Хранения информации это: Урок 4. обработка информации. передача и хранение информации — Информатика — 10 класс

Содержание

Урок 17. Хранение и передача информации.

Урок 17. Хранение и передача информации. Носители информации. Хранение информации; выбор способа хранения информации. Передача информации. Канал связи и его характеристики. Примеры передачи информации в социальных, биологических и технических системах. Особенности запоминания, обработки и передачи информации человеком

Хранение информации

 Передача и хранение информации

Из курса основной школы вам известно:

Человек хранит информацию в собственной памяти, а также в виде записей на различных внешних (по отношению к человеку) носителях: на камне, папирусе, бумаге, магнитных и оптических носителях и пр. Благодаря таким записям, информация передается не только в пространстве (от человека к человеку), но и во времени — из поколения в поколение.


 

Рассмотрим способы хранения информации более подробно.

Информация может храниться в различных видах: в виде записанных текстов, рисунков, схем, чертежей; фотографий, звукозаписей, кино- или видеозаписей. В каждом случае применяются свои носители.

Носитель — это материальная среда, используемая для записи и хранения информации.

Практически носителем информации может быть любой материальный объект. Информацию можно сохранять на камне, дереве, стекле, ткани, песке, теле человека и т. д. Здесь мы не станем обсуждать различные исторические и экзотические варианты носителей. Ограничимся современными средствами хранения информации, имеющими массовое применение. 

Использование бумажных носителей информации

Носителем, имеющим наиболее массовое употребление, до сих пор остается бумага. Изобретенная во II веке н. э. в Китае бумага служит людям уже 19 столетий.

Для сопоставления объемов информации на разных носителях будем пользоваться единицей — байтом, считая, что один знак текста «весит» 1 байт. Нетрудно подсчитать информационный объем книги, содержащей 300 страниц с размером текста на странице примерно 2000 символов. Текст такой книги имеет объем примерно 600 000 байтов, или 586 Кб. Средняя школьная библиотека, фонд которой составляют 5000 томов, имеет информационный объем приблизительно 2861 Мб = 2,8 Гб.

Что касается долговечности хранения документов, книг и прочей бумажной продукции, то она очень сильно зависит от качества бумаги, красителей, используемых при записи текста, условий хранения.

Интересно, что до середины XIX века (с этого времени для производства бумаги начали использовать древесину) бумага делалась из хлопка и текстильных отходов — тряпья. Чернилами служили натуральные красители. Качество рукописных документов того времени было довольно высоким, и они могли храниться тысячи лет. С переходом на древесную основу, с распространением машинописи и средств копирования, с началом использования синтетических красителей срок хранения печатных документов снизился до 200-300 лет.

На первых компьютерах бумажные носители использовались для цифрового представления вводимых данных. Это были перфокарты: картонные карточки с отверстиями, хранящие двоичный код вводимой информации. На некоторых типах ЭВМ для тех же целей применялась перфорированная бумажная лента. 

Использование магнитных носителей информации

В XIX веке была изобретена магнитная запись. Первоначально она использовалась только для сохранения звука. Самым первым носителем магнитной записи была стальная проволока диаметром до 1 мм. В начале XX столетия для этих целей использовалась также стальная катаная лента. Тогда же (в 1906 г.) был выдан и первый патент на магнитный диск. Качественные характеристики всех этих носителей были весьма низкими. Достаточно сказать, что для производства 14-часовой магнитной записи устных докладов на Международном конгрессе в Копенгагене в 1908 г. потребовалось 2500 км, или около 100 кг проволоки.

В 20-х годах XX века появляется магнитная лента сначала на бумажной, а позднее — на синтетической (лавсановой) основе, на поверхность которой наносится тонкий слой ферромагнитного порошка.

Во второй половине XX века на магнитную ленту научились записывать изображение, появляются видеокамеры, видеомагнитофоны.

На ЭВМ первого и второго поколений магнитная лента использовалась как единственный вид сменного носителя для устройств внешней памяти. Любая компьютерная информация на любом носителе хранится в двоичном (цифровом) виде. Поэтому независимо от вида информации: текст это, или изображение, или звук — ее объем можно измерить в битах и байтах. На одну катушку с магнитной лентой, использовавшейся в лентопротяжных устройствах первых ЭВМ, помещалось приблизительно 500 Кб информации.

С начала 1960-х годов в употребление входят компьютерные магнитные диски: алюминиевые или пластмассовые диски, покрытые тонким магнитным порошковым слоем толщиной в несколько микрон. Информация на диске располагается по круговым концентрическим дорожкам, на которые она записывается и считывается в процессе вращения диска с помощью магнитных головок.  

На первых ПК использовались гибкие магнитные диски (флоппи-диски) — сменные носители информации с небольшим объемом памяти — до 2 Мб. Начиная с 1980-х годов, в ПК начали использоваться встроенные в системный блок накопители на жестких магнитных дисках, или НЖМД (англ. HDD — Hard Disk Drive). Их еще называют винчестерскими дисками.

            

Винчестерский диск представляет собой пакет магнитных дисков, надетых на общую ось, которая при работе компьютера находится в постоянном вращении. С каждой магнитной поверхностью пакета дисков контактирует своя магнитная головка.

Информационная емкость современных винчестерских дисков измеряется в терабайтах

Оптические диски и флеш-память

Применение оптического, или лазерного, способа записи информации начинается в 1980-х годах. Его появление связано с изобретением квантового генератора — лазера, источника очень тонкого (толщина порядка микрона) луча высокой энергии.

Луч способен выжигать на поверхности плавкого материала двоичный код данных с очень высокой плотностью. Считывание происходит в результате отражения от такой «перфорированной» поверхности лазерного луча с меньшей энергией («холодного» луча). Первоначально на ПК вошли в употребление оптические компакт — диски — CD, информационная емкость которых составляет от 190 Мб до 700 Мб.

Во второй половине 1990-х годов появились цифровые универсальные видеодиски DVD (Digital Versatile Disk) с большой емкостью, измеряемой в гигабайтах (до 17 Гб). Увеличение их емкости по сравнению с CD связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи. Вспомните пример со школьной библиотекой. Весь ее книжный фонд можно разместить на одном DVD.

