовая комплектация — это всегда компромисс. Штатный кулер — не самый эффективный, не самый тихий и уж совершенно точно — не самый выгодный по цене. Кого-то может подкупить более длительный срок гарантии у «бокса» против OEM, однако процессор — устройство крайне живучее, и сломать его ой как непросто (разве что целенаправленно и механически). Если он прожил у вас первый день — с 95% вероятностью проживёт и следующие 10 лет. Альтернативные кулеры, опять же, могут оказаться и дешевле, и эффективнее штатного.

С другой стороны, всё упирается в цену. Если стоимость «бокса» лишь немногим выше OEM — берите бокс, хуже от этого не будет.

Свободный множитель и частота процессора

Далеко не каждому пользователю даже самого обычного игрового ПК интересен разгон, не говоря уже о платформах, на которых оный разгон вообще не нужен или противопоказан. Тем не менее, в отдельных случаях этот параметр может оказаться полезным.

Частота современных процессоров складывается из двух параметров: базовой частоты, задаваемой системной шиной, и множителя, который варьируется от модели к модели. Соответственно, изменяя один из двух параметров или оба сразу, мы можем изменять итоговую тактовую частоту процессора и его производительность. Тем не менее, далеко не все современные платформы позволяют разгонять процессор по шине (а еще меньше платформ позволяют делать это официально). Так что, если вы заранее планируете разгон — выбирайте модели ЦПУ с разблокированным множителем, этим вы сильно облегчите себе задачу.

Что же касается тактовой частоты процессора (как базовой, так и в турбо-режиме) — это весьма специфический параметр. При прочих равных условиях — да, производительность процессоров определяется частотой. Например, если мы сравниваем два процессора из линейки Core i5, относящихся к одному и тому же поколению и основанных на одном и том же ядре, быстрее будет тот, у которого выше частота.

Но если сравнивать Core i5 с Core i3 того же поколения или с Core i5 предшествующего поколения — частота вовсе не будет определяющим фактором! В первом случае важно будет количество исполнительных блоков, во втором — архитектурные различия и поддержка отдельных технологий и инструкций.

Рекомендация №5: Свободный множитель — параметр полезный, но далеко не для всех. Нужен он вам или нет — зависит от ситуации, и однозначных рекомендаций тут дать нельзя. Что же касается частоты — пользуйтесь этим параметром с осторожностью. Он важен только в том случае, если все остальные параметры одинаковы.

Интегрированное графическое ядро

Большинство современных процессоров за редкими исключениями оснащается встроенной графикой. У некоторых покупателей это вызывает недовольство — мол, зачем это я переплачиваю за то, чем не буду пользоваться? Однако в реальности встроенное графическое ядро не отнимает, а ЭКОНОМИТ ваши деньги.

Как так? Всё просто. Купили вы компьютер с мощным процессором, оверклокерской материнской платой и большим объемом памяти, а покупку игровой видеокарты отложили на потом. Всего лет 8-10 назад в такой ситуации вам пришлось бы искать на барахолках «затычку» для слота — устаревшую или слабую видеокарту, на которой можно было пересидеть, пока не будет приобретен более мощный современный девайс. Просто потому, что иначе компьютер бы не работал — не умели тогда процессоры выводить видео, а топовые материнские платы и встроенное видео были вещами несовместимыми.

Сегодня же — вы просто подключаете монитор к выходам на материнской плате и используете ПК, не тратя лишнее время и деньги. Более того — производительность современной встроенной графики такова, что нетребовательным пользователям и тем, кому компьютер нужен не для игр видеокарта и вовсе не нужна!

Особняком здесь стоят APU компании AMD. Их ключевое преимущество — именно мощная встроенная графика, что делает эти процессоры отличным вариантом для HTPC и мультимедийных систем, но в то же время их использование с дискретным видео теряет всякий смысл. Справедливости ради — топовые модели современных процессоров Intel оснащаются видеоядром не хуже, но стоят куда дороже APU, а производительность их процессорной части для HTPC крайне избыточна.

Кто же сегодня живёт без встроенной графики? Это топовые процессоры Intel для платформы LGA 2011-3 — им по статусу положено работать либо с мощнейшими игровыми видеокартами, либо с профессиональными ускорителями вычислений. Также лишены графики процессоры AMD под уходящую уже платформу AM3+. И процессоры семейства Athlon II — те же самые APU, только с отключенной графической частью: экстремально дешёвые и столь же производительные за свой ценник.

Кроме того, без встроенной графики обходятся некоторые (но далеко не все) процессоры Intel Xeon, выполненные под мейнстримовые платформы LGA 115x. Об этих процессорах стоит сказать особо. Несмотря на «серверное» имя, они фактически являются аналогами десктопных Core i5/i7. Существенные различия — возможность установки в материнские платы, поддерживающие мультипроцессорные конфигурации и поддержка оперативной памяти с коррекцией ошибок (ECC).

Рекомендация №6: Бояться встроенной графики не стоит — это отличный бонус, который к тому же скоро станет стандартом для всех платформ за исключением LGA 2011-3 и возможно, её потомков. Встроенное ядро может оказаться очень полезным в отдельных случаях или вовсе избавить вас от необходимости покупать дискретную видеокарту. Но и гоняться за ним не стоит: у процессоров без встроенной графики тоже может оказаться немало достоинств.

Что вам ДЕЙСТВИТЕЛЬНО важно знать

Сокет

Сокет — это разъём, в который процессор устанавливается на материнской плате. Как и любой другой разъём, он имеет определённые физические размеры, конструкцию, количество контактов и так далее. Соответственно, за редкими исключениями, установить в один сокет можно только одно семейство процессоров. Например, процессор под сокет AM4 в материнскую плату с сокетом FM2+ или LGA 1151 установить невозможно чисто физически (вернее, один раз возможно, но после этого вам потребуются и новый процессор, и новая материнская плата).

Соответственно, выбор сокета определяет то, какие процессоры вам будут доступны на момент покупки, и какие вы сможете установить в будущем (и сможете ли вообще). От него зависит производительность системы, возможности и цена будущего апгрейда, а нередко — и количество периферийных устройств, которые можно установить в ПК.

Рекомендация №7: Определитесь с тем, что вы хотите получить от ПК. Да, некоторые современные платформы абсолютно универсальны (а некоторые будущие платформы — обещают быть такими) и гибко настраиваются под любые задачи при наличии должного количества денег, но это вовсе не значит, что у них нет аналогов. Некоторые ваши задачи могут быть решены гораздо меньшими тратами, а некоторые — гораздо эффективнее при тех же тратах.

Если вы выбираете процессор под уже имеющуюся материнскую плату — не поленитесь потратить несколько минут на то, чтобы зайти на официальный сайт производителя и посмотреть список совместимых с ней моделей ЦПУ. Это бесплатно, совершенно не сложно, и не требует никаких специальных знаний, но в ряде случаев поможет вам сэкономить время и деньги.

