Что такое ядра процессора: Что такое ядра процессора и какую функцию они выполняют – Что такое Ядра и потоки в процессорах | Skol

Содержание

Что такое Ядра и потоки в процессорах | Skol

Практически каждый в современном мире имеет дело с компьютерами и наверняка сталкивался с терминами ядра и потоки. Давайте разберемся что это и так ли хорошо иметь много ядер и потоков. На рынке компьютерных комплектующих присутствует немало процессоров, у которых число потоков больше числа физических ядер. В некоторых задачах эти «виртуальные ядра» могут дать существенный прирост в производительности, в других они практически бесполезны.





Что такое ядро и поток

Ядро – упрощенно это физическая единица процессора, способная в определенно взятый момент времени выполнять одну последовательность команд. Если ядро одно, а команд много, ядро переключается между ними, выполняя задачи поочередно в зависимости от приоритета.

Поток его еще называют иногда виртуальным ядром – результат работы современных технологий (в процессорах производства компании Intel – эта технология называется Hyper Threading, а у компании AMD – SMT технологией), когда ядро, с помощью специальных технологий, способно разделять свою производительность. Выражение одно ядро и два потока говорит о том, что физически одно ядро, но это ядро виртуально делится на два и позволяет распараллеливать задачи и решать их одновременно. То есть при наличии двух сравнительно «простых задач» процессор сможет выполнить их в два раза быстрее, чем обычный процессор с одним ядром. Примером таких задач могут быть скачивание фоном файлов, работа антивируса. Технология создания потоков позволяют делать несколько параллельных вычислительных каналов, что позволяет использовать способности компьютеров более эффективно, так как если одно из виртуальных ядер закончило свою работу, то может присоединиться к работе другого ядра. Производительность повыситься, но повышение будет ограниченно, так как используются ресурсы (тактовая частота измеряется в МГц– то есть вычислительная способность) физического ядра, которое у нас одно. Только используя специальные программы, работающие с гиперпотоком и при правильной оптимизации можно прочувствовать прирост в производительности.

Можно сделать вывод, что при работе с «простыми» задачами одноядерный процессор с двумя потоками по производительности сопоставим с «настоящими» двухъядерными процессорами, но если задачи будут «сложными» например архивация, рендеринг видео, то для увеличения производительности стоит задуматься о приобретении процессора с большим количеством ядер. Так как многоядерные процессоры более предпочтительны для серьезных задач чем многопоточные.

Какой процессор выбрать

При выборе процессора естественно, что встает вопрос как выбрать оптимальное количество ядер и потоков и не переплачивать. Очевидно, что с количеством ядер и потоков стоимость такого процессора будет значительно возрастать. При выборе оптимального процессора, чтобы не переплачивать и чтобы работало все быстро стоит обратить внимание на задачи стоящие перед вашим компьютером:

1) Если компьютер будет офисным для работы без использования серьезных программ, то достаточно 2 «настоящих» ядра. Данный процессор вполне справляется с большинством задач в современных условиях.

2) Если вы собираетесь играть в игры, то многие игры поддерживают 2-4 ядра. Наличие большего количества ядер, не будет ускорять процесс, так как они будут работать в холостую, а учитывая, что в многоядерных процессорах частота у ядер ниже, то вы столкнетесь с тем, что ваш компьютер стоил кучу денег, а в итоге игры тормозят.

3) Если вы используете компьютер в проектировании и обработке видео в своей профессиональной деятельности, то от количества ядер напрямую будет зависеть производительность этого процесса и здесь лучше иметь не меньше 4 ядер. Большее количество ядер будет только преимуществом и если бюджет позволяет, то возьмите хотя бы 8 ядер.

Рекомендации на конкретные модели в зависимости от стоящих перед ним задач:

1. Офисные: Процессоры Intel: Pentium Dual-Core, Core i3 любого поколения; процессоры AMD: A-серии, Ryzen 3 1200.

2. Игровые: Процессоры Intel: Core i3/i5/i7 6-го и выше поколения; процессоры AMD: Ryzen-5/ Ryzen 7.

3. Профессиональные: Процессоры Intel: Core i7 6950X, Core i9 9980XE; процессоры AMD: Threadripper 2920X, Threadripper 2970WX.

Узнать, сколько у вас физических ядер можно, через встроенную утилиту msinfo32.exe

msiinfo32.exe

Другие новости

Что такое ядро в телефоне? что такое ядра процессора

Что такое ядро в смартфоне.
Что такое ядро в смартфоне.

Автор: Александр Мойсеенко / Опубликовано:20.07.2019 / Последнее обновление: 20.07.2019

Процессор используется в смартфонах, планшетах и другой электронике. Микросхема размером в несколько мм регулирует работу других компонентов, обрабатывает и перераспределяет информацию. Большинство пользователей не заботит вопрос о типе процессора и работающих внутри ядрах. Поэтому мало кто с уверенностью объяснит, что такое ядро процессора и какие функции выполняет. Из-за этого часто возникает ошибочное мнение, что ядра в процессоре смартфона сопоставимы по мощности и возможностям с ядрами, что используются в настольных процессорах на ПК.

В статье мы расскажем, что собой представляет процессорное ядро и какие функции выполняет. Информация будет полезна для общего понимания, а так же пригодится тем, кто выбирает новый телефон и желает подробнее узнать о возможностях, различиях и других особенностях мобильного процессора.

Что такое ядро в процессоре

Ядро – составная часть центрального процессора, что выполняет арифметические и логические операции. Визуально процессорное ядро выглядит в виде блока транзисторов на кристалле, а не сферы, как можно было бы представить из названия.

Снимок процессора под микроскопом.Снимок процессора под микроскопом.

Снимок процессора под микроскопом.

Конфигурация процессорного ядра определяет вычислительную производительность и мощность процессора, если в составе только один вычислительный блок. В многоядерных процессорах, где 2 и более логических блока, при вычислении мощности учитываются возможности одного блока и суммы используемых блоков.

Как работает ядро процессора

Каждое ядро внутри процессора представляет собой набор микроскопических транзисторов, расположенных на кристалле кремния. Основная работа транзисторов заключается в переключении подаваемой электрической энергии. Если энергия подается – транзистор находится в открытом состоянии. При отсутствии или нехватке подаваемой энергии – в закрытом состоянии.

В понимании человека транзистор находится в состоянии «Вкл» или «Выкл», тогда как в понимании процессора – 1 или 0 соответственно, что вписывается в двоичную систему счисления. Поэтому для обращения к процессору команды кодируются из десятичной системы счисления в двоичную систему, а при получении результата происходит декодирование в обратном порядке.

Соответственно на вычислительную мощь и быстродействие процессорного ядра влияет количество транзисторов в блоке. Не последнюю роль так же выполняет «ширина шины» для передачи данных, а так же кэш-память, для хранения часто используемых инструкций и других данных.

Различия между ядрами в процессоре компьютера и телефона

Некоторые владельцы смартфонов и планшетов ошибочно полагают, что процессор мобильного устройства сопоставим или превосходит аналоги, используемые в настольных ПК и ноутбуках. В качестве приведенных аргументов указывается сопоставимое количество ядер, близкая частота или общие возможности. К примеру, на телефоне видео в разрешении 4К воспроизводится плавно, а на сравнимом ПК или ноутбуке – с задержкой.