В настоящее время оптические диски (CD и DVD) являются наиболее надежными материальными носителями информации, записанной цифровым способом. Эти типы носителей бывают как однократно записываемыми — пригодными только для чтения, так и перезаписываемыми — пригодными для чтения и записи.

В последнее время появилось множество мобильных цифровых устройств:

 цифровые фото- и видеокамеры, МРЗ-плееры, карманные компьютеры, мобильные телефоны, устройства для чтения электронных книг, GPS-навигаторы и др. Все эти устройства нуждаются в переносных носителях информации. Но поскольку все мобильные устройства довольно миниатюрные, к носителям информации для них предъявляются особые требования. Они должны быть компактными, обладать низким энергопотреблением при работе, быть энергонезависимыми при хранении, иметь большую емкость, высокие скорости записи и чтения, долгий срок службы. Всем этим требованиям удовлетворяют флеш-карты памяти. Информационный объем флеш-карты может составлять несколько десятков гигабайтов.

В качестве внешнего носителя для компьютера широкое распространение получили так называемые 

флеш-брелоки (их называют в просторечии «флешки»), выпуск которых начался в 2001 году. Большой объем информации, компактность, высокая скорость чтения/записи, удобство в использовании — основные достоинства этих устройств.

Флеш-брелок подключается к USB-порту компьютера и позволяет скачивать данные со скоростью около 10 Мб в секунду.

В последние годы активно ведутся работы по созданию еще более компактных носителей информации с использованием нанотехнологий, работающих на уровне атомов и молекул вещества. В результате один компакт-диск, изготовленный по нанотехнологии, сможет заменить тысячи оптических дисков. По предположениям экспертов, приблизительно через 20 лет плотность хранения информации возрастет до такой степени, что на носителе объемом примерно с кубический сантиметр можно будет записать каждую секунду человеческой жизни. 

 

Вопросы и задания

1. Какая, с вашей точки зрения, сохраняемая информация имеет наибольшее значение для всего человечества, для отдельного человека?

2. Назовите известные вам крупные хранилища информации.

3. Можно ли человека назвать носителем информации?

4. Где и когда появилась бумага?

5. Когда была изобретена магнитная запись? Какими магнитными носителями вы пользуетесь или пользовались?

6. Какое техническое изобретение позволило создать оптические носители информации? Назовите типы оптических носителей.

7. Назовите сравнительные преимущества и недостатки магнитных и оптических носителей.

8. Что означает свойство носителя «только для чтения»?

9. Какими устройствами, в которых используются флеш-карты, вы пользуетесь? Какой у них информационный объем?

10. Какие перспективы, с точки зрения хранения информации, открывают нанотехнологии? 

Передача информации

Из курса основной школы вам известно:

• Распространение информации происходит в процессе ее передачи.

• Процесс передачи информации протекает от источника к приемнику по информационным каналам связи.
 

В этом параграфе более подробно будут рассмотрены технические системы передачи информации.

Ранее уже говорилось о том, что первой в истории технической системой передачи информации стал телеграф. В 1876 году американец Александр Белл изобрел телефон. На основании открытия немецким физиком Генрихом Герцем электромагнитных волн (1886 год), А. С. Попов в России в 1895 году и почти одновременно с ним в 1896 году Г. Маркони в Италии изобрели радио. Телевидение и Интернет появились в XX веке. 

Модель передачи информации К. Шеннона

Все перечисленные способы информационной связи основаны на передаче на расстояние физического (электрического или электромагнитного) сигнала и подчиняются некоторым общим законам. Исследованием этих законов занимается теория связи, возникшая в 1920-х годах. Математический аппарат теории связи — математическую теорию связи разработал американский ученый Клод Шеннон. Клодом Шенноном была предложена модель процесса передачи информации по техническим каналам связи, представленная схемой на рис. 2.1. 

 

Работу такой схемы можно пояснить на знакомом всем процессе разговора по телефону. Источником информации является говорящий человек. Кодирующим устройством — микрофон телефонной трубки, с помощью которого звуковые волны (речь) преобразуются в электрические сигналы. Каналом связи служит телефонная сеть (провода, коммутаторы телефонных узлов, через которые проходит сигнал). Декодирующим устройством является телефонная трубка (наушник) слушающего человека — приемника информации. Здесь пришедший электрический сигнал превращается в звук.

В теме «Информация. Представление информации» уже говорилось о кодировании на примере передачи информации через письменный документ. Кодирование там было определено как процесс представления информации в виде, удобном для ее хранения и/или передачи.

Применительно к процессу передачи информации по технической системе связи под кодированием понимается любое преобразование информации, идущей от источника, в форму, пригодную для ее передачи по каналу связи.

Современные компьютерные системы передачи информации — компьютерные сети, работают по тому же принципу. Есть процесс кодирования, преобразующий двоичный компьютерный код в физический сигнал того типа, который передается по каналу связи. Декодирование заключается в обратном преобразовании передаваемого сигнала в компьютерный код. Например, при использовании телефонных линий в компьютерных сетях функции кодирования/декодирования выполняет прибор, который называется модемом. 

Пропускная способность канала и скорость передачи информации

 

Разработчикам технических систем передачи информации приходится решать две взаимосвязанные задачи: как обеспечить наибольшую скорость передачи информации и как уменьшить потери информации при передаче. К. Шеннон был первым ученым, взявшимся за решение этих задач и создавшим новую для того времени науку — теорию информации.

Шеннон определил способ измерения количества информации, передаваемой по каналам связи. Им было введено понятие пропускной способности канала как максимально возможной скорости передачи информации. Эта скорость измеряется в битах в секунду (а также килобитах в секунду, мегабитах в секунду).

Пропускная способность канала связи зависит от его технической реализации. Например, в компьютерных сетях используются следующиесредства связи:

телефонные линии;

электрическая кабельная связь;

оптоволоконная кабельная связь;

радиосвязь.

Пропускная способность телефонных линий — десятки и сотни Кбит/с; пропускная способность оптоволоконных линий и линий радиосвязи измеряется десятками и сотнями Мбит/с.