Бывает так, что процессор совпадает по сокету, но при этом вовсе не поддерживается материнской платой, или для запуска требует обновления микрокода биос. Второе можно сделать заранее перед покупкой нового ЦПУ, а первое лучше узнать сразу, чем потом возвращать в магазин исправный товар, в несовместимости которого с вашим железом не виноваты ни вы, ни сотрудники магазина.

Также бывают случаи, когда процессор номинально поддерживается, но на деле не может работать в конкретной материнской плате — например, когда подсистема питания материнской платы слишком слабая, а процессор наоборот, слишком прожорлив и требователен к питанию. Об этом тоже лучше узнать заранее, чем потом бороться с последствиями.

Если же вы выбираете процессор под абсолютно новую систему, обращать внимание следует на актуальные сокеты:

AM1 — платформа AMD, предназначенная для неттопов, встраиваемых систем и мультимедийных ПК начального уровня. Как и все APU, отличается наличием сравнительно мощной встроенной графики, что и является основным преимуществом.

AM4 — универсальная платформа AMD для мейнстрим-сегмента. Объединяет десктопные APU и мощные ЦПУ семейства Ryzen, благодаря чему позволяет собирать ПК буквально под любой бюджет и потребности пользователя.

TR4 — флагманская платформа AMD, предназначенная под процессоры Threadripper. Это продукт для профессионалов и энтузиастов: 16 физических ядер, 32 потока вычислений, четырёхканальный контроллер памяти и прочие впечатляющие цифры, дающие серьёзный прирост производительности в рабочих задачах, но практически не востребованные в домашнем сегменте.

LGA 1151_v2 — сокет, который ни в коем случае нельзя путать с обычным LGA 1151 (!!!). Являет собой актуальную генерацию мейнстримовой платформы Intel, и наконец-то привносит в потребительский сегмент процессоры с шестью физическими ядрами — этим и ценен. Однако обязательно следует помнить, что процессоры Coffee Lake нельзя установить в платы с чипсетами серий 200 и 100, а старые процессоры Skylake и Kaby Lake — в платы с чипсетами серии 300.

LGA 2066 — актуальная генерация платформы Intel, предназначенной для профессионалов. Также может быть интересна в качестве платформы для постепенного апгрейда. Младшие процессоры Core i3 и Core i5 практически ничем не отличаются от аналогов под LGA 1151 первой версии и стоят относительно доступно, но впоследствии их можно заменить на Core i7 и Core i9.

Количество ядер

Этот параметр требует множества оговорок, и его следует применять с осторожностью, однако именно он позволяет более-менее логично выстроить и дифференцировать центральные процессоры.

Модели с двумя вычислительными ядрами, а также с двумя физическими ядрами и четырьмя виртуальными потоками вне зависимости от тактовой частоты, степени динамического разгона, архитектурных преимуществ и фанатских мантр сегодня прочно обосновались в сегменте офисных ПК, причём даже там — не на самых ответственных местах. Всерьёз говорить об использовании таких ЦПУ в игровых машинах, а уж тем более — в рабочих станциях сегодня не приходится.

Процессоры с четырьмя вычислительными ядрами выглядят немного актуальнее, и могут удовлетворить запросы как офисных работников, так и не самых требовательных домашних пользователей. На них вполне можно собрать бюджетный игровой ПК, хотя в современных тайтлах производительность будет ограничена, а одновременное выполнение нескольких операций — к примеру, запись игрового видео, — будет невозможно или приведёт к заметному падению фпс.

Оптимальный вариант для дома — процессоры с шестью ядрами. Они способны обеспечивать высокую производительность в играх, не падают в обморок при выполнении нескольких ресурсоёмких задач одновременно, позволяют использовать ПК в качестве домашней рабочей станции, и при всём этом — сохраняют вполне доступную стоимость.

Процессоры с восемью ядрами — выбор тех, кто занят более серьёзными задачами, нежели игры. Хотя и с развлечениями они справятся без проблем, заметнее всего их преимущества — в рабочих приложениях. Если вы занимаетесь обработкой и монтажом видео, рисуете сложные макеты для полиграфии, проектируете дома или другие сложные конструкции, то выбирать стоит именно эти ЦПУ. Излишка производительности вы не заметите, а вот быстрая обработка и отсутствие зависаний в самый ответственный момент — определённо вас порадуют.

Процессоры с 10 и 16 ядрами — это уже серверный сегмент и весьма специфические рабочие станции, от предыдущего варианта отличающиеся примерно как работа дизайнера спецэффектов для большого кино от работы монтажера роликов на youtube (собственно, примерно там и используются). Однозначно рекомендовать или наоборот, отговаривать от их покупки сложно. Если вам реально требуется такая производительность — вы уже знаете, как и где будете её применять.

Рекомендация №8: Количество ядер — не самый чёткий параметр, и не всегда он позволяет отнести к одной группе процессоры с близкими характеристиками. Тем не менее, при выборе процессора стоит ориентироваться на этот параметр.

Производительность

Итоговый и самый важный параметр, которого, увы, нельзя найти ни в одном каталоге магазина. Тем не менее, в итоге именно он определяет, подойдет ли вам тот или иной процессор, и насколько эксплуатация ПК на его основе будет соответствовать вашим первоначальным ожиданиям.

Прежде, чем отправляться в магазин за процессором, который вам вроде бы подходит, не поленитесь изучить его детальные тесты. Причем «детальные» — это не видосики на ютубе, показывающие вам то, что вы должны увидеть по замыслу их автора. Детальные тесты — это масштабное сравнение процессора в синтетических бенчмарках, профессиональном софте и играх, проводимое по чёткой методике с участием всех или большинства конкурирующих решений.

Как и в случае с видеокартами, чтение и анализ подобных материалов поможет вам определить, стоит ли тот или иной процессор своих денег, и на что, при возможности, его можно заменить.

Рекомендация №9: Потратив пару вечеров на чтение и сравнение информации из разных источников (важно, чтобы они были авторитетными, и весьма желательно — зарубежными), вы сделаете аргументированный выбор и избавите себя от множества проблем в будущем. Поверьте, оно того более чем стоит.