Если рассуждать здраво, отдельные задачи на телефоне выполняются быстрее, чем на компьютере. Это объясняется разными факторами, включая задержки в используемом оборудовании, техническое состояние и возраст. А ещё важный фактор – программная оптимизация. В целом же лучшие современные мобильные процессоры с трудом конкурируют с настольными версиями середины прошлого десятилетия. А всё потому, что это два совершенно разных процессора, в плане конструкции и назначения.

Настольные процессоры построены на архитектуре x86, а мобильные на ARM. Под архитектурой процессора стоит понимать определенный набор команд, что способен выполнять процессор. В x86 используется тип процессорной архитектуры – CISC или «компьютер с полным набором команд», а в ARM используется RISC или «компьютер с сокращённым набором команд». В CISC длина набора команд не фиксирована, что позволяет задать для процессора несколько действий сразу. В RISC длина набора команд ограничена, а действия выполняются поочередно. При этом скорость исполнения команд быстрее за счет простоты.

Архитектура х86 изначально разрабатывалась с целью получения максимальной производительности. В ARM при разработке ориентировались на минимальные затраты при производстве, низкое энергопотребление и тепловыделение. Соответственно в ARM используются только необходимые инструкции, примерно 30% в сравнении с х86. Поэтому некоторые расчеты поддерживаемые процессорами на х86, в ARM недоступны. В совокупности с разницей в масштабировании, объеме кэш памяти и частоте, самые лучшие ARM процессоры едва догоняют Intel Celeron начального уровня.

С другой стороны чипы на ARM меньше в размерах, не нуждаются в массивном охлаждении, а ещё дешевле и компактны. В одном корпусе помимо процессорных ядер умещается ещё и графический ускоритель, сигнальный процессор, модемы и модули для управления беспроводных сетей. А энергопотребление минимум в 10 раз ниже самого экономичного настольного аналога.

Результаты теста PC Mark. Результаты теста PC Mark.

Результаты теста PC Mark. Источник Habr.com.

Типы ядер и компоновка

Смартфоны и планшеты производятся с использованием многоядерных процессоров на архитектуре ARM Cortex-A, где преимущественно используются 2, 4 или 8 логических блоков. В условиях увеличения требований к мультизадачности и возможности распределения нагрузки на несколько потоков, использование нескольких вычислительных блоков вполне логичный шаг, позволяющий заметно повысить производительность.

Составные части мобильной платформы Snapdragon 810.Составные части мобильной платформы Snapdragon 810.

Составные части мобильной платформы Snapdragon 810.

При этом важным критерием остается достижение оптимального баланса в энергосбережении и тепловыделении. Поскольку мобильные устройства ограничены в использовании питания встроенных батарей и не рассчитаны на установку массивных систем охлаждений. Поэтому при производстве процессора используется один или два типа ядер – экономичные или экономичные и производительные. Информация о типах ядер обычно указывается на официальном сайте производителя соответственного чипа.

К экономичному типу относятся ядра Cortex-A7 , А35, А53 и А55. Такие вычислительные блоки характеризуются низким энергопотреблением и невысокой производительностью. Наиболее рациональное использование – задачи с низкой нагрузкой: просмотр фотографий, навигация в меню, загрузка страниц в браузере и т.д.

К производительному типу относятся ядра Cortex-A9, А15, А57, А72, А73, А75 и A76. В блоках такого типа в приоритете производительность в ущерб энергопотреблению. Для сравнения один производительный блок превосходит по мощности 4 блока экономичного типа. Такие ядра чаще используются в тяжелых сценариях: игры, запись или воспроизведение 4К видео и т.д.

Для достижения оптимального сочетания производительности и сбережения энергии чаще устанавливаются 8 экономичных блоков либо 4 производительных и 4 экономичных блока. Причем в первом случае чаще используется конфигурация 4+4, где один кластер экономических ядер работает на увеличенной частоте, а второй кластер на сниженной, к примеру, 1500 и 1000 МГц, 2400 и 1600 МГц. В случае с использованием производительного кластера ядер, обычно высокая частота у мощных ядер.

При этом важно достичь оптимальной настройки и регулировки вычислительных блоков. Правильно указать, в каких задачах лучше использовать производительные блоки, а в каких экономичные. С этой задачей справляется планировщик. А компания, что лучше поработала над планировщиком, достигнет качественной производительности и энергосбережения в выпускаемой продукции.

Вывод

Теперь вы знаете, что такое ядро в телефоне и что такое ядра процессора. Статья позволяет поверхностно понять строение и процесс работы вычислительных возможностей процессора. А главное понимать, почему настольные процессоры превосходят по производительности аналоги, установленные в смартфонах и другой мобильной электронике.

Оставляйте свое мнение, вопросы и пожелания в комментариях.

Составные части мобильной платформы Snapdragon 810. Загрузка…

Поделиться:[addtoany]

На что влияют ядра процессора

На что влияют ядра процессора
Центральный процессор – это основной компонент компьютера, производящий львиную долю вычислений, и от его мощности зависит скорость работы всей системы. В этой статье мы поговорим о том, как влияет количество ядер на производительность CPU.

Ядра центрального процессора

Ядро – это основная составляющая ЦП. Именно здесь производятся все операции и вычисления. Если ядер несколько, то они «общаются» между собой и с другими компонентами системы посредством шины данных. Количество таких «кирпичиков», в зависимости от поставленной задачи, влияет на общую производительность процессора. В целом, чем их больше, тем выше скорость обработки информации, но на деле имеются условия, при которых многоядерные CPU уступают своим менее «упакованным» собратьям.

Внутреннее устройство центрального процессора

Читайте также: Устройство современного процессора

Физические и логические ядра

Многие процессоры Intel, а с недавнего времени и AMD, способны производить расчеты так, что одно физическое ядро оперирует двумя потоками вычислений. Эти потоки называются логическими ядрами. Например, мы можем увидеть в CPU-Z вот такие характеристики:

Ядра и потоки процессора в программе CPU-Z

Отвечает за это технология Hyper Threading (HT) у Intel или Simultaneous Multithreading (SMT) у AMD. Здесь важно понять, что добавленное логическое ядро будет медленнее физического, то есть полноценный четырехъядерный ЦП мощнее двухъядерного того же поколения с HT или SMT в одних и тех же приложениях.

Игры

Игровые приложения построены таким образом, что вместе с видеокартой над расчетом мира трудится и центральный процессор. Чем сложнее физика объектов, чем их больше, тем выше нагрузка, и более мощный «камень» лучше справится с работой. Но не стоит спешить покупать многоядерного монстра, так как игры бывают разные.

Просчет игрового мира центральным процессором в игре GTA 5

Читайте также: Что делает процессор в играх

Старые проекты, разработанные примерно до 2015 года, в основном не могут загрузить больше 1 – 2 ядер из-за особенностей кода, написанного разработчиками. В этом случае предпочтительнее иметь двухъядерный процессор с высокой частотой, чем восьмиядерный с низкими мегагерцами. Это лишь пример, на практике современные многоядерные ЦП имеют довольно высокую производительность на ядро и в устаревших играх работают хорошо.

Читайте также: На что влияет частота процессора

Одной из первых игр, код которой способен выполняться на нескольких (4 и более) ядрах, загружая их равномерно, стала GTA 5, выпущенная на ПК в 2015 году. С тех пор большинство проектов можно считать многопоточными. Это значит, что у многоядерного процессора есть шанс не отстать от своего высокочастотного коллеги.