Скорость передачи информации связана не только с пропускной способностью канала связи. Представьте себе, что текст на русском языке, содержащий 1000 знаков, передается с использованием двоичного кодирования. В первом случае используется телеграфная 5-разрядная кодировка. Во втором случае — компьютерная 8-разрядная кодировка. Тогда длина кода сообщения в первом случае составит 5000 битов, во втором случае — 8000 битов. При передаче по одному и тому же каналу второе сообщение будет передаваться дольше в 1,6 раза (8000/5000). Отсюда, казалось бы, следует вывод: длину кода сообщения нужно делать минимально возможной.

Однако существует другая проблема, которая на рис. 2.1 отмечена словом «шум». 

Шум, защита от шума

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам, таким как плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемых по одним и тем же каналам. Существуют и другие источники помех, имеющие физическое происхождение.

Иногда, например, беседуя по телефону, мы слышим шум, треск, мешающие понять собеседника, или на наш разговор накладывается разговор других людей.

Наличие шума приводит к потере передаваемой информации. В таких случаях необходима защита от шума. Для этого в первую очередь применяются технические способы защиты каналов связи от воздействия шумов. Такие способы бывают самыми разными, иногда простыми, иногда очень сложными. Например: использование экранированного кабеля вместо «голого» провода; применение разного рода фильтров, отделяющих полезный сигнал от шума и пр.

Шеннон разработал специальную теорию кодирования, дающую методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Например, если при разговоре по телефону вас плохо слышно, то, повторяя каждое слово дважды, вы имеете больше шансов на то, что собеседник поймет вас правильно.

В системах передачи информации используется так называемое помехоустойчивое кодирование, вносящее определенную избыточность.

Однако нельзя делать избыточность слишком большой. Это приведет к задержкам и удорожанию связи. Теория кодирования как раз и позволяет получить такой код, который будет оптимальным: избыточность передаваемой информации будет минимально возможной, а достоверность принятой информации — максимальной.

Большой вклад в научную теорию связи внес известный советский ученый Владимир Александрович Котельников. В 1940-1950-х годах им получены фундаментальные научные результаты по проблеме помехоустойчивости систем передачи информации.

В современных системах цифровой связи для борьбы с потерей информации при передаче часто применяется следующий прием.

Все сообщение разбивается на порции — блоки. Для каждого блока вычисляется контрольная сумма (сумма двоичных цифр), которая передается вместе с данным блоком.

В месте приема заново вычисляется контрольная сумма принятого блока и, если она не совпадает с первоначальной суммой, передача данного блока повторяется. Так происходит до тех пор, пока исходная и конечная контрольные суммы не совпадут. 

 

Вопросы и задания

1. Для чего нужна процедура кодирования передаваемой информации?

2. Что такое декодирование? Каким должен быть его результат?

3. Каким техническим средством связи вы чаще всего пользуетесь? Замечали ли вы при этом факты потери информации?

4. Назовите устройства кодирования и декодирования при использовании радиосвязи.

5. Что такое шум по отношению к системам передачи данных?

6. Какие существуют способы борьбы с шумом?

7. Пропускная способность канала связи 100 Мбит/с. Уровень шума пренебрежимо мал (например, оптоволоконная линия). Определите, за какое время по каналу будет передан текст, информационный объем которого составляет 100 Кб.

8. Пропускная способность канала связи 10 Мбит/с. Канал подвержен воздействию шума, поэтому избыточность кода передачи составляет 20%. Определите, за сколько времени по каналу будет передан текст, информационный объем которого составляет 100 Кб.  
 

1.1.2.Хранение информации — Информатика для вас

Сбор информации не является самоцелью. Чтобы полученная информация могла использоваться, причём многократно, необходимо её хранить.

Хранение информации — процесс такой же древний, как и существование человеческой цивилизации. Он имеет огромное значение для обеспечения поступательного развития человеческого общества (да и любой системы), многократного использования информации, передачи накапливаемого знания последующим поколениям.

Уже в древности человек столкнулся с необходимостью хранения информации. Сооружения, предметы изобразительного искусства, глиняные таблички, записи, книги, архивы, библиотеки, аудиозаписи, кинофильмы — всё это служит целям хранения информации.

Различная информация требует разного времени хранения:

—     автобусный билет требуется хранить только в течение поездки;

—     программу телевидения — неделю;

—     школьный дневник — учебный год;

—     аттестат зрелости — до конца жизни;

—     исторические документы — несколько столетий.

Основное хранилище информации для человека — его память, в том числе генетическая. Существует и «коллективная память» — традиции, обычаи того или другого народа.

Когда объём накапливаемой информации возрастает настолько, что её становится просто невозможно хранить в памяти, человек начинает прибегать к помощи различного Рода вспомогательных средств (узелков «на память», записных книжек и т. д.).

С рождением письменности возникло специальное средство фиксирования и распространения информации в пространстве и во времени. Родилась документированная информация — рукописи и рукописные книги, появились своеобразные информационно-накопительные центры — древние библиотеки и архивы. Постепенно письменный документ стал и орудием управления (указы, приказы, законы).

Следующим информационным скачком явилось книгопечатание. С его возникновением наибольший объём информации стал храниться в различных печатных изданиях, и для её получения человек обращается в места их хранения (библиотеки, архивы и пр. ).

В настоящее время мы являемся свидетелями быстрого развития новых, автоматизированных методов хранения информации с помощью электронных средств.

Компьютер и средства телекоммуникации предназначены для компактного хранения информации с возможностью быстрого доступа к ней.

реально ли это и как работает? / Хабр

Системы хранения данных, основанные на ДНК, могут стать выходом для человечества, которое генерирует все большие объемы информации. По сравнению со всеми прочими носителями у ДНК просто феноменальная плотность записи данных. Еще одно преимущество — в случае ДНК для хранения данных в оптимальных условиях не нужна энергия, причем информацию можно сохранять сотни лет. Через несколько веков данные можно без проблем считать — конечно, при условии наличия соответствующих технологий.

Но есть у ДНК и минусы. Например, сейчас еще нет стандартов кодирования информации в нити ДНК. Синтезирование искусственных молекул — дело достаточно дорогое, а считывание хранимой информации может занимать дни и недели. Многократное обращение к нитям ДНК за информацией приводит к нарушению структуры молекул, так что в итоге могут возникнуть ошибки. Сейчас предложен метод, который поможет решить некоторые из этих проблем. Система хранения данных (пока что лишь изображений) представляет собой нечто среднее между обычной файловой системой и базой на основе метаданных.