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Процессоры AMD Sempron и Athlon под [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?order=1&stock=2&f=2g9r]сокет AM1 подойдут для сборки бюджетных мультимедийных ПК, встраиваемых систем и тому подобных задач. К примеру, если вы хотите установить в машину полноценный ПК с десктопной операционной системой или собрать небольшой неттоп, который будет скрытно жить в недрах дачного дома или гаража — стоит обратить внимание на эту платформу.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?order=1&stock=2&f=26r-26u-26t&f=27h]офисных ПК подойдут двухъядерные процессоры Intel Celeron, Pentium и Core i3. Их преимуществом в данном случае выступит наличие встроенного графического ядра. Производительность последнего достаточна для вывода необходимой информации и ускорения работы браузеров, но совершенно недостаточна для игр, которых на рабочем месте всё равно быть не должно.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=27b-277-jlvh&f=emb2&f=ci6]домашнего мультимедийного ПК лучшим выбором окажутся APU от AMD, предназначенные под актуальный сокет AM4. Представители линеек A8, A10 и А12 объединяют под одной крышкой четырёхъядерный процессор и весьма неплохую графику, которая может уверенно соперничать с бюджетными видеокартами. ПК на этой платформе можно сделать весьма компактным, но его производительности хватит для воспроизведения любого контента, а также целого ряда рабочих задач и немалого перечня игр.

Для бюджетного игрового ПК подойдут четырёхъядерные процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=j8yn&f=emb2]AMD Ryzen 3 и четырёхъядерные [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=2iqha]Core i3 под сокет LGA 1151_v2 (не путать с двухъядерными Core i3 под сокет LGA 1151 !!!). Производительности этих процессоров достаточно для любых домашних задач и большинства игр, однако грузить их серьёзной работой или пытаться выполнять несколько ресурсоёмких задач одновременно всё же не стоит.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=g7df&f=emb2&f=27j]бюджетной рабочей станции компромиссным вариантом могут стать четырёхъядерные процессоры AMD Ryzen 5. Помимо физических ядер, они предлагают и виртуальные потоки вычислений, что в итоге позволяет выполнять операции в восемь потоков. Разумеется, это не так эффективно, как физические ядра, но вероятность увидеть 100% загрузку процессора и падение фпс ниже играбельного при записи или прямой трансляции геймплея здесь гораздо ниже, чем у предыдущих двух вариантов. Да и последующий монтаж оного видео пройдёт быстрее.

Оптимальный выбор для домашнего игрового ПК — шестиядерные процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=g7df&f=emb2&f=27k]AMD Ryzen 5 и [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=2iqha&f=27k]Intel Core i5 под сокет LGA 1151_v2 (не путать с их четырёхъядерными предшественниками!!!). Стоимость этих ЦПУ вполне гуманна, их даже можно назвать относительно доступными, в отличие от топовых линеек Ryzen 7 и Core i7. А вот производительности — вполне хватает, чтобы играть в любые интересные пользователю игры и работать на дому. Причем даже одновременно, если будет такое желание.

Для топовых игровых ПК или рабочих станций без претензий на избранность и элитарность подойдут процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=emb2&f=27m]AMD Ryzen 7 и [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=26p&f=2iqha&f=27k]Intel Core i7, имеющие, соответственно, 8 ядер/16 потоков и 6 ядер/12 потоков. Относясь к мейнстримовым платформам, эти процессоры всё ещё относительно доступны и не требуют дорогостоящих материнских плат, блоков питания и кулеров. Однако их производительности достаточно практически для всех задач, которые может поставить перед ПК рядовой пользователь.

Если же её всё-таки будет недостаточно — для высокопроизводительных рабочих станций предназначены процессоры AMD Ryzen Threadripper, предназначенные для установки в сокет TR4, и топовые модели процессоров Intel под сокет LGA 2066 — [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&f=i1wt-26p&f=i1wz&f=27m-bmip-dybz-27n]Core i7 и Core i9, имеющие по 8, 10, 12 и более физических ядер. Помимо этого, процессоры предлагают четырёхканальный контроллер памяти, что важно для ряда профессиональных задач, и до 44 линий PCI-express, позволяющих подключать много периферии, не теряя в скорости обмена данными. Рекомендовать эти ЦПУ для домашнего использования не получается и в силу их цены, и благодаря «заточенности» под многопоток и профессиональные задачи. А вот в работе процессоры под топовые платформы могут буквально в разы опережать своих десктопных собратьев.

Двух ядерный процессор что это такое

Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

Видео-формат статьи «Вся правда о многоядерных процессорах»

Простое объяснение вопроса «что такое процессор»

Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком. Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

Размер процессора по сравнению с монеткой. Есть процессоры и крупнее, есть и гораздо мельче.

Функция процессора — вычисления. Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор.

Что такое процессорное ядро и многоядерность

Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора. Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

Разновидности многоядерных процессоров

Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

Сколько бывает ядер внутри процессора?

Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

Частота многоядерных процессоров

Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная. Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер. Она не складывается и не умножается.

Виртуальная многоядерность, или Hyper-Threading

Существуют ещё и виртуальные процессорные ядра. Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических — локальные диски C, D, E и так далее.

Hyper-Threading — весьма полезная в ряде задач технология. Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

Имеет ли практический смысл такая уловка с виртуальными ядрами? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper-Threading. В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron. Два ядра, «гипе-трединг» отсутствует = два потока.

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач. Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5. Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника. Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

Есть ли польза от многоядерных процессоров?

Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

Когда меньше ядер у процессора — лучше

Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

Многоядерные процессоры в мобильных телефонах и планшетах

Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

Добрый день, уважаемые читатели нашего техноблога. Сегодня у нас не обзор, а некое подобие сравнения какой процессор лучше 2 ядерный или 4 ядерный? Интересно, кто круче себя показывает в 2018 году? Тогда приступим. Сразу скажем, что пальма первенства в большинстве случаев будет за устройством с большим числом физических модулей, но и чипы с 2 ядрами не так просты, как кажутся на первый взгляд.

p, blockquote 1,0,0,0,0 —>

Многие, наверное уже догадались, что рассматривать мы будем всех текущих представителей от Intel семейства Pentium Coffee Lake и народный «гиперпень» G4560 (Kaby Lake). Насколько модели актуальны в текущем году и стоит ли задуматься о покупке более производительных AMD Ryzen или тех же Core i3 с 4‐мя ядрами.

p, blockquote 2,0,0,0,0 —>

Семейство AMD Godavari и Bristol Ridge намеренно не рассматривается по одной простой причине – оно не имеет никакого дальнейшего потенциала, да и сама платформа оказалась не самой удачной, как могло предполагаться.

p, blockquote 3,0,0,0,0 —>

Зачастую эти решения покупаются либо по незнанию, либо «на сдачу» в качестве какой‐нибудь максимально дешевой сборки для интернета и онлайн‐фильмов. Но нас такое положение вещей особо не устраивает.

p, blockquote 4,0,0,0,0 —>

Отличия 2‐ядерных чипов от 4‐ядерных

Рассмотрим основные моменты, которые отличают первую категорию чипов от второй. На аппаратном уровне можно заметить, что отличается только количество вычислительных блоков. В остальных случаях, ядра объединены высокоскоростной шиной обмена данными, общим контроллером памяти для плодотворной и оперативной работы с ОЗУ.

p, blockquote 5,0,1,0,0 —>

Зачастую кэш L1 каждого ядра – величина индивидуальная, а вот L2 может быть либо един для всех, либо также индивидуален для каждого блока. Однако в таком случае дополнительно используется уже кэш‐память L3.