В зависимости от того, насколько хорошо игра способна использовать вычислительные потоки, многоядерность может быть как плюсом, так и минусом. На момент написания данного материала «игровыми» можно считать CPU, имеющие от 4 ядер, лучше с гиперпоточностью (см. выше). Впрочем, тенденция такова, что разработчики все более оптимизируют код под параллельные вычисления, и малоядерные модели скоро безнадежно устареют.

Программы

Здесь все немного проще, чем с играми, так как мы можем подобрать «камень» для работы в конкретной программе или пакете. Рабочие приложения также бывают однопоточными и многопоточными. Первым нужна высокая производительность на ядро, а вторым большое количество вычислительных потоков. Например, с рендерингом видео или 3D сцен лучше справится многоядерный «проц», а Фотошопу необходимо 1 – 2 мощных ядра.

Работа центрального процессора в программе Cinema 4D

Операционная система

Количество ядер влияет на быстродействие ОС только в том случае, если равняется 1. В остальных случаях системные процессы не нагружают процессор настолько, чтобы были задействованы все ресурсы. Мы сейчас не говорим о вирусах или сбоях, способных «положить на лопатки» любой «камень», а о штатной работе. Впрочем, вместе с системой может быть запущено много фоновых программ, которые также потребляют процессорное время и дополнительные ядра не будут лишними.

Отображение ядер процессора в Диспетчере задач Windows 7

Универсальные решения

Сразу отметим, что многозадачных процессоров не бывает. Есть только модели, способные показывать неплохие результаты во всех приложениях. В качестве примера можно привести шестиядерные CPU с высокой частотой i7 8700, Ryzen R5 2600 (1600) или более пожилые аналогичные «камни», но даже они не могут претендовать на универсальность, если вы параллельно с играми активно работаете с видео и 3D или занимаетесь стримингом.

Заключение

Резюмируя все написанное выше, можно сделать следующий вывод: количество ядер процессора — это характеристика, показывающая общую вычислительную мощность, а вот, каким образом она будет использоваться, зависит от приложения. Для игр вполне сгодится четырехъядерная модель, а для высокоресурсных программ лучше выбрать «камень» с большим количеством потоков.

Отображение ядер процессора в Диспетчере задач Windows 7Мы рады, что смогли помочь Вам в решении проблемы.
Отображение ядер процессора в Диспетчере задач Windows 7Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

Как выбрать центральный процессор, и зачем это нужно? | Периферия | Блог

Пожалуй, ключевым достоинством персонального компьютера как платформы является его впечатляющая гибкость и возможности кастомизации, которые сегодня, благодаря появлению новых стандартов и типов комплектующих, кажутся практически безграничными. Если лет десять назад, произнося аббревиатуру «ПК», можно было с уверенностью представить себе белый железный ящик, опутанный проводами и жужжащий где-то под столом, то сегодня столь однозначных ассоциаций нет и быть не может.

Сегодняшний ПК может быть мощной рабочей станцией, ориентированной на производительность в вычислениях или рабочей машиной дизайнера, «заточенной» под качество двухмерной графики и быструю работу с данными. Может быть топовой игровой машиной или скромной мультимедийной системой, живущей под телевизором…

Иначе говоря, у каждого ПК сегодня свои задачи, которым соответствует тот или иной набор железа. Но как выбрать подходящее?

Начинать следует с центрального процессора. Видеокарта определит производительность системы в играх (и ряде рабочих приложений, использующих вычисления на GPU). Материнская плата — формат системы, её функционал «из коробки» и возможности подключения комплектующих и периферийных устройств. Однако именно процессор определит возможности системы в повседневных домашних задачах и работе.

Давайте рассмотрим, что важно при выборе процессора, а что — нет.

На что НИКОГДА не нужно обращать внимание

Производитель процессора

Как и в случае с видеокартами (да, впрочем, и со многими другими девайсами), наши соотечественники всегда рады превратить обыкновенный потребительский товар в нечто, что можно поднять на штандарты и пойти войной на сторонников противоположного лагеря. Можете представить себе ситуацию, в которой любители маринованных огурцов и консервированных помидоров разделили магазин баррикадой, покрывают друг друга последними словами и частенько прибегают к рукоприкладству? Согласитесь, звучит как полный бред… однако в сфере компьютерных комплектующих такое происходит сплошь и рядом!

Причем, как и любые сектанты, фанаты брендов видят мир исключительно разделенным на чёрное и белое. Все, абсолютно все товары с их любимым логотипом — это абсолютный идеал и само совершенство, а противоборствующие им решения — само воплощение зла, вместилище всех возможных недостатков.

О том, что у каждого из двух производителей центральных процессоров — соответственно, Intel и AMD, — есть полностью сформированные линейки продуктов, состоящие из совершенно разных по характеристикам девайсов с совершенно разной стоимостью, сектанты предпочитают умалчивать. Как, собственно, и о том, что в разных ценовых сегментах реальный лидер может меняться.

Рекомендация №1: Планируя сборку нового ПК или апгрейд старого, определитесь в первую очередь с бюджетом. Посчитайте сумму, которая у вас есть на руках, добавьте к ней некий резерв, который вы, в случае необходимости готовы добавить, а затем посмотрите, какие модели центральных процессоров в этот бюджет вписываются.

Чётко осознайте, что вы выбираете именно эти модели, и вам важны именно их характеристики. Что происходит, и кто лидирует в сегментах выше или ниже вашего бюджета — вас не касается. Вам важно только то, сколько производительности вы получите сейчас, за имеющиеся деньги.

«Игровой» или «не игровой» процессор

У процессора нет такой характеристики или функции, которая позволяла или не позволяла бы ему запускать игры (хотя родители некоторых покупателей с радостью бы за неё заплатили). У него есть производительность, которой может оказаться достаточно или недостаточно для комфортной игры. Разделение же на игровые и не игровые модели — не более чем искусственный маркетинг. Причём разделение весьма странно и зачастую не соответствует реальным возможностям ЦПУ.

Рекомендация №2: Какие бы цели вы ни ставили перед будущим ПК — будет ли он игровой системой, рабочей станцией или основным элементом домашней мультимедийной системы — руководствуйтесь самым простым параметром: тем, насколько производительности процессора достаточно для этих задач.

Раскрывашки

Кризисный 2016 год, в который упали доходы населения, а следовательно, и продажи всего и вся, включая центральные процессоры, «подарил» нам очередной миф, который теперь надолго засядет в интернетах. А уж в сознании рядовых покупателей — и того дольше.

Суть явления проста: «старые процессоры с новыми видеокартами работать не могут, бегите все покупать новые!». Особенно доставляют здесь рекомендации заменить вполне годные и актуальные процессоры Core i5 старых поколений на процессоры Core i3 новых поколений, которые по всем параметрам хуже. Ну, и, разумеется, советы потратить 40 тысяч на апгрейд платформы ради игр с видеокартой за 20 тысяч.

Рекомендация №3: Собственно, и рекомендовать тут нечего. Задача любой раскрывашки — не помочь вам выбрать подходящий процессор, а «втюхать» девайс поновее и подороже, желательно в комплекте с материнской платой и памятью. Увидите раскрывашку — отойдите в сторонку и не слушайте. Иначе себе дороже выйдет.

Что ИНОГДА может оказаться важным

OEM и BOX-комплектация, она же «система охлаждения в комплекте»

Центральные процессоры могут поставляться в двух вариантах: «боксовой» и OEM-комплектации. Разница предельно проста: «бокс» — это, собственно, коробка, в которой, помимо самого процессора, находятся гарантийный талон и штатная система охлаждения (хотя в редких случаях вроде процессоров FX 9000-ой серии она может отсутствовать). OEM — это просто процессор, абсолютно без всего. Ни коробки, ни кулера, ни гарантийного талона.