Подробнее о проблемах


Разрабатываемые системы хранения данных в ДНК предусматривают добавление определенных меток последовательностей (sequence tags) к участкам ДНК, которые содержат данные. Для получения необходимой информации в молекулу добавляются участки, которые способны образовывать пары оснований с нужными метками. Все это используется для амплификации полной последовательности. Примерно как пометить каждое изображение в коллекции собственным ID, а затем настроить все так, чтобы амплифицировался один конкретный ID.

Метод достаточно эффективен, но у него есть два ограничения. Во-первых, этап амплификации, который выполняется при помощи процесса полимеразной цепной реакции (ПЦР), имеет ограничения на размер амплифицируемой последовательности. При этом каждый тег занимает часть и так ограниченного пространства, поэтому добавление подробных меток сокращает объем пространства для хранения данных.

Еще одно ограничение заключается в том, что ПЦР, амплифицирующая определенные фрагменты ДНК с данными, потребляет часть исходной библиотеки ДНК. То есть каждый раз, когда мы считываем данные, часть их уничтожается. Ученые сравнивают такой способ поиска информации со сжиганием стога сена для обнаружения иголки. Если это делать часто, в итоге можно потерять вообще всю базу данных. Правда, есть способы восстанавливать потерянные участки, но этот метод не идеален, поскольку при его использовании увеличивается вероятность появления ошибки в ДНК и участках данных.


Новый метод позволяет отделить информацию меток от основных данных. Кроме того, исследователи создали систему, которая дает возможность получить доступ лишь к интересующим нас данным. Остальная информация остается нетронутой, так что молекулы ДНК остаются в сохранности и не повреждаются.

Новая система


Основа технологии — капсулы из диоксида кремния, в которых хранятся отдельные файлы. К каждой капсуле прикрепляются ДНК-метки, которые показывают, что в файле. Размер каждой капсулы составляет около 6 микрометров. Благодаря такой системе ученым удалось научиться извлекать отдельные изображения с точностью 100%. Набор файлов, который они создали, не очень велик — их всего 20. Но если учитывать возможности ДНК, то масштабировать такую систему можно до секстиллиона файлов.

Закодированы эти 20 файлов были во фрагменты ДНК длиной около 3000 нуклеотидов, это около 100 байт данных. В одну капсулу из кремнезема можно поместить файл размером до гигабайта. После того, как файл помещен в оболочку, на его поверхность помещаются метки из одноцепочечной ДНК. К одной оболочке можно прикрепить несколько меток, которые служат ключевыми словами. Например, «рыжий», «кот», «животное».

Помеченные таким образом капсулы из кремнезема объединяются в единую библиотеку данных. Она не так компактна, как хранилище из чистой ДНК, но зато данные в этом случае не повреждаются.

Поиск файлов


Для поиска файлов используется группа ключевых слов — меток. Например, если нужно найти изображение кошки, используются метки «оранжевый», «кошка» и «домашний». Для поиска тигра только «оранжевый» и «кошка». Скорость поиска в такой системе пока что очень невелика — что-то около 1 кБ в секунду.

Еще одна хитрость связана с тем, что каждая метка связана с флуоресцентными молекулами разного цвета. Поэтому в ходе запроса любые капсулы с нужными метками будут светиться определенным цветом. Сейчас уже есть устройства, которые используют лазеры для разделения объектов по цвету флуоресценции, так что выделить нужные данные технически возможно.

При этом остальная часть библиотеки затрагиваться не будет, а значит, не пострадают данные. Стог сена ради поиска одной иголки сжигать уже не требуется. Дополнительный плюс в возможности логического поиска с разными критериями. Например, условия запроса могут быть сложными: true для «кот», false для «домашний», true для «черный» и т.п.

Не только поиск


Да, ведь задача поиска нужных данных — это лишь часть дела, причем даже не половина. Обнаруженные данные необходимо еще секвенировать. А для этого требуется раскрыть оболочку из кремнезема, вынуть хранимую в капсуле нить, ввести ДНК в бактерию и потом уже считать данные. Это крайне медленный процесс, по сравнению с которым даже стримеры являются очень быстрой технологией.

С другой стороны, системы на основе ДНК и не будут быстрыми, их главное предназначение — хранение огромных объемов информации, которую не требуется часто извлекать. Кроме того, с течением времени технологию будут совершенствовать, так что скорость считывания информации, можно надеяться, возрастет.

СХД (система хранения данных): как выбрать, характеристики, вендоры

#Hardware #netapp #схд

Система хранения данных (СХД) — комплекс аппаратных и программных средств, который предназначен для хранения и оперативной обработки информации, как правило, большого объема. Информация — это файлы, в том числе медиа, структурированные (СУБД) и неструктурированные данные (big data), резервные копии, архивы. В качестве носителей информации используются жесткие диски, в основном SSD (системы All Flash Array), а также гибридные решения, сочетающие SSD- и HDD-накопители в одной СХД.

От пользовательского жесткого диска СХД отличаются сложной архитектурой, возможностью объединять хранилища в сеть передачи данных, наличием отдельного ПО для управления системой хранения, продвинутыми технологиями резервного копирования, сжатия и виртуализации.

Системы хранения данных различаются по нескольким параметрам, от выбора которых зависит применение СХД.

Подобрать СХД

Оставить контакты

Уровни хранения

Блочное хранилище

СХД используется как обычный диск, который можно форматировать, устанавливать на него ОС, создавать логические диски. Данные хранятся не файлами, а блоками, что ускоряет операции ввода-вывода. Чаще используется в сетях типа SAN (Storage Attached Network). Подходит для высокопроизводительных вычислений, СУБД, хранения больших объемов данных, в качестве сред разработки (Dev/Test). Из недостатков: а) сложность настройки и обслуживания, которые требуют соответствующей квалификации; б) высокая стоимость.