В теории 4‐ядерные решения должны быть быстрее и мощнее в 2 раза, поскольку выполняют на 100% больше операций за такт (возьмем за основу идентичную частоту, кэш, техпроцесс и все прочие параметры). Но на практике ситуация меняется совершенно нелинейно.

p, blockquote 7,0,0,0,0 —>

Но здесь стоит отдать должное: в многопотоке вся сущность 4 ядер раскрывается в полной мере.

p, blockquote 8,0,0,0,0 —>

Почему 2‐ядерные процессоры все еще популярны?

Если взглянуть на мобильный сегмент электроники, то можно заметить засилье 6–8 ядерных чипов, которые выглядят максимально органично и нагружаются параллельно при выполнении всех задач. Почему так? ОС Android и iOS – довольно молодые системы с высоким уровнем конкуренции, а потому оптимизация каждого приложения – залог успеха продаж девайсов.

p, blockquote 9,0,0,0,0 —>

С индустрией ПК ситуация иная и вот почему:

Совместимость. При разработке любого ПО разработчики стремятся угодить как новой, так и старой аудитории со слабым железом. На 2‐ядерных процессорах делается больший акцент в ущерб поддержки 8‐ядерных.

p, blockquote 10,1,0,0,0 —>

Распараллеливание задач. Несмотря на засилье технологий в 2018 году, заставить программу работать с несколькими ядрами и потоками ЦП параллельно все еще не просто. Если речь заходит за просчет нескольких совершенно разных приложений, то вопросов нет, но когда дело касается вычислений внутри одной программы – тут уже хуже: приходится регулярно просчитывать абсолютно разную информацию, при этом не забывая об успехе задач и отсутствии ошибок при вычислениях.

p, blockquote 11,0,0,0,0 —>

В играх ситуация еще более интересная, поскольку объемы информации разделить на равные «доли» практически нереально. В итоге получаем следующую картину: один вычислительный блок маслает на 100%, остальные 3 – ждут своей очереди.

p, blockquote 12,0,0,0,0 —>

Преемственность. Каждое новое решение основывается на предыдущих наработках. Писать код с нуля не только дорого, но и зачастую невыгодно центру разработки, поскольку «людям и этого хватит, а пользователей 2‐ядерных чипов все еще львиная доля».

p, blockquote 13,0,0,0,0 —>

Взять к примеру многие культовые проекты вроде Lineage 2, AION, World of Tanks. Все они создавались на базе древних движков, которые способны адекватно нагрузить лишь одно физическое ядро, а потому здесь основную роль при вычислениях играет только частота чипа.

Финансирование. Далеко не все могут позволить себе создать совершенно новый продукт, рассчитанный не 4,8, 16 потоков. Это слишком дорого, да и в большинстве случаев неоправданно. Взять к примеру ту же культовую GTA V, которая без проблем «съест» и 12 и 16 потоков, не говоря уже о ядрах.

p, blockquote 14,0,0,0,0 —>

Стоимость ее разработки перевалила за добрые 200 млн долларов, что само по себе уже очень дорого. Да, игра оказалась успешной, поскольку кредит доверия Rockstar в среде игроков был огромен. А если бы это был молодой стартап? Тут уже сами все понимаете.

p, blockquote 15,0,0,1,0 —>

Нужны ли многоядерные процессоры?

Давайте рассмотрим ситуацию с точки зрения простого обывателя. Большинству пользователей хватает 2 ядер по следующим причинам:

p, blockquote 16,0,0,0,0 —>

  • невысокие потребности;
  • большинство приложений работает стабильно;
  • игры – не главный приоритет;
  • низкая стоимость сборок;
  • процессоры сами по себе дешевые;
  • большинство покупает готовые решения;
  • некоторые пользователи понятия не имеют, что им продают в магазинах и чувствуют себя прекрасно.

Можно ли играть на 2 ядрах? Да без проблем, что с успехом несколько лет доказывала линейка Intel Core i3 вплоть до 7‐го поколения. Также огромной популярностью пользовались Pentium Kaby Lake, в которые впервые в истории внедрили поддержку Hyper Threading.

Стоит ли сейчас покупать 2 ядра, пусть и с 4‐мя потоками? Исключительно для офисных задач. Эпоха данных чипов постепенно уходит, да и производители начали массово переключаться на 4 полноценных физических ядра, а потому не стоит рассматривать те же Pentium и Core i3 Kaby Lake в долгосрочной перспективе. AMD так и вовсе отказалась от 2‐ядерников.

p, blockquote 17,0,0,0,0 —>

Но если хочется сэкономить на игровом или домашнем ПК, не прогадав с производительностью, то сейчас самый мощный 2‐ядерный чип от Intel – Pentium G5600. Хотя я все же рекомендую уровень i3 8100 или Ryzen 2200G. Выбор за вами. Не забывайте подписываться на обновления блога, до новых встреч.

p, blockquote 18,0,0,0,0 —>

p, blockquote 19,0,0,0,0 —> p, blockquote 20,0,0,0,1 —>

Доброго времени суток.

Если вас заботит производительность вашего компьютера, то необходимо знать о том, что такое ядро процессора и многоядерность. Подробное разъяснение вы получите в этой статье.

Разбор понятия

Скажу сразу, ядром называется главная вычислительная часть. Это главная часть центрального процессора, которая содержит в себе основные функциональные блоки, а именно:

  • Блок работы с прерываниями, позволяющий быстро переходить от одной задачи к другой;
  • Выборки инструкций — к нему приходят сигнал команд, и он переправляет их на обработку;
  • Декодирования — занимается упомянутым сигналом и решает, что компьютеру делать с поступившей командой и понадобятся ли для этого дополнительные инструменты;
  • Управления — поставляет декодированные инструкции другим блокам и определяет уровень нагрузки на них;
  • Выполнения и сохранения результатов — без объяснений ясно, за что они ответственны.

Другие обозначения

Говоря о физическом исполнении ядер, под ними понимаются также кристаллы CPU, зачастую открытые.

Если рассматривать ядро как набор характеристик, можно определить его как часть процесса, отвечающую за выполнение одного потока команд. Что я имею в виду? Каждый программный процесс, который совершается в компьютере, содержит в себе несколько потоков.

Можно провести аналогию с работой на стройке: несколько рабочих выполняют разные задачи (один месит раствор, другой — кладет кирпич и т. д.), но все они строят один дом и сверяются с одним и тем же чертежом. Анологичным занимается и ядро.

Многоядерность процессора

Рассмотрим сначала ЦП с одним ядром.

Как вы уже знаете, процесс разбивается на несколько потоков. Но что происходит, когда вы хотите одновременно выполнять несколько процессов, например, печатать в Microsoft Word и слушать музыку?