Вызвано это тем, что OEM-комплектация по замыслу производителя процессора предназначается для фирм, собирающих и продающих готовые ПК. Процессоры в данном случае приобретаются большими партиями и поставляются в паллетах, вмещающих по 20 с лишним штук. Опять же, по логике производителя, из этих паллетов они должны попадать сразу в компьютеры.

Но в нашей стране процессор в OEM-комплектации можно свободно купить в рознице (см. гневные отзывы на тему «Вынесли процессор в пакетике»). Такая комплектация дешевле боксовой, и порой — очень существенно.

Рекомендация №4: Боксовая комплектация — это всегда компромисс. Штатный кулер — не самый эффективный, не самый тихий и уж совершенно точно — не самый выгодный по цене. Кого-то может подкупить более длительный срок гарантии у «бокса» против OEM, однако процессор — устройство крайне живучее, и сломать его ой как непросто (разве что целенаправленно и механически). Если он прожил у вас первый день — с 95% вероятностью проживёт и следующие 10 лет. Альтернативные кулеры, опять же, могут оказаться и дешевле, и эффективнее штатного.

С другой стороны, всё упирается в цену. Если стоимость «бокса» лишь немногим выше OEM — берите бокс, хуже от этого не будет.

Свободный множитель и частота процессора

Далеко не каждому пользователю даже самого обычного игрового ПК интересен разгон, не говоря уже о платформах, на которых оный разгон вообще не нужен или противопоказан. Тем не менее, в отдельных случаях этот параметр может оказаться полезным.

Частота современных процессоров складывается из двух параметров: базовой частоты, задаваемой системной шиной, и множителя, который варьируется от модели к модели. Соответственно, изменяя один из двух параметров или оба сразу, мы можем изменять итоговую тактовую частоту процессора и его производительность. Тем не менее, далеко не все современные платформы позволяют разгонять процессор по шине (а еще меньше платформ позволяют делать это официально). Так что, если вы заранее планируете разгон — выбирайте модели ЦПУ с разблокированным множителем, этим вы сильно облегчите себе задачу.

Что же касается тактовой частоты процессора (как базовой, так и в турбо-режиме) — это весьма специфический параметр. При прочих равных условиях — да, производительность процессоров определяется частотой. Например, если мы сравниваем два процессора из линейки Core i5, относящихся к одному и тому же поколению и основанных на одном и том же ядре, быстрее будет тот, у которого выше частота.

Но если сравнивать Core i5 с Core i3 того же поколения или с Core i5 предшествующего поколения — частота вовсе не будет определяющим фактором! В первом случае важно будет количество исполнительных блоков, во втором — архитектурные различия и поддержка отдельных технологий и инструкций.

Рекомендация №5: Свободный множитель — параметр полезный, но далеко не для всех. Нужен он вам или нет — зависит от ситуации, и однозначных рекомендаций тут дать нельзя. Что же касается частоты — пользуйтесь этим параметром с осторожностью. Он важен только в том случае, если все остальные параметры одинаковы.

Интегрированное графическое ядро

Большинство современных процессоров за редкими исключениями оснащается встроенной графикой. У некоторых покупателей это вызывает недовольство — мол, зачем это я переплачиваю за то, чем не буду пользоваться? Однако в реальности встроенное графическое ядро не отнимает, а ЭКОНОМИТ ваши деньги.

Как так? Всё просто. Купили вы компьютер с мощным процессором, оверклокерской материнской платой и большим объемом памяти, а покупку игровой видеокарты отложили на потом. Всего лет 8-10 назад в такой ситуации вам пришлось бы искать на барахолках «затычку» для слота — устаревшую или слабую видеокарту, на которой можно было пересидеть, пока не будет приобретен более мощный современный девайс. Просто потому, что иначе компьютер бы не работал — не умели тогда процессоры выводить видео, а топовые материнские платы и встроенное видео были вещами несовместимыми.

Сегодня же — вы просто подключаете монитор к выходам на материнской плате и используете ПК, не тратя лишнее время и деньги. Более того — производительность современной встроенной графики такова, что нетребовательным пользователям и тем, кому компьютер нужен не для игр видеокарта и вовсе не нужна!

Особняком здесь стоят APU компании AMD. Их ключевое преимущество — именно мощная встроенная графика, что делает эти процессоры отличным вариантом для HTPC и мультимедийных систем, но в то же время их использование с дискретным видео теряет всякий смысл. Справедливости ради — топовые модели современных процессоров Intel оснащаются видеоядром не хуже, но стоят куда дороже APU, а производительность их процессорной части для HTPC крайне избыточна.

Кто же сегодня живёт без встроенной графики? Это топовые процессоры Intel для платформы LGA 2011-3 — им по статусу положено работать либо с мощнейшими игровыми видеокартами, либо с профессиональными ускорителями вычислений. Также лишены графики процессоры AMD под уходящую уже платформу AM3+. И процессоры семейства Athlon II — те же самые APU, только с отключенной графической частью: экстремально дешёвые и столь же производительные за свой ценник.

Кроме того, без встроенной графики обходятся некоторые (но далеко не все) процессоры Intel Xeon, выполненные под мейнстримовые платформы LGA 115x. Об этих процессорах стоит сказать особо. Несмотря на «серверное» имя, они фактически являются аналогами десктопных Core i5/i7. Существенные различия — возможность установки в материнские платы, поддерживающие мультипроцессорные конфигурации и поддержка оперативной памяти с коррекцией ошибок (ECC).

Рекомендация №6: Бояться встроенной графики не стоит — это отличный бонус, который к тому же скоро станет стандартом для всех платформ за исключением LGA 2011-3 и возможно, её потомков. Встроенное ядро может оказаться очень полезным в отдельных случаях или вовсе избавить вас от необходимости покупать дискретную видеокарту. Но и гоняться за ним не стоит: у процессоров без встроенной графики тоже может оказаться немало достоинств.

Что вам ДЕЙСТВИТЕЛЬНО важно знать

Сокет

Сокет — это разъём, в который процессор устанавливается на материнской плате. Как и любой другой разъём, он имеет определённые физические размеры, конструкцию, количество контактов и так далее. Соответственно, за редкими исключениями, установить в один сокет можно только одно семейство процессоров. Например, процессор под сокет AM4 в материнскую плату с сокетом FM2+ или LGA 1151 установить невозможно чисто физически (вернее, один раз возможно, но после этого вам потребуются и новый процессор, и новая материнская плата).

Соответственно, выбор сокета определяет то, какие процессоры вам будут доступны на момент покупки, и какие вы сможете установить в будущем (и сможете ли вообще). От него зависит производительность системы, возможности и цена будущего апгрейда, а нередко — и количество периферийных устройств, которые можно установить в ПК.

Рекомендация №7: Определитесь с тем, что вы хотите получить от ПК. Да, некоторые современные платформы абсолютно универсальны (а некоторые будущие платформы — обещают быть такими) и гибко настраиваются под любые задачи при наличии должного количества денег, но это вовсе не значит, что у них нет аналогов. Некоторые ваши задачи могут быть решены гораздо меньшими тратами, а некоторые — гораздо эффективнее при тех же тратах.