Файловое хранилище

Данные хранятся в виде файлов, которые размещаются в каталогах. Такая СХД используется для хранения «холодной» информации, которая не требуется для операционных вычислений. На файловых хранилищах, как правило, строятся NAS (Network Attached Storage). Недостатки: при накоплении больших объемов данных усложняется иерархия папок, и скорость работы СХД постепенно снижается. Не подходит для нагрузок, которые требуют высокой скорости отклика.

Объектное хранилище

Тип СХД, который ориентирован на работу с большими неструктурированными данными объемом до петабайтов. Информация хранится не в виде файлов, а в виде «объектов» с уникальными идентификатором и метаданными. Поэтому объектное хранилище похоже по структуре на БД. Используется в аналитике, big data, машинном обучении, для хранения «тяжелых» медиа-файлов и резервных копий, разработки и эксплуатации приложений в облаке, хостинга веб-сайтов. По скорости уступает блочному хранилищу в задачах, связанных с транзакционными нагрузками.

Сетевой доступ

NAS (network-attached storage)

Файловый сервер, который включен в локальную сеть. Доступ к дисковому хранилищу организован через протоколы NFS (в UNIX/Linux-системах) или CIFS (Windows). NAS используется для работы с данными файлового типа, к которым нужен коллективный одновременный доступ — например, к общим документами Word и Excel. NAS работает «поверх» существующей локальной сети, через общие коммутаторы/маршрутизаторы.

SAN (storage area network)

Сеть, которая годится для использования разнотипных хранилищ (диски, оптические приводы, ленточные массивы), но которые воспринимаются операционной системой как единое логическое хранилище данных, или как сетевой логический диск. Протоколы: iSCSI (IP-SAN) и FibreChannel (FC). Для подключения компьютеров используются адаптеры HBA (Host Bus Adapter). В SAN применяется в основном блочный тип хранения данных.

Разделение SAN/NAS уже не так строго, как было в начале 2000-х, поскольку с появлением протокола iSCSI производители стали выпускать гибридные решения.

Отказоустойчивость

Для оценки способности СХД восстанавливаться после сбоев используют два показателя — RPO и RTO.

RPO (recovery point objective)

Период, за который будут потеряны данные, — между моментом аварии и временем, когда создалась последняя резервная копия. Если RPO равен 12 часам, при выходе из строя хранилища возможна потеря данных, накопившихся за последние 12 часов. RPO влияет на выбор технологии аварийного восстановления и зависит от стоимости потери конкретного объема данных.

RTO (recovery time objective)

Время, за которое восстанавливается доступ к СХД. Значение RTO важно для оценки стоимости простоя системы.

Резервное копирование

Частота создания бэкапов выбирается исходя из конкретных задач и требуемого уровня защиты. То же касается и размещения: рабочие данные и их резервную копию можно хранить в географически распределённых СХД (например, в дата-центрах, расположенных в разных странах и даже континентах).

Кроме бэкапов, делают снэпшоты — моментальные «снимки», которые используют для отката на последнюю рабочую версию системы.

Чтобы резервные копии занимали меньше места, применяется дедупликация. При этом в копию переписываются только те данные, которые изменились. Различие между резервными копиями в среднем не превышает 2%, поэтому дедупликация помогает сэкономить дисковое пространство.

Как выбрать СХД

В первую очередь нужно понимать, какие задачи она будет решать. Перед обращением к поставщику (или интегратору) следует определиться с несколькими базовыми параметрами.

Тип данных

Разные типы данных требуют разной скорости доступа, технологий обработки, компрессии и так далее. К примеру, СХД для работы с большими медиа-файлами отличается от той, что подходит для работы с транзакционной СУБД, или от системы, которая будет работать с неструктурированными данными для нейросети.

Объем данных

От этого зависит выбор дисковых накопителей. Иногда можно обойтись SSD потребительского класса — если известно, что емкость СХД даже в худшем случае не будет превышать 300 Гб, а скорость доступа не критична.

Отказоустойчивость

Необходимо представлять, какова стоимость потери данных за определенное время. Это поможет рассчитать RPO и RTO, а также избежать лишних затрат на резервное копирование.

Производительность

Если СХД закупается под новый проект (сервис), о нагрузке которого судить сложно, лучше пообщаться с коллегами, которые уже решали эту задачу. Или обратиться к опытному поставщику, который подобные проекты уже запускал. Идеальный вариант — потестировать СХД.

Вендор

Иногда даже для ресурсоемкого сервиса подойдет бюджетное или среднеуровневое решение (StarWind, Huawei, Fujitsu). Однако у топовых производителей — NetApp, HPE, Dell EMC — линейка продуктов достаточно широкая, и сравнительно недорогие СХД здесь также можно найти. В любом случае, желательно сильно не расширять количество вендоров на одной инфраструктуре.

 

 

 

Хранение информации: цели и методы

  1. Устройство чтения перфокарт: предназначено для хранения программ и наборов данных с помощью перфокарт – картонных карточек с пробитыми в определенной последовательности отверстиями. Перфокарты были изобретены задолго до появления компьютера, с их помощью на ткацких станках получали очень сложные и красивые ткани, потому что они управляли работой механизма. Изменишь набор перфокарт, и рисунок ткани будет совсем другим – это зависит от расположения отверстий на карте. Применительно к компьютерам был использован тот же принцип, только вместо рисунка ткани отверстия задавали команды компьютеру или наборы данных. Такой способ хранения информации не лишен недостатков:

– очень  низкая скорость доступа к информации;

– большой объем перфокарт для хранения небольшого количества информации;

– низкая надежность хранения информации;

– к  тому же от перфоратора постоянно  летели маленькие кружочки картона, которые попадали на руки, в карманы, застревали в волосах.

Перфокартами  люди были вынуждены пользоваться не потому, что этот способ как-то особенно нравился им, или он имел какие-то неоспоримые достоинства, вовсе нет, он вообще не имел достоинств, просто в то время ничего другого еще не было, выбирать было не из чего.