Компьютер умный и делает вид, что выполняет действия одновременно. На самом деле происходят быстрые переключения между одним и другим процессом. Они мгновенны, поэтому вы не сможете их заметить. Тем не менее, на это тратится время, что снижает скорость выполнения задач. Если вы захотите выполнять не 2, а 4 действия сразу? Компьютер выполнит все, что вы требуете, но медленно.

Решение

В виду того, что многие игры и программы предъявляют все более высокие требования к процессорам, их производители добавляют ядра. Таким образом, за один поток команд отвечает первое ядро, за другой — второе и т. д.; если одно выполнило свою задачу, может помочь другому. Прирост в производительности очевиден.

Первый ЦП с двумя ядрами для настольных компов выпущен в 2005 году. Это Pentium D компании Intel. В том же году ее догнал конкурент — AMD — произведя на свет двухъядерник Opteron. На данный момент существуют процы и с 4, и с 8 ядрами.

Технология

К слову, еще на производительность многоядерных процессоров влияет наличие технологии Hyper-Treading. Ее суть заключается в том, что одно физическое ядро определяется системой как два логических. Это значит, что одно ядро может обрабатывать 2 потока одновременно.

Графическое ядро

В некоторые процессоры встраивается графическое ядро, которое не следует путать с вышеописанными. Как понятно из названия, данное ядро отвечает за обработку графики. Оно выступает альтернативой дискретной видеокарте. Такое решение позволяет экономить пространство в корпусе компьютера.

Характеристики ядра

Я назову основные характеристики ядер ЦП, чтобы вы лучше понимали, что они собой представляют:

  • Архитектура — конструкция, набор свойств, присущих семейству процессоров, и соответственно ядер.

  • Набор команд — включает в себя определенный тип данных, регистров, инструкций, адресаций и т. п.
  • Объем встроенного кэша — памяти с большой скоростью доступа, которая нужна для обращений к памяти с малой (оперативной).
    Кэш ядер делится на 3 уровня (L1, L2 и L3). В характеристиках многоядерных девайсов обычно указывается L1 для одного ядра. L2 медленнее, но имеет больший объем. Если вы подбираете проц для выполнения ресурсоемких задач, ориентируйтесь на кэш второго уровня. L3 присутствует в самых производительных устройствах.
  • Число функциональных блоков.
  • Тактовая частота — количество операций, которое проц может выполнять за секунду. Исчисляется в гигагерцах.
  • Напряжение питания.
  • Тепловыделение.
  • Технологический процесс — размер, использующийся при изготовлении ЦП. Измеряется в нанометрах.
  • Площадь кристалла.

Как узнать, сколько ядер в вашем CPU?

Конечно, самый простой способ узнать число ядер своего процессора — посмотреть в его характеристиках. Но не все знают или помнят точное название устройства. Поэтому предлагаю другой вариант:

  • Пройдитесь по меню «Пуск — Все программы — Стандартные — Служебные»;
  • Или в поисковой строке на панеле задач пропишите «msinfo32».
  • Откройте «Сведения о системе»;

В поле справа отыщите строчку «Процессор», в которой будут содержаться основные данные о нем.

На этом буду заканчивать.

Подписывайтесь на обновления и не забывайте делиться полезной информацией из этого блога с друзьями.

Post Views: 1

Что такое ядро в телефоне? что такое ядра процессора

Что такое ядро в смартфоне.Что такое ядро в смартфоне.

Автор: Александр Мойсеенко / Опубликовано:20.07.2019 / Последнее обновление: 20.07.2019

Процессор используется в смартфонах, планшетах и другой электронике. Микросхема размером в несколько мм регулирует работу других компонентов, обрабатывает и перераспределяет информацию. Большинство пользователей не заботит вопрос о типе процессора и работающих внутри ядрах. Поэтому мало кто с уверенностью объяснит, что такое ядро процессора и какие функции выполняет. Из-за этого часто возникает ошибочное мнение, что ядра в процессоре смартфона сопоставимы по мощности и возможностям с ядрами, что используются в настольных процессорах на ПК.

В статье мы расскажем, что собой представляет процессорное ядро и какие функции выполняет. Информация будет полезна для общего понимания, а так же пригодится тем, кто выбирает новый телефон и желает подробнее узнать о возможностях, различиях и других особенностях мобильного процессора.

Что такое ядро в процессоре

Ядро – составная часть центрального процессора, что выполняет арифметические и логические операции. Визуально процессорное ядро выглядит в виде блока транзисторов на кристалле, а не сферы, как можно было бы представить из названия.

Снимок процессора под микроскопом.Снимок процессора под микроскопом.

Снимок процессора под микроскопом.

Конфигурация процессорного ядра определяет вычислительную производительность и мощность процессора, если в составе только один вычислительный блок. В многоядерных процессорах, где 2 и более логических блока, при вычислении мощности учитываются возможности одного блока и суммы используемых блоков.

Как работает ядро процессора

Каждое ядро внутри процессора представляет собой набор микроскопических транзисторов, расположенных на кристалле кремния. Основная работа транзисторов заключается в переключении подаваемой электрической энергии. Если энергия подается – транзистор находится в открытом состоянии. При отсутствии или нехватке подаваемой энергии – в закрытом состоянии.

В понимании человека транзистор находится в состоянии «Вкл» или «Выкл», тогда как в понимании процессора – 1 или 0 соответственно, что вписывается в двоичную систему счисления. Поэтому для обращения к процессору команды кодируются из десятичной системы счисления в двоичную систему, а при получении результата происходит декодирование в обратном порядке.

Соответственно на вычислительную мощь и быстродействие процессорного ядра влияет количество транзисторов в блоке. Не последнюю роль так же выполняет «ширина шины» для передачи данных, а так же кэш-память, для хранения часто используемых инструкций и других данных.

Различия между ядрами в процессоре компьютера и телефона

Некоторые владельцы смартфонов и планшетов ошибочно полагают, что процессор мобильного устройства сопоставим или превосходит аналоги, используемые в настольных ПК и ноутбуках. В качестве приведенных аргументов указывается сопоставимое количество ядер, близкая частота или общие возможности. К примеру, на телефоне видео в разрешении 4К воспроизводится плавно, а на сравнимом ПК или ноутбуке – с задержкой.

Если рассуждать здраво, отдельные задачи на телефоне выполняются быстрее, чем на компьютере. Это объясняется разными факторами, включая задержки в используемом оборудовании, техническое состояние и возраст. А ещё важный фактор – программная оптимизация. В целом же лучшие современные мобильные процессоры с трудом конкурируют с настольными версиями середины прошлого десятилетия. А всё потому, что это два совершенно разных процессора, в плане конструкции и назначения.