Если вы выбираете процессор под уже имеющуюся материнскую плату — не поленитесь потратить несколько минут на то, чтобы зайти на официальный сайт производителя и посмотреть список совместимых с ней моделей ЦПУ. Это бесплатно, совершенно не сложно, и не требует никаких специальных знаний, но в ряде случаев поможет вам сэкономить время и деньги.

Бывает так, что процессор совпадает по сокету, но при этом вовсе не поддерживается материнской платой, или для запуска требует обновления микрокода биос. Второе можно сделать заранее перед покупкой нового ЦПУ, а первое лучше узнать сразу, чем потом возвращать в магазин исправный товар, в несовместимости которого с вашим железом не виноваты ни вы, ни сотрудники магазина.

Также бывают случаи, когда процессор номинально поддерживается, но на деле не может работать в конкретной материнской плате — например, когда подсистема питания материнской платы слишком слабая, а процессор наоборот, слишком прожорлив и требователен к питанию. Об этом тоже лучше узнать заранее, чем потом бороться с последствиями.

Если же вы выбираете процессор под абсолютно новую систему, обращать внимание следует на актуальные сокеты:

AM1 — платформа AMD, предназначенная для неттопов, встраиваемых систем и мультимедийных ПК начального уровня. Как и все APU, отличается наличием сравнительно мощной встроенной графики, что и является основным преимуществом.

AM4 — универсальная платформа AMD для мейнстрим-сегмента. Объединяет десктопные APU и мощные ЦПУ семейства Ryzen, благодаря чему позволяет собирать ПК буквально под любой бюджет и потребности пользователя.

TR4 — флагманская платформа AMD, предназначенная под процессоры Threadripper. Это продукт для профессионалов и энтузиастов: 16 физических ядер, 32 потока вычислений, четырёхканальный контроллер памяти и прочие впечатляющие цифры, дающие серьёзный прирост производительности в рабочих задачах, но практически не востребованные в домашнем сегменте.

LGA 1151_v2 — сокет, который ни в коем случае нельзя путать с обычным LGA 1151 (!!!). Являет собой актуальную генерацию мейнстримовой платформы Intel, и наконец-то привносит в потребительский сегмент процессоры с шестью физическими ядрами — этим и ценен. Однако обязательно следует помнить, что процессоры Coffee Lake нельзя установить в платы с чипсетами серий 200 и 100, а старые процессоры Skylake и Kaby Lake — в платы с чипсетами серии 300.

LGA 2066 — актуальная генерация платформы Intel, предназначенной для профессионалов. Также может быть интересна в качестве платформы для постепенного апгрейда. Младшие процессоры Core i3 и Core i5 практически ничем не отличаются от аналогов под LGA 1151 первой версии и стоят относительно доступно, но впоследствии их можно заменить на Core i7 и Core i9.

Количество ядер

Этот параметр требует множества оговорок, и его следует применять с осторожностью, однако именно он позволяет более-менее логично выстроить и дифференцировать центральные процессоры.

Модели с двумя вычислительными ядрами, а также с двумя физическими ядрами и четырьмя виртуальными потоками вне зависимости от тактовой частоты, степени динамического разгона, архитектурных преимуществ и фанатских мантр сегодня прочно обосновались в сегменте офисных ПК, причём даже там — не на самых ответственных местах. Всерьёз говорить об использовании таких ЦПУ в игровых машинах, а уж тем более — в рабочих станциях сегодня не приходится.

Процессоры с четырьмя вычислительными ядрами выглядят немного актуальнее, и могут удовлетворить запросы как офисных работников, так и не самых требовательных домашних пользователей. На них вполне можно собрать бюджетный игровой ПК, хотя в современных тайтлах производительность будет ограничена, а одновременное выполнение нескольких операций — к примеру, запись игрового видео, — будет невозможно или приведёт к заметному падению фпс.

Оптимальный вариант для дома — процессоры с шестью ядрами. Они способны обеспечивать высокую производительность в играх, не падают в обморок при выполнении нескольких ресурсоёмких задач одновременно, позволяют использовать ПК в качестве домашней рабочей станции, и при всём этом — сохраняют вполне доступную стоимость.

Процессоры с восемью ядрами — выбор тех, кто занят более серьёзными задачами, нежели игры. Хотя и с развлечениями они справятся без проблем, заметнее всего их преимущества — в рабочих приложениях. Если вы занимаетесь обработкой и монтажом видео, рисуете сложные макеты для полиграфии, проектируете дома или другие сложные конструкции, то выбирать стоит именно эти ЦПУ. Излишка производительности вы не заметите, а вот быстрая обработка и отсутствие зависаний в самый ответственный момент — определённо вас порадуют.

Процессоры с 10 и 16 ядрами — это уже серверный сегмент и весьма специфические рабочие станции, от предыдущего варианта отличающиеся примерно как работа дизайнера спецэффектов для большого кино от работы монтажера роликов на youtube (собственно, примерно там и используются). Однозначно рекомендовать или наоборот, отговаривать от их покупки сложно. Если вам реально требуется такая производительность — вы уже знаете, как и где будете её применять.

Рекомендация №8: Количество ядер — не самый чёткий параметр, и не всегда он позволяет отнести к одной группе процессоры с близкими характеристиками. Тем не менее, при выборе процессора стоит ориентироваться на этот параметр.

Производительность

Итоговый и самый важный параметр, которого, увы, нельзя найти ни в одном каталоге магазина. Тем не менее, в итоге именно он определяет, подойдет ли вам тот или иной процессор, и насколько эксплуатация ПК на его основе будет соответствовать вашим первоначальным ожиданиям.

Прежде, чем отправляться в магазин за процессором, который вам вроде бы подходит, не поленитесь изучить его детальные тесты. Причем «детальные» — это не видосики на ютубе, показывающие вам то, что вы должны увидеть по замыслу их автора. Детальные тесты — это масштабное сравнение процессора в синтетических бенчмарках, профессиональном софте и играх, проводимое по чёткой методике с участием всех или большинства конкурирующих решений.

Как и в случае с видеокартами, чтение и анализ подобных материалов поможет вам определить, стоит ли тот или иной процессор своих денег, и на что, при возможности, его можно заменить.

Рекомендация №9: Потратив пару вечеров на чтение и сравнение информации из разных источников (важно, чтобы они были авторитетными, и весьма желательно — зарубежными), вы сделаете аргументированный выбор и избавите себя от множества проблем в будущем. Поверьте, оно того более чем стоит.

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Процессоры AMD Sempron и Athlon под [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?order=1&stock=2&f=2g9r]сокет AM1 подойдут для сборки бюджетных мультимедийных ПК, встраиваемых систем и тому подобных задач. К примеру, если вы хотите установить в машину полноценный ПК с десктопной операционной системой или собрать небольшой неттоп, который будет скрытно жить в недрах дачного дома или гаража — стоит обратить внимание на эту платформу.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?order=1&stock=2&f=26r-26u-26t&f=27h]офисных ПК подойдут двухъядерные процессоры Intel Celeron, Pentium и Core i3. Их преимуществом в данном случае выступит наличие встроенного графического ядра. Производительность последнего достаточна для вывода необходимой информации и ускорения работы браузеров, но совершенно недостаточна для игр, которых на рабочем месте всё равно быть не должно.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=27b-277-jlvh&f=emb2&f=ci6]домашнего мультимедийного ПК лучшим выбором окажутся APU от AMD, предназначенные под актуальный сокет AM4. Представители линеек A8, A10 и А12 объединяют под одной крышкой четырёхъядерный процессор и весьма неплохую графику, которая может уверенно соперничать с бюджетными видеокартами. ПК на этой платформе можно сделать весьма компактным, но его производительности хватит для воспроизведения любого контента, а также целого ряда рабочих задач и немалого перечня игр.