  1. Накопитель на магнитной ленте (стриммер): основан на использовании устройства магнитофонного типа, и кассет с магнитной пленкой. Этот способ накопления информации известен давно и успешно применяется и сегодня. Это объясняется тем, что на небольшой кассете помещается довольно большой объем информации, информация может храниться продолжительное время и скорость доступа к ней гораздо выше, чем у устройства чтения перфокарт.
  2. Накопитель на гибких магнитных дисках: это устройство использует в качестве носителя информации гибкие магнитные диски – дискеты, которые могут быть 5-ти или 3-х дюймовыми. Дискета – это магнитный диск вроде пластинки, помещенный в картонный конверт. В зависимости от размера дискеты изменяется ее емкость в байтах. Дискеты универсальны, подходят на любой компьютер того же класса оснащенный дисководом, могут служить для хранения, накопления, распространения и обработки информации. К недостаткам относятся маленькая емкость, что делает практически невозможным долгосрочное хранение больших объемов информации, и не очень высокая надежность самих дискет.
  3. Накопитель на жестком магнитном диске: является логическим продолжением развития технологии магнитного хранения информации. Достоинства:

– чрезвычайно  большая емкость;

– простота и надежность использования;

– возможность  обращаться к тысячам файлов одновременно;

– высокая  скорость доступа к данным.

Из недостатков  можно выделить лишь отсутствие съемных  носителей информации, все данные записаны внутри винчестера на жестких магнитных дисках.

  1. Устройство чтения компакт-дисков (CD-ROM): в этих устройствах используется принцип считывания сфокусированным лазерным лучом бороздок на металлизированном несущем слое компакт-диска. Этот принцип позволяет достичь высокой плотности записи информации, а, следовательно и большой емкости при минимальных размерах. Компакт-диск является идеальным средством хранения информации – не дорогой, практически не подвержен каким-либо влияниям среды, информация записанная на нем не исказится и не сотрется, пока диск не будет уничтожен физически.
  2. USB флеш-накопитель — носитель информации, использующий флеш-память для хранения данных и подключаемый к компьютеру или иному считывающему устройству через стандартный разъём USB.

Преимущества:

    • Малый вес, бесшумность работы и портативность.
    • Более устойчивы к механическим воздействиям
    • Не подвержены воздействию царапин и пыли, которые были проблемой для оптических носителей и дискет.

Недостатки:

  • Ограниченное число циклов записи-стирания перед выходом из строя.
  • Способны хранить данные полностью автономно до 5 лет. Наиболее перспективные образцы — до 10 лет.
  • Скорость записи и чтения ограничены во-первых, пропускной способностью USB, а во-вторых, скоростью самой флеш-памяти.

Все эти  устройства имеют разные емкости, скорости доступа к информации, свои минусы и плюсы, а также разную цену. Одно у них всех есть общее – эти  устройства были созданы для хранения, накопления и резервирования данных.

Большое значение имеет надежность и долговременность хранения информации. Большую устойчивость к возможным повреждениям имеют молекулы ДНК, так как существует механизм обнаружения повреждений их структуры (мутаций) и самовосстановления.

Надежность (устойчивость к повреждениям) достаточно высока у аналоговых носителей, повреждение которых приводит к потере информации только на поврежденном участке. Поврежденная часть фотографии не лишает возможности видеть оставшуюся часть, повреждение участка магнитной ленты приводит лишь к временному пропаданию звука и так далее.

Цифровые  носители гораздо более чувствительны  к повреждениям, даже утеря одного бита данных на магнитном или оптическом диске может привести к невозможности  считать файл, то есть к потере большого объема данных. Наиболее долговременным носителем информации является молекула ДНК, которая в течение десятков тысяч лет и миллионов лет, сохраняет генетическую информацию данного вида.

Аналоговые  носители способны сохранять информацию в течение тысяч лет (египетские папирусы и шумерские глиняные таблички), сотен лет (бумага) и десятков лет (магнитные ленты, фото- и кинопленки).

Цифровые  носители появились сравнительно недавно  и поэтому об их долговременности можно судить только по оценкам специалистов. По экспертным оценкам, при правильном хранении оптические носители способны хранить информацию сотни лет, а магнитные — десятки лет. 

3. Информационные ресурсы в организации. Проблемы обеспечения сохранности.

Современную организацию невозможно представить  без электронных данных. И чем крупнее фирма, тем сильнее ее функционирование зависит от компьютерной техники. Документы и бухгалтерия, счета клиентов и организаций, рекламная информация, почта, программы, файлы с графическими и аудио/видео данными, корпоративные базы данных и т.д., — все находится на дисках серверов локальных сетей или дисках мэйнфреймов.

Можно провести сравнение, что информация — это кровь, которая течет по жилам корпорации и поддерживает ее жизнедеятельность.

Работы  по обеспечению сохранности электронных  документов можно разделить на три вида:

1) обеспечение  физической сохранности и целостности  файлов с электронными документами; 

2) обеспечение  условий для считывания информации  в долговременной перспективе; 

3) обеспечение  условий для воспроизведения  электронных документов в удобном для чтения виде

Первый  аспект обеспечения сохранности  электронных документов – проблема практически решенная, причем для  всех видов хранения. Это решение  связано не столько с созданием  оптимальный условий хранения носителей  с электронной информацией, сколько с физическим размещением электронных документов. Для того чтобы компьютерные файлы не были утрачены, необходимо их хранить в двух или более экземплярах, размещенных на отдельных электронных носителях. Тогда при утрате одного из носителей, можно быстро сделать дубликат файлов с оставшегося носителя.

Важен также выбор типа носителя, его  долговечность. Этот выбор зависит  от вида электронного документа и  срока его хранения. Наиболее распространенный способ хранения информационных ресурсов в организациях – хранение файлов на жестких дисках компьютеров или серверах. Иногда возникает необходимость переноса электронных документов на внешние носители. До сих пор в некоторых организациях небольшие совокупности файлов с управленческой документацией хранят на магнитных дискетах. Для хранения же объемных и сложноструктурных баз данных и других информационных ресурсов (например, научно-технических или издательских), чтобы не нарушать целостности данных, лучше использовать емкие электронные носители: оптические диски, съемные жесткие диски, RAID-массивы и т.п.

Для архивного  хранения электронных документов в  пределах 5 лет любые современные  носители электронной информации (магнитные  дискеты, магнитные ленты, магнитные, магнитооптические и оптические диски) вполне надежны. Здесь главное обращать внимание на надежность и репутацию фирмы-изготовителя.