Настольные процессоры построены на архитектуре x86, а мобильные на ARM. Под архитектурой процессора стоит понимать определенный набор команд, что способен выполнять процессор. В x86 используется тип процессорной архитектуры – CISC или «компьютер с полным набором команд», а в ARM используется RISC или «компьютер с сокращённым набором команд». В CISC длина набора команд не фиксирована, что позволяет задать для процессора несколько действий сразу. В RISC длина набора команд ограничена, а действия выполняются поочередно. При этом скорость исполнения команд быстрее за счет простоты.

Архитектура х86 изначально разрабатывалась с целью получения максимальной производительности. В ARM при разработке ориентировались на минимальные затраты при производстве, низкое энергопотребление и тепловыделение. Соответственно в ARM используются только необходимые инструкции, примерно 30% в сравнении с х86. Поэтому некоторые расчеты поддерживаемые процессорами на х86, в ARM недоступны. В совокупности с разницей в масштабировании, объеме кэш памяти и частоте, самые лучшие ARM процессоры едва догоняют Intel Celeron начального уровня.

С другой стороны чипы на ARM меньше в размерах, не нуждаются в массивном охлаждении, а ещё дешевле и компактны. В одном корпусе помимо процессорных ядер умещается ещё и графический ускоритель, сигнальный процессор, модемы и модули для управления беспроводных сетей. А энергопотребление минимум в 10 раз ниже самого экономичного настольного аналога.

Результаты теста PC Mark. Результаты теста PC Mark.

Результаты теста PC Mark. Источник Habr.com.

Типы ядер и компоновка

Смартфоны и планшеты производятся с использованием многоядерных процессоров на архитектуре ARM Cortex-A, где преимущественно используются 2, 4 или 8 логических блоков. В условиях увеличения требований к мультизадачности и возможности распределения нагрузки на несколько потоков, использование нескольких вычислительных блоков вполне логичный шаг, позволяющий заметно повысить производительность.

Составные части мобильной платформы Snapdragon 810.Составные части мобильной платформы Snapdragon 810.

Составные части мобильной платформы Snapdragon 810.

При этом важным критерием остается достижение оптимального баланса в энергосбережении и тепловыделении. Поскольку мобильные устройства ограничены в использовании питания встроенных батарей и не рассчитаны на установку массивных систем охлаждений. Поэтому при производстве процессора используется один или два типа ядер – экономичные или экономичные и производительные. Информация о типах ядер обычно указывается на официальном сайте производителя соответственного чипа.

К экономичному типу относятся ядра Cortex-A7 , А35, А53 и А55. Такие вычислительные блоки характеризуются низким энергопотреблением и невысокой производительностью. Наиболее рациональное использование – задачи с низкой нагрузкой: просмотр фотографий, навигация в меню, загрузка страниц в браузере и т.д.

К производительному типу относятся ядра Cortex-A9, А15, А57, А72, А73, А75 и A76. В блоках такого типа в приоритете производительность в ущерб энергопотреблению. Для сравнения один производительный блок превосходит по мощности 4 блока экономичного типа. Такие ядра чаще используются в тяжелых сценариях: игры, запись или воспроизведение 4К видео и т.д.

Для достижения оптимального сочетания производительности и сбережения энергии чаще устанавливаются 8 экономичных блоков либо 4 производительных и 4 экономичных блока. Причем в первом случае чаще используется конфигурация 4+4, где один кластер экономических ядер работает на увеличенной частоте, а второй кластер на сниженной, к примеру, 1500 и 1000 МГц, 2400 и 1600 МГц. В случае с использованием производительного кластера ядер, обычно высокая частота у мощных ядер.

При этом важно достичь оптимальной настройки и регулировки вычислительных блоков. Правильно указать, в каких задачах лучше использовать производительные блоки, а в каких экономичные. С этой задачей справляется планировщик. А компания, что лучше поработала над планировщиком, достигнет качественной производительности и энергосбережения в выпускаемой продукции.

Вывод

Теперь вы знаете, что такое ядро в телефоне и что такое ядра процессора. Статья позволяет поверхностно понять строение и процесс работы вычислительных возможностей процессора. А главное понимать, почему настольные процессоры превосходят по производительности аналоги, установленные в смартфонах и другой мобильной электронике.

Оставляйте свое мнение, вопросы и пожелания в комментариях.

Составные части мобильной платформы Snapdragon 810. Загрузка…

Поделиться:[addtoany]

Многоядерный процессор — это… Что такое Многоядерный процессор?

Многоя́дерный проце́ссор — центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

Архитектура многоядерных систем

Многоядерные процессоры можно подразделить по наличию поддержки когерентности кеш-памяти между ядрами. Бывают процессоры с такой поддержкой и без неё.

Способ связи между ядрами:

  • разделяемая шина
  • сеть (Mesh) на каналах точка-точка
  • сеть с коммутатором
  • общая кеш-память

Кеш-память: Во всех существующих на сегодня многоядерных процессорах кеш-памятью 1-го уровня обладает каждое ядро в отдельности, а кеш-память 2-го уровня существует в нескольких вариантах:

  • разделяемая — расположена на одном кристалле с ядрами и доступна каждому из них в полном объёме. Используется в процессорах семейств Intel Core.
  • индивидуальная — отдельные кеши равного объёма, интегрированные в каждое из ядер. Обмен данными из кешей 2-го уровня между ядрами осуществляется через контроллер памяти — интегрированный (Athlon 64 X2, Turion X2, Phenom) или внешний (использовался в Pentium D, в дальнейшем Intel отказалась от такого подхода).

Производительность

В приложениях, оптимизированных под многопоточность, наблюдается прирост производительности на многоядерном процессоре. Однако, если приложение не оптимизировано, то оно не будет получать практически никакой выгоды от дополнительных ядер, а может даже выполняться медленнее, чем на процессоре с меньшим количеством ядер, но большей тактовой частотой. Это в основном приложения, разработанные до появления многоядерных процессоров, либо приложения, в принципе не использующие многопоточность.

Большинство операционных систем позволяют выполнять несколько приложений одновременно. При этом получается выигрыш в производительности даже если приложения однопоточные.

Наращивание количества ядер

На сегодня основными производителями процессоров — Intel и AMD дальнейшее увеличение числа ядер процессоров признано как одно из приоритетных направлений увеличения производительности.

В 2011 году освоено производство 8-ядерных процессоров для домашних компьютеров,[1] и 16-ядерных для серверных систем.[2]

Имеются экспериментальные разработки процессоров с большим количеством ядер (более 20). Некоторые из таких процессоров уже нашли применение в специфических устройствах.

История массовых многоядерных процессоров

Двухядерные процессоры различных архитектур существовали ранее, например IBM PowerPC-970MP (G5), но их использование было ограничено узким кругом специализированных применений.