Для бюджетного игрового ПК подойдут четырёхъядерные процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=j8yn&f=emb2]AMD Ryzen 3 и четырёхъядерные [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=2iqha]Core i3 под сокет LGA 1151_v2 (не путать с двухъядерными Core i3 под сокет LGA 1151 !!!). Производительности этих процессоров достаточно для любых домашних задач и большинства игр, однако грузить их серьёзной работой или пытаться выполнять несколько ресурсоёмких задач одновременно всё же не стоит.

Для [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=g7df&f=emb2&f=27j]бюджетной рабочей станции компромиссным вариантом могут стать четырёхъядерные процессоры AMD Ryzen 5. Помимо физических ядер, они предлагают и виртуальные потоки вычислений, что в итоге позволяет выполнять операции в восемь потоков. Разумеется, это не так эффективно, как физические ядра, но вероятность увидеть 100% загрузку процессора и падение фпс ниже играбельного при записи или прямой трансляции геймплея здесь гораздо ниже, чем у предыдущих двух вариантов. Да и последующий монтаж оного видео пройдёт быстрее.

Оптимальный выбор для домашнего игрового ПК — шестиядерные процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=g7df&f=emb2&f=27k]AMD Ryzen 5 и [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=2iqha&f=27k]Intel Core i5 под сокет LGA 1151_v2 (не путать с их четырёхъядерными предшественниками!!!). Стоимость этих ЦПУ вполне гуманна, их даже можно назвать относительно доступными, в отличие от топовых линеек Ryzen 7 и Core i7. А вот производительности — вполне хватает, чтобы играть в любые интересные пользователю игры и работать на дому. Причем даже одновременно, если будет такое желание.

Для топовых игровых ПК или рабочих станций без претензий на избранность и элитарность подойдут процессоры [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=emb2&f=27m]AMD Ryzen 7 и [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&stock=2&order=1&f=26p&f=2iqha&f=27k]Intel Core i7, имеющие, соответственно, 8 ядер/16 потоков и 6 ядер/12 потоков. Относясь к мейнстримовым платформам, эти процессоры всё ещё относительно доступны и не требуют дорогостоящих материнских плат, блоков питания и кулеров. Однако их производительности достаточно практически для всех задач, которые может поставить перед ПК рядовой пользователь.

Если же её всё-таки будет недостаточно — для высокопроизводительных рабочих станций предназначены процессоры AMD Ryzen Threadripper, предназначенные для установки в сокет TR4, и топовые модели процессоров Intel под сокет LGA 2066 — [url=»https://www.dns-shop.ru/catalog/17a899cd16404e77/processory/?p=1&f=i1wt-26p&f=i1wz&f=27m-bmip-dybz-27n]Core i7 и Core i9, имеющие по 8, 10, 12 и более физических ядер. Помимо этого, процессоры предлагают четырёхканальный контроллер памяти, что важно для ряда профессиональных задач, и до 44 линий PCI-express, позволяющих подключать много периферии, не теряя в скорости обмена данными. Рекомендовать эти ЦПУ для домашнего использования не получается и в силу их цены, и благодаря «заточенности» под многопоток и профессиональные задачи. А вот в работе процессоры под топовые платформы могут буквально в разы опережать своих десктопных собратьев.

принципы работы 🚩 как работает процессор 🚩 Компьютеры и ПО 🚩 Другое

Многоядерные процессоры представляют собой центральные процессоры, в которых содержится более двух вычислительных ядер. Такие ядра могут находиться как в одном корпусе, так и на одном процессорном кристалле.

Чаще всего под многоядерными процессорами понимают центральные процессоры, в которых несколько вычислительных ядер интегрированы в одну микросхему (то есть они расположены на одном кристалле кремния).

Обычно тактовая частота в многоядерных процессорах намеренно занижается. Это делают для того, чтобы сократить энергопотребление, сохранив при этом требуемую производительность процессора. Каждое ядро при этом представляет собой полноценный микропроцессор, для которого характерны черты всех современных процессоров — он использует многоуровневый кэш, поддерживает внеочередное исполнение кода и векторные команды.

Ядра в многоядерных процессорах могут поддерживать технологию SMT, позволяющую исполнять несколько потоков вычислений и создавать на основе каждого ядра несколько логических процессоров. На процессорах, которые выпускает компания Intel, такая технология называется «Hyper-threading». Благодаря ей можно удваивать число логических процессоров по сравнению с числом физических чипов. В микропроцессорах, поддерживающих эту технологию, каждый физический процессор способен сохранять состояние двух потоков одновременно. Для операционной системы это будет выглядеть, как наличие двух логических процессоров. Если в работе одного из них возникает пауза (например, он ждет получения данных из памяти), другой логический процессор приступает к выполнению собственного потока.

Многоядерные процессоры подразделяются на несколько видов. Они могут поддерживать использование общей кэш-памяти, а могут не поддерживать. Связь между ядрами реализуется на принципах использования разделяемой шины, сети на каналах точка-точка, сети с коммутатором или использования общего кэша.

Большинство современных многоядерных процессоров работает по следующей схеме. Если запущенное приложение поддерживает многопоточность, оно может заставлять процессор выполнять несколько заданий одновременно. Например, если в компьютере используется 4-ядерный процессор с тактовой частотой 1.8 ГГц, программа может «загрузить» работой сразу все четыре ядра, при этом суммарная частота процессора будет составлять 7.2 ГГц. Если запущено сразу несколько программ, каждая из них может использовать часть ядер процессора, что тоже приводит к росту производительности компьютера.

Многие операционные системы поддерживают многопоточность, поэтому использование многоядерных процессоров позволяет ускорить работу компьютера даже в случае приложений, которые многопоточность не поддерживают. Если рассматривать работу только одного приложения, то использование многоядерных процессоров будет оправданным лишь в том случае, если это приложение оптимизировано под многопоточность. В противном случае, скорость работы многоядерного процессора не будет отличаться от скорости работы обычного процессора, а иногда он будет работать даже медленнее.

Устройство и основные характеристики процессора

Информация о процессоре компьютера, его значении, технологии изготовления, а также о характеристиках, которые необходимо учитывать при его выборе и приобретении.

Что такое процессор и как он устроен


Центральный процессор (микропроцессор, центральное процессорное устройство, CPU, разг. – «проц», «камень») – сложная микросхема, являющаяся главной составной частью любого компьютера. Именно это устройство осуществляет обработку информации, выполняет команды пользователя и руководит другими частями компьютера. Уже много лет основными производителями процессоров являются американские компании Intel и AMD (Advanced Micro Devices). Есть, конечно, и другие достойные производители, но до уровня указанных лидеров им далеко. Intel и AMD постоянно борются за первенство в изготовлении все более производительных и доступных процессоров, вкладывая в разработки огромные средства и много сил. Их конкуренция — важный фактор, содействующий быстрому развитию этой отрасли. Как выглядит процессор компьютераВнешне центральный процессор не представляет собой ничего выдающегося – небольшая плата (где-то 7 х 7 см.) с множеством контактов с одной стороны и плоской металлической коробочкой с другой. Но на самом деле внутри этой коробочки хранится сложнейшая микроструктура из миллионов транзисторов.