При долговременном хранении электронных документов на внешних носителях лучшим решением будет использование оптических компакт-дисков CD. Они непритязательны в хранении и вполне надежны в течение 15–20 лет. Большего и не требуется. По истечении этого срока неизбежно придется или переписывать файлы на другой тип носителя, или конвертировать электронные документы в другие форматы и также переписывать на более современные и емкие носители.

Второй  и третий аспекты обеспечения  сохранности гораздо сложнее. Они  связаны с быстрой сменой и  устареванием аппаратного и программного компьютерного обеспечения. Со временем устройства, с помощью которых  информация считывается с внешних носителей, изнашиваются и морально устаревают. Так, например, исчезли магнитные дискеты, а вслед за ними компьютеры перестали оснащать дисководами для их считывания. Устройства для считывания информации с оптических дисков скорее всего также со временем изменятся. Приблизительный жизненный цикл подобных технологий – 10–15 лет. Эти технологические изменения нужно учитывать при организации долговременного хранения электронных документов.

Воспроизведение электронных документов зависит  в первую очередь от применяемого программного обеспечения: ОС, СУБД, браузеров, других прикладных приложений. Смена программной платформы может привести к полной утрате документа из-за невозможности его просмотреть.

При более  длительном хранении электронных документов существуют несколько решений:

1. миграция баз данных и других электронных документов на современную технологическую платформу, чаще всего в форматы, которые используются в организации для оперативного управления информационными ресурсами. Это сложный и дорогой путь. Обычно к миграции прибегают для обеспечения доступа к оперативным и архивным информационным ресурсам, которые очень важны для деятельности организации и постоянно используются в работе. Вот почему важно изначальное создание баз данных и других электронных документов в наиболее распространенных форматах. В государственных архивах этот путь рационально использовать для организации оперативного доступа к наиболее важным или часто используемым архивным электронным ресурсам.

2. миграция электронных документов в «открытые» или наиболее распространенные компьютерные форматы.

3. Инкапсуляция: включение электронных документов в состав файлов межплатформенных форматов, например в XML. В настоящее время американские архивисты рассматривают этот способ как наиболее оптимальный для обмена и долговременного хранения электронных документов, хотя вряд ли его можно считать панацеей от всех проблем. Поэтому единственным проверенным способом долговременного хранения электронных документов остается миграция.

 

Заключение

Сбор  информации не является самоцелью. Чтобы  полученная информация могла использоваться, причём многократно, необходимо её хранить.

В жизни  человека процесс длительного хранения информации играет большую роль и  подвергается постоянному совершенствованию.

Основное  хранилище информации для человека — его память, в том числе генетическая. Существует и «коллективная память» — традиции, обычаи того или другого  народа. Когда объем накапливаемой информации возрастает настолько, что ее становится просто невозможно хранить в памяти, человек начинает прибегать к помощи различного рода записных книжек, указателей и т. д.

Различная информация требует разного времени  хранения:

  • проездной билет надо хранить только в течение поездки;
  • программу телевидения — текущую неделю;
  • школьный дневник — учебный год;
  • исторические документы— несколько столетий.

В настоящее  время мы являемся свидетелями быстрого развития новых, автоматизированных методов  хранения информации с помощью электронных  средств.

что это такое, виды и типы средств, организация и обработка информации

Система хранения данных (СХД) — это комплекс аппаратных и программных структур, необходимых для содержания информации, которая, как правило, поставляется в значительном объеме. Объекты, помещаемые внутрь подобной конфигурации, могут обладать самым разным форматом: от классических медиа файлов до объемных баз. В качестве основных носителей используются всевозможные гибридные решения, состоящие из SSD и HDD. Главные отличия СХД от обыкновенной компьютерной памяти — это внушительная архитектура, возможность объединения контейнеров для транспортировки в сеть, присутствие отладочного управленческого ПО, а также техники копирования, архивирования и виртуализации.

«Физика» хранения

Сфера разработки систем для содержания и обработки данных предоставляет возможному пользователю внушительный выбор, позволяя ему выбирать нужные классы устройств, предназначенных для решения конкретных задач по индивидуальным характеристикам. Однако подобное разнообразие ассортимента конструкций существовало не всегда: отрасль развивалась постепенно, претерпевая огромное количество модернизаций, изменяясь под тот объем работы, который требовался человеку в определенное время.

Однако несмотря на наличие глобальных модификаций, сам принцип содержания остался неизменным. Физика полупроводниковых инноваций в конечном счете сводится к поиску новых научных достижений, обеспечивающих увеличение плотности транзисторов, размещенных на подложке. Схемы и микропроцессоры, взаимодействующие между собой, создают стройную систему, которая, кстати, пришла на смену модулям прошлого, состоящих из вакуумных ламп и отдельных электропроводящих элементов.

Как хранили данные раньше

Огромный технологический скачок рассматриваемая сфера совершила в течение последних 60-70 лет. За указанное время люди успели придумать, разработать и выпустить многочисленное количество устройств, применяемых для аккумулирования информации в рамках единого носителя. К их числу относились:

  • магнитные и перфорированные ленты;
  • барабаны;
  • диски;
  • оптические винты;
  • перфокарты.

Каждый прибор характеризовался собственным набором преимуществ и недостатков. Создание любого из них постепенно приближало исследователей к успешно используемой современной аппаратуре.

Носители данных, использующие перфорацию

Самый первый модуль, являющийся прообразом всех нынешних систем, предназначенных для сбора и обработки информационных контейнеров. Их главная особенность – наличие значительного числа отверстий правильной формы, расположенных прямиком на листовом материале. В качестве подложки может приобретаться буквально все, вплоть до специального тонкого картона. Наиболее широко они применялись во второй половине XX века. С течением времени были заменены новыми конструкциями, представленными в виде компактных, быстрых и удобных полупроводниковых, магнитных или оптических носителей.

Перфокарты

Перфорированные элементы – это оборудование, применяемое людьми задолго до изобретения первого компьютера. Они задействовались, например, в ткацких станках, часах-карильонах, обыкновенных шарманках и пр. Первый человек, задумавшийся об использовании таких аппаратов для хранения данных – Герман Холлерит. Он реализовал свою идею для обработки статистики, полученной во время переписи населения. Позже ему удалось перенести информацию на другие приложения – это открытие привело современную группу компаний IBM к периоду благополучия, длящемуся до сих пор.