В апреле 2005 года AMD выпустила 2-ядерный процессор Opteron архитектуры AMD64, предназначенный для серверов. В мае 2005 года Intel выпустила процессор Pentium D архитектуры x86-64, ставший первым 2-ядерным процессором, предназначенным для персональных компьютеров.

В марте 2010 года появились первые 12-ядерные серийные процессоры, которыми стали серверные процессоры Opteron 6100 компании AMD (архитектура x86/x86-64).[3]

В августе 2011 года компанией AMD были выпущены первые 16-ядерные серийные серверные процессоры Opteron серии 6200 (кодовое наименование Interlagos). Процессор Interlagos объединяет в одном корпусе два 8-ядерных (4-модульных) чипа и является полностью совместимым с существующей платформой AMD Opteron серии 6100 (Socket G34).[4]

Сводные данные по истории микропроцессоров и их параметров представлены в обновляющейся английской статье: Хронология микропроцессоров, 2010ые годы. Для получения числа ядер процессора надо умножить поля «Cores per die» и «Dies per module», для получения числа аппаратных потоков — умножить число ядер на число «threads per core». Например, для Xeon E7, Intel: «4, 6, 8, 10» ядер на 1 die на 1-2 аппаратных потоков = максимум 10 ядер и 20 аппаратных потоков, AMD FX «Bulldozer» Interlagos «4-8» на 2 на 1 = максимум 16 ядер и 16 потоков.

История экспериментальных многоядерных процессоров

27 сентября 2006 года Intel представила прототип 80-ядерного процессора.[5] Предполагается, что массовое производство подобных процессоров станет возможно не раньше перехода на 32-нанометровый техпроцесс.

20 августа 2007 года компания Tilera, анонсировала чип TILE64 (англ.) с 64 процессорными ядрами и встроенной высокопроизводительной сетью, посредством которой обмен данными между различными ядрами может происходить со скоростью до 32 Тбит/с.[6][7]

26 октября 2009 года Tilera анонсировала[8] 100-ядерный процессор широкого назначения серии TILE-Gx (англ.). Каждое процессорное ядро представляет собой отдельный процессор с кеш-памятью 1 и 2 уровней. Ядра, память и системная шина связаны посредством топологии mesh network. Процессоры производятся по 40-нм техпроцессу и работают на тактовой частоте 1,5 ГГц. Выпуск 100-ядерных процессоров назначен на начало 2011 года.

2 декабря 2009 года Intel представила одночиповый «облачный» Single-chip Cloud Computer (SCC) компьютер, представляющий собой 48-ядерный чип. «Облачность» процессора состоит в том, что все 48 ядер сообщаются между собой как сетевые узлы. SCC — часть проекта, целью которого является создание 100-ядерного процессора. Ожидается, что некоторые функции SCC появятся в серийных процессорах Intel в 2010 году.[9]

В июне 2011 года Intel раскрыла детали разрабатываемой архитектуры Many Integrated Core (MIC) — эта технология выросла из проекта Larrabee. Микропроцессоры на основе этой архитектуры получат более 50 микроядер архитектуры x86 и начнут производится в 2012 году по 22-нм техпроцессу. Эти микропроцессоры не могут быть использованы в качестве центрального процессора, но из нескольких чипов этой архитектуры будут строиться вычислительные ускорители в виде отдельной карты расширения и конкурировать на рынках GPGPU и высокопроизводительных вычислений с решениями типа Nvidia Tesla и AMD FireStream.[10] По опубликованному в 2012 году описанию архитектуры, возможны чипы с количеством ядер до 60.

В октябре 2011 года компания Adapteva представила 64-ядерные микропроцессоры Epiphany IV, которые показывают производительность до 70 гигафлопс, при этом потребляя менее 1 Вт электроэнергии. Микропроцессоры спроектированы с использованием RISC-архитектуры и начнут массово производится в начале 2012 года по 28-нм техпроцессу. Данные процессоры не могут быть использованы в качестве центрального процессора, но компания Adapteva предлагает использовать их в качестве сопроцессора для таких сложных задач, как распознавание лиц или жестов пользователя. Компания Adapteva утверждает, что в дальнейшем число ядер данного микропроцессора может быть доведено до 4096[11].

В январе 2012 года компания ZiiLabs (дочернее предприятие Creative Technology) анонсировала 100-ядерную систему на чипе ZMS-40. Эта система, объединяющая 4-ядерный процессор ARM Cortex-A9 1,5 ГГц (с мультимедийными блоками Neon) и массив из 96 более простых и менее универсальных вычислительных ядер StemCell. Ядра StemCell — это энергоэффективная архитектура SIMD, пиковая производительность при вычислениях с плавающей запятой (32 бит) — 50 гигафлопс, ядра которой работают скорее как GPU в других системах на чипе, и могут быть использованы для обработки видео, изображений и аудио, для ускорения 3D- и 2D-графики и других мультимедийных задач (поддерживается OpenGL ES 2.0 и OpenCL 1.1)[12].

Многоядерные контроллеры

Существует также тенденция внедрения многоядерных микроконтроллеров в мобильные устройства.

Например:

  • seaForth-24 — новая разработка multi-core MISC архитектуры Chuck Moore 1 ГГц 24-ядерный асинхронный контроллер.
  • Контроллер от Parallax [1] имеет восемь 32-разрядных процессоров (COG) в одном кристалле P8X32A.
  • Kilocore PowerPC процессор с 1024 8-ми битными ядрами работающими на частоте 125 МГц. На данный момент существует 256-ядерный процессор.

См. также

Ссылки

Примечания

Центральный процессор (CPU), его основные производители, ядра процессора, виртуальные процессоры для облачных технологий

Каждый компьютер оснащён процессором. А также каждый смартфон, игровая приставка, плоский телевизор и любое другое сложное компьютерное устройство. Процессор называют мозгом компьютерного девайса, потому что абсолютно все, даже самые простые, процессы проходят через него. Мы предлагаем вам разобраться с тем, что это такое и какое значение играет количество ядер процессора.

Процессор, что это?

Центральный процессор, он же CPU, является одним из основных элементов компьютера. Именно он обрабатывает программный код и заставляет работать всю операционную систему устройства и установленные приложения. Команды на него поступают как с железа, так и с программного обеспечения. Основные производители процессоров для высокотехнологичных девайсов на сегодняшний день это:

  • Intel;
  • AMD;
  • Qualcomm;
  • NVIDIA;
  • Apple.

Производители Intel и AMD занимаются производством процессоров для стационарных компьютеров, ноутбуков и серверов. А Qualcomm, NVIDIA и Apple разрабатывают микропроцессоры для смартфонов, планшетов, умных часов и других подобных цифровых гаджетов.

Процессор intel

Процессор intel

Современные процессоры обычно небольшие и квадратные, с множеством небольших скруглённых металлических коннекторов. Процессоры крепятся в специально предназначенные для них слоты на материнской плате. Во время работы процессор обязательно нагревается, поэтому рядом с ним обязательно устанавливается система охлаждения.