Как изготавливают процессоры. Что такое техпроцесс

Основным материалом при производстве процессоров является самый обычный песок, а точнее сказать кремний, коего в составе земной коры около 30%. Из очищенного кремния сначала изготавливают большой монокристалл цилиндрической формы, который разрезают на «блины» толщиной около 1 мм. Затем с использованием технологии фотолитографии в них создаются полупроводниковые структуры будущих процессоров. Фотолитография чем-то напоминает процесс печати фотографий с пленки, когда свет, проходя через негатив, действует на поверхность фотобумаги и проецирует на ней изображение. При изготовлении процессоров своеобразной фотобумагой выступают упомянутые выше кремниевые «блины». Роль света играют ионы бора, разогнанные до огромной скорости высоковольтным ускорителем. Они пропускаются через специальные «трафареты» — системы высокоточных линз и зеркал, вкрапливаются в кремний и создают в нем микроскопическую структуру из множества транзисторов. Сегодняшние технологии позволяют создавать транзисторы размером всего 22 нанометра (толщина человеческого волоса — около 50000 нм). Со временем техпроцесс изготовления процессоров станет еще совершеннее. По прогнозам, их транзисторы уменьшатся как минимум до 14 нм. Чем тоньше техпроцесс – тем больше транзисторов можно поместить в один процессор, тем он будет производительнее и энергоэффективнее. Созданная таким образом полупроводниковая структура вырезается из кварцевого «блина» и помещается на текстолит. На обратную его сторону выводятся контакты для обеспечения подсоединения к материнской плате. Сверху кристал защищается от повреждения металлической крышкой (см. рис. выше).

Понятие архитектуры, ядра, ревизии процессора

Процессоры прошли сложную эволюцию и сейчас продолжают развиваться. Производители совершенствуют не только технологию изготовления, но и внутреннюю структуру процессоров. Каждое новое их поколение отличается от предыдущего строением, количеством и характеристиками входящих в их состав элементов. Процессоры, в которых используются те же базовые принципы строения, называют процессорами одной архитектуры, а эти принципы — архитектурой (микроархитектурой) процессора. В пределах одной архитектуры процессоры могут существенно отличаться — частотами системной шины, техпроцессом изготовления, размером и структурой внутренней памяти и некоторыми другими особенностями. О таких процессорах говорят, что они имеют разные ядра. В рамках доработки одного ядра производители могут делать небольшие изменения с целью устранения мелких недочетов. Такие усовершенствования, которые «не тянут» на звание самостоятельных ядер, называют ревизиями. Архитектурам и ядрам присваиваются определенные имена, а их ревизиям – цифробуквенные обозначения. Например, все модели Intel Core 2 Duo являются процессорами микроархитектуры Intel Core и производились с ядрами Allendale, Conroe, Merom, Kentsfield, Wolfdale, Yorkfield. У каждого из этих ядер были еще и разные ревизии.

Основные характеристики процессора

Количество вычислительных ядер. Многоядерные процессоры – это процессоры, содержащие на одном процессорном кристалле или в одном корпусе два и более вычислительных ядра. Многоядерность, как способ повышения производительности процессоров, используется с относительно недавнего времени, но признана самым перспективным направлением их развития. Для домашних компьютеров уже существуют процессоры с 8 ядрами. Для серверов на рынке есть 12-ядерные предложения (Opteron 6100). Разработаны прототипы процессоров, содержащие около 100 ядер. Эффективность вычислительных ядер разных моделей процессоров отличается. Но в любом случае, чем их (ядер) больше, тем процессор производительнее. • Количество потоков. Чем больше потоков – тем лучше. Количество потоков не всегда совпадает с количеством ядер процессора. Так, благодаря технологии Hyper-Threading, 4-ядерный процессор Intel Core i7-3820 работает в 8 потоков и во многом опережает 6-тиядерных конкурентов. • Размер кеша 2 и 3 уровней. Кеш — это очень быстрая внутренняя память процессора, которая используется им как буфер для временного хранения информации, обрабатываемой в конкретный момент времени. Чем кеш больше – тем лучше. Структура не всех современных процессоров предусматривает наличие кеша 3 уровня, хотя критичным моментом это не является. Так, по результатам многих тестов производительность процессоров Intel Core 2 Quadro, выпускавшихся с 2007 г. по 2011 г. и не имеющих кеша 3 уровня, даже сейчас выглядит достойно. Правда, кеш 2 уровня у них достаточно большой. • Частота процессора. Здесь все просто – чем выше частота процессора, тем он производительнее. • Скорость шины процессора (FSB, HyperTransport или QPI). Через эту шину центральный процессор взаимодействует с материнской платой. Ее скорость (частота) измеряется в мегагерцах и чем она выше — тем лучше. • Техпроцесс. Понятие техпроцесса рассматривалось в предыдущем пункте этой статьи. Чем тоньше используемый техпроцесс, тем больше процессор содержит транзисторов, меньше потребляет электроэнергии и меньше греется. От техпроцесса во многом зависит еще одна важная характеристика процессора — TDP. • TDP. Termal Design Point — показатель, отображающий энергопотребление процессора, а также количество тепла, выделяемого им в процессе работы. Единицы измерения — Ватты (Вт). TDP зависит от многих факторов, среди которых главными являются количество ядер, техпроцесс изготовления и частота работы процессора. Кроме прочих преимуществ, «холодные» процессоры (с TDP до 100 Вт) лучше поддаются разгону, когда пользователь изменяет некоторые настройки системы, вследствие чего увеличивается частота процессора. Разгон позволяет без дополнительных финансовых вложений увеличить производительность процессора на 15 – 25 %, но это уже отдельная тема. В то же время, проблему с высоким TDP всегда можно решить приобретением эффективной системы охлаждения (см. последний пункт этой статьи). • Наличие и производительность видеоядра. Последние технические достижения позволили производителям, помимо вычислительных ядер, включать в состав процессоров еще и ядра графические. Такие процессоры, кроме решения своих основных задач, могут выполнять роль видеокарты. Возможностей некоторых из них вполне достаточно для игры в компьютерные игры, не говоря уже о просмотре фильмов, работе с текстом и решении остальных задач. Если видеоигры — не главное предназначение компьютера, процессор со встроенным графическим ядром позволит сэкономить на приобретении отдельного графического адаптера. • Тип и максимальная скорость поддерживаемой оперативной памяти. Эти характеристики процессора необходимо учитывать при выборе оперативной памяти, с которой он будет использоваться. Нет смысла переплачивать за быстрые модули ОЗУ, если процессор не сможет реализовать все их преимущества.

Что такое сокет


Важным моментом, который нужно учитывать при выборе процессора, является то, для установки в сокет какого типа он предназначен. Сокет (socket, разъем центрального процессора) – это щелевой или гнездовой разъём на материнской плате, в который устанавливается процессор. Каждый процессор можно установить только на материнскую плату с подходящим разъемом, имеющим соответствующие размеры, необходимое количество и структуру контактных элементов. Каждый новый сокет разрабатывается производителями процессоров, когда возможности старых разъемов уже не могут обеспечить нормальную работу новых изделий. Для процессоров Intel длительное время использовался (и сейчас еще используется) сокет LGA775 (процессоры Pentium 4, Pentium D, Celeron D, Pentium EE, Core 2 Duo, Core 2 Extreme, Celeron, Xeon серии 3000, Core 2 Quad). С началом производства линейки новых процессоров были введены сокеты LGA1366, LGA1156, LGA1155 (процессоры i7, i5, i3) и др. Разъемы для процессоров от AMD за последние годы также изменились — AM2, AM2+, AM3 и т.д. О более ранних сокетах, думаю, смысла вспоминать нет, поскольку компьютеры на их основе – уже раритет. Если вы задумали модернизировать старый компьютер путем приобретения более производительного процессора, убедитесь, что по сокету он подойдет к вашей старой материнской плате. Иначе однозначно придется менять и ее. Устанавливать центральный процессор в сокет системной платы нужно аккуратно, чтобы не повредить контакты.

Система охлаждения процессора


Как выглядит куллер процессораПроцессор нуждается в надлежащем охлаждении, иначе он может выйти из строя. Как известно, верхняя поверхность процессора представляет собой металлическую коробку, выполняющую, кроме защитных, еще и теплоотводные функции. Поверх процессора на материнской плате устанавливается система охлаждения. Ее теплоотводные элементы должны плотно прижиматься к поверхности процессора. Для улучшения передачи тепла с процессора на радиатор системы охлаждения, между ними прокладывается слой термопасты – специального пастообразного вещества с высокой теплопроводностью.При подборе системы охлаждения процессора нужно учитывать его TDP (рассматривалось выше в пункте о характеристиках процессора). Процессоры обычно продаются в так называемом боксовом варианте поставки, когда в комплект входит штатная система охлаждения – боксовый куллер. Но иногда эффективность такого куллера является недостаточной (например, если был произведен разгон и частота процессора, а следственно и его TDP, возросла). Нормальная температура работы процессора — до 50 градусов Цельсия (при пиковых нагрузках возможно чуть больше). Средства измерения температуры встроены в центральный процессор. При помощи специальных программ температуру можно отслеживать в режиме реального времени (например, программой SpeedFan). • CPU-Z: ⇒ Официальная страница загрузки ⇒ Скачать копию для Windows 32-bit (2,6 MB) ⇒ Скачать копию для Windows 64-bit (3 MB) Современный процессор устроен так, что при достижении им критичной температуры он отключается и не включается, пока не остынет. Это позволяет предупредить его повреждение под воздействием высокой температуры. Перегрев возможен вследствие низкой эффективности системы охлаждения, выхода ее из строя, засорения пылью, пересыхания термопасты и др.

Процессор: потоки или ядра

На рынке компьютерных комплектующих присутствует немало процессоров, у которых число потоков больше числа физических ядер. В некоторых задачах эти «виртуальные ядра» могут дать существенный прирост в производительности, в других они практически бесполезны.

Многоядерность и гиперпоточность

Ядро — это физически обособленная вычислительная единица процессора, способная в один момент времени выполнять одну последовательность команд. Если ядро одно, а последовательностей требуется выполнять несколько, оно быстро переключается между ними, выполняя задачи поочередно.

Поток (применительно к процессору), или виртуальное ядро – результат реализации вычислений, при котором одно физическое ядро способно программно разделять свою производительность и работать над несколькими последовательностями команд одновременно. Простыми словами, ЦП делает вид для операционной системы и программ, что у него больше ядер, чем есть на самом деле. Убедиться в этом можно, открыв диспетчер устройств или другую программу для мониторинга комплектующих.

Гиперпоточность позволяет распараллеливать вычисления более эффективно – если одно виртуальное ядро завершило работу над своей задачей и находится в режиме ожидания, его ресурсы может использовать другое. В случаях, когда гиперпоточность не поддерживается, эти ресурсы простаивают. Таким образом, поддержка виртуальных ядер может ускорить выполнение некоторых задач, хотя, разумеется, она не так хороша, как наличие дополнительных физических, и удвоения производительности ожидать не стоит.

Иллюстрация концепции потоков/виртуальных ядер:

cores threads - потоки и ядра процессора

Рассмотрим следующий упрощенный пример: если двухъядерный процессор с двумя потоками работает с четырьмя последовательностями команд одновременно, а производительность одного ядра для одной последовательности избыточна, то общая производительность будет ниже, чем в случае, если на месте такого процессора будет вариант с двумя ядрами, но с четырьмя потоками, поскольку на переключение между задачами тратится дополнительное время, и часть ресурсов иногда простаивает. А вот если вычислительных ресурсов одного потока недостаточно для выполнения одной последовательности, то виртуальные ядра почти не помогут – нужны дополнительные физические.

Распараллеливание нагрузки при помощи технологии Intel Hyper-Threading

Intel Hyper-Threading

Немного истории

Когда-то процессоры были одноядерными и однопоточными. Если требовалось эффективно распараллеливать вычисления (в серверном сегменте, рабочих станциях) использовались материнские платы с несколькими процессорными разъемами. Соответственно, материнке требовалась возможность соединять все процессоры с другими комплектующими (например, оперативной памятью). По сравнению с современной реализацией, возникали дополнительные задержки, возрастали энергозатраты.

Развитие архитектуры началось с гиперпоточности, а в дальнейшем на одном кристалле производители стали размещать и несколько физических ядер. Сейчас оба основных производителя центральных процессоров для ПК (Intel и AMD) выпускают модели с двумя и более физическими ядрами, как с поддержкой виртуальных ядер, так и без нее.

Потоки или ядра?

Центральный процессор – один из ключевых компонентов системы, влияющих на ее производительность в целевых задачах, а также на удобство использования компьютера. Часто у пользователей, желающих собрать систему, возникает вопрос: на что ориентироваться при выборе ЦП? Стоит ли переплачивать за дополнительные потоки/виртуальные ядра?

Ответ зависит от предполагаемых сценариев использования. В большинстве игр прирост производительности от гиперпоточности окажется минимальным или даже нулевым, а вот добавление физических ядер скажется на частоте кадров явно положительно. Разумеется, если движок игры способен распараллеливать вычисления на такое количество ядер. Многие игры, выпущенные в предыдущие годы, способны работать только с 2-4 ядрами — остальные будут простаивать или заниматься фоновыми программами.

Наибольшую выгоду виртуальные ядра приносят в рабочих задачах, подверженных эффективному распараллеливанию. К ним относятся, например, архивация файлов, обработка фотографий, рендеринг видео, моделирование. Таким образом, польза дополнительных потоков для компьютера, который будет использоваться в первую очередь для игр или медиа, сомнительна. Впрочем, если параллельно с играми будут выполняться и другие задачи, такие как стриминг, запись/обработка видео, скачивание/раздача файлов при помощи торрент-клиента, антивирусная проверка, она возрастает. В подобных ситуациях виртуальные ядра помогают снять фоновую нагрузку с физических.

Впрочем, кратного роста вычислительной мощи ждать все равно не стоит, и для типичных домашних сценариев использования переплата за виртуальные ядра часто будет неоправданной. Другое дело – если компьютер используется для профессиональной деятельности, и применяются программы, хорошо работающие с гиперпоточностью – прирост в производительности при правильной оптимизации может составлять десятки процентов.

Подытожим: если речь идет о домашнем игровом или мультимедийном компьютере, не стоит ждать чудес от виртуальных ядер, и, если за них придется доплатить ощутимую сумму, лучше рассмотреть вариант с дополнительными физическими, или вложить деньги в другие комплектующие. Если же система будет использоваться для работы – прирост может быть значительным, поэтому стоит ознакомиться с тестами гиперпоточных ЦП для конкретного вида задач.

Leave a comment