Процессор AMD

Процессор AMD

Скорость работы процессора определяется по количеству процессов, обрабатываемых за секунду. Измеряется этот показатель в GHz (гигагерц). Например, если скорость работы процессора составляет 1 Hz, это значит, что за секунду обрабатывается только одна часть поступающих инструкций. А вот средний CPU со скоростью в 3.0 GHz может обрабатывать до 3 биллионов инструкций за одну секунду.

Ядра процессора

Встречаются устройства с одним ядром процессора. Встречаются с двумя и более. Ядрами называют физические элементы процессора, установленные на материнской плате. Они объединяются в единую систему. Процессор с двумя ядрами будет обрабатывать в два раза больше процессов, чем процессор с одним. Но, выбирая устройство по процессору, смотреть нужно в первую очередь не на количество ядер, а на скорость общей системы. Больше — не обязательно быстрее.

Ядра процессора

Ядра процессора

Некоторые CPU могут создавать виртуальные ядра, разбивая одно физическое на два. Это значит, что процессор с четырьмя ядрами может функционировать максимум как восьмиядерный. Но не стоит забывать, что физические процессоры в любом случае работают быстрее и чётче, чем виртуальные.

Архитектура и рабочие процессы любого CPU очень сложные. У каждого производителя свои архитектуры и особенности разработки. Каждый пытается сделать свой новый процессор наиболее эффективным, быстрее и точнее обрабатывающим все задачи.

Виртуальные процессоры для облачных технологий

Виртуальные процессоры, они же vCPU, представляют собой физические процессоры, привязанные к виртуальным машинам. Чаще всего работа с виртуальными процессорами вовлекается в работу с облачными технологиями. Физический хост, от которого идут vCPU, может быть оснащён множеством обычных процессоров. Но по дефолту под одну виртуальную машину выделяется один vCPU.

При администрировании систем с vCPU нужно знать, какая документация используется облачным провайдером. Настройка таких систем — дело тонкое. Важно понимать, что добавление дополнительных виртуальных процессоров к системе не обязательно повышает её производительность. Наоборот, физическим процессорам будет сложнее координировать виртуальные.

На эффективность любого процессора, как физического, так и виртуального, влияют многие факторы. Это и скорость, и количество ядер, и даже система охлаждения. Выбор процессора напрямую зависит от планируемых нагрузок.

Одноядерные и многоядерные процессоры? Что лучше?

В последнее время на компьютерах стали применяться многоядерные процессоры. В этой статье мы будем разбирать какое отличие одноядерного процессора от многоядерного и какой из них лучше.

Одноядерные и многоядерные процессоры? Что лучше?Все мы знаем что мощность и быстродействие компьютера напрямую зависит от центрального процессора. Чем выше частота процессора, тем быстрее работает компьютер. Сейчас практически на всех компьютерах используются многоядерные процессоры. Какое отличие одноядерного процессора от многоядерного мы знаем – многоядерные работают в разы быстрее. А вы когда-нибудь задумывались, за счет чего  увеличивается быстродействие многоядерного компьютера? В этой небольшой статье я постараюсь кратко изложить суть отличия одноядерного процессора от многоядерного.

Давайте сначала разберемся, что такое ядро процессора и что такое работа программы.

Ядро процессора – это специальное звено, которое выполняет операции над данными.

Работа программы – это изменение данных и вывод их на экран монитора, что мы видим в конечном итоге.

Операционная система так устроена, что она выделяет каждой программе (процессу) маленький промежуток времени процессора для обработки данных этой программы. Таким образом, из-за высокой частоты процессора и мизерного количества времени нам (пользователям) кажется, что несколько программ работают одновременно. На самом деле это не так. Все программы встают в очередь на выполнение, но очень быстро.

С появлением сначала двух виртуальных процессоров (технология Hyper-threading), а затем и настоящих двуядерных процессоров операционная система в действительности смогла выполнять две операции одновременно.

В настоящее время производители процессоров дошли до такого уровня что уже могут предложить 8-ядерные процессоры для Sony PLAYSTATION 3 и 2-, 3-, 4-ядерные для персональных компьютеров.

Соответственно операционная система с 2-, 3-, 4-ядерным процессором может одновременно выполнять соответственно 2, 3, 4 задачи (процессы).

У многих по ходу может возникнуть такой вопрос – я работаю за компьютером с одной программой, какую выгоду я могу получить от многоядерного процессора?

В Windows работают еще некоторые системные программы, которые запускаются и работают в фоновом режиме. Таких программ может быть много – 15-20, в дополнение к ним еще можно и включить антивирус, сетевой экран, всякие агенты программ и другие подобные. Поэтому, если вы думаете, что вы работаете с одной программой, то вы крупно ошибаетесь.

Соответственно на одноядерном и многоядерном процессорах эти программы будут работать в один и несколько «потоков». Здесь уже разница очевидна. Многоядерный процессор, работая в несколько «потоков» значительно ускоряет работу компьютера. Если же пользователь работает одновременно не с одной, а с несколькими программами, то разница будет заметна еще больше – ускорится запуск программ, уменьшится время переключения между приложениями и т.д.

Однако не стоит полагаться только лишь на один процессор. Все вышеуказанные утверждения верны, но только при наличии на компьютере достаточного объема ОЗУ. Вряд ли можно добиться желаемого эффекта от многоядерного компьютера с 512 Мб оперативной памяти. Система в целом должна быть сбалансирована.

Прирост в производительности может быть существенным – от 30 – 300% (зависит от типа процессора и используемого ПО). Наглядно за быстродействием системы можно наблюдать в диспетчере задач. В компьютерах с двуядерным процессорам в программе будут два окна загрузки – одно окно для отдельного ядра. Таким образом, можно определить сколько ядер имеет ваш процессор.

Диспетчер задач. Одноядерные и многоядерные процессоры? Что лучше?

Также следует отметить, что в случае зависания некоторых программ ОС может продолжить работу на других ядрах. Это позволит работать на компьютере без перезагрузки и потери данных на других программах.

Конечно, если вы покупаете себе компьютер лучше брать процессор с максимальным количеством ядер – 4-х ядерный (на момент написания статьи). Такое удовольствие стоит довольно дорого, но если финансы не позволяют, то можно обойтись и 2-х ядерным. Не стоит также забывать и про архитектуру ПК. Как говорилось выше, система должна быть сбалансированной.

На последок хотелось бы сказать, что современные ОС уже сделаны для работы с многоядерными ПК и умеют распределять равномерно нагрузку между ядрами. При разработке программ производители все больше делают уклон для работы с многоядерными процессорами. В дальнейшем будет расти число ядер, а также и число программ, которые будут работать с этими процессорами.

Leave a comment