Перфоленты

На первый взгляд, более практичные носители, которые, к сожалению, в бизнесе и на крупных предприятиях практически не применялись. Основные проблемы устройства (последовательный доступ, небольшая емкость и низкая скорость ввода/вывода) сильно мешали дальнейшему распространению. Узкие 5-колонные ленточки с 1857 года можно было найти на телеграфах, а их широкие аналоги на 24 колонки задействовались в электромеханическом калькуляторе, изобретенном порядка 80 лет назад.

Магнитные ленты

Виды и средства хранения данных начали преобразовываться в 1924 г., с момента создания катушечных магнитных носителей. Такое оборудование обладало сильными преимуществами, выгодно отличаясь от устаревших перфокарт практически по всем фронтам. Побуждением к совершенствованию технологии стало то, что уже в середине восьмидесятых годов прошлого столетия, емкости дисков измерялись гигабайтами, а работать с такими величинами могли исключительно накопители нового формата. За три десятка лет исследователи разработали огромное количество подобных модулей, однако самым распространенным стандартом стал LTO. Именно на такой основе выпускают многие современные картриджи.

Магнитный барабан

Промежуточный вариант способ решения спора между регламентом пошаговой записи и нуждой обеспечения доступа к данным, расположенным во внешнем устройстве. Произведен в 1932 г, а его создателем считается Густав Тучек. Такие конструкции эксплуатировались до 1980 г: ими комплектовались машины ЭВМ БЭСМ-6, а также ее современники.

Гибкие диски

Просуществовали 30 лет, вплоть до конца 90-х. Распространению подобных структур способствовал факт наличия возможностей для передачи информации по сети. Тогда системами переноса обладал практически любой профильный ПК, а дисковые формации было удобно использовать для обмена материалами. Стандарт привычных «кругляшей» появился в 1983 году (он был предложен инженерами компании Sony).

Организация хранения данных: почему возникла необходимость в СХД

По результатам опросов бренда IDC Perspectives, до 23% от расходов в сфере IT уходит на операции по аккумулированию информационных контейнеров. Упомянутое положение дел обеспечивается чрезвычайно высокими темпами роста современного бизнеса: предприятия нуждаются в надстройках, способных сохранять и обрабатывать огромные потоки цифровых структур. Безвозвратная потеря каких-либо важных записей – это настоящая катастрофа, способная привести к краху даже самую успешную, и, казалось бы, непоколебимую корпорацию.

Факторы, способствующие развитию

Перед тем как начать разбираться с большим вопросом о том, что такое система хранения данных (СХД) в нынешнем формате, следует уточнить перечень причин, позволяющих говорить о чрезвычайной необходимости модернизации в целом:

  1. Развитие конкурентоспособности многих фирм, а также сложные характеры внутри рыночного противостояния
  2. Появление брендов, предлагающих решения для обустройства сеток предпринимательских учреждений.
  3. Пользовательская нужда в адаптивных платформах, способных работать с аналитикой в различных формах.

Все перечисленные факторы сыграли чрезвычайно важную роль во всем процессе становления отрасли.

Сферы применения СХД

В 2021 году рассматриваемые классы устройств используются в максимально широком ассортименте самых различных сфер:

  • формирование отчетности;
  • выработка прогнозов;
  • бизнес-аналитика;
  • переход на электронный документооборот в правительственном масштабе и пр.

На самом деле, намного проще перечислить отрасли, в которых подобные конструкции использованы не были.

Требования

В 2008 г., компания ТИМ выполнила исследование, основной целью которого стало получение данных от пользователей о приоритетных характеристиках аппаратуры, применяемой для аккумулирования информации. Исходя из результатов сотен опросов, можно сделать вывод о том, что люди, приобретающие рассматриваемые структуры, выделяют следующий набор их претенциозных качеств:

  • функциональность;
  • совокупная стоимость;
  • прямые затраты;
  • объем потерь на издержках при содержании;
  • наличие рисков в плане обслуживания;
  • присутствие гарантийного пакета и пр.

Все указанные факторы подталкивают предпринимателей к приобретению новых, более удобных, качественных и надежных модулей.

Из чего состоит

Обозреваемые структуры всевозможного класса создаются из определенного и стандартизированного числа элементов:

  • носитель, выступающий в роли хранителя;
  • инфраструктура обеспечения доступа;
  • внутренняя группа дополнительной архивации и восстановления;
  • ПО для настройки и отладки;
  • сервис взаимодействия и диагностики.

Практически во всех случаях модели монтируются в классический шкаф (размером 19 дюймов), а их внешняя часть комплектуется наружными интерфейсами, отверстиями для коммутации портов, аккумуляторными батареями и пр.

Дисковые массивы

В конце 1990 года был создан уникальный коммерческий накопитель, полученный в результате объединения научных баз RAID и выпускаемых тиражом винчестеров. Незамысловатая логика устройств полностью соответствовала их физической конфигурации, а размеры одного такого контейнера могли варьироваться до 64 терабайт (конечно же, на современных аналогах). Впоследствии идея получила продолжение: дорогие и примитивные модули были заменены на легендарные версии 4200-ICDA, работа которых обеспечивалась мощностями 32-разрядного процессора.

Ключевые требования к СХД

Все системы обозреваемых классов предполагаются для использования в реальных, и достаточно непростых эксплуатационных условиях. Коммутацию к ним на практике осуществляют десятки и сотни серверов – этот фактор диктует основные условия, выдвигаемые к подобным интерфейсам:

  • надежность и отказоустойчивость;
  • доступность информации;
  • наличие средств настройки и управления;
  • производительность;
  • масштабируемость.

Конечно, существуют и другие качества, однако представлять их следует именно в таком перечне.

Типы СХД

Комплект из достаточно сложных технических устройств функционирует по собственным регламентам, отладкой которого первоначально занимается разработчик, а затем – пользователь.

Дисковые

Модули применяются для оперативного взаимодействия с информационными контейнерами и формирования промежуточных копий. В 2021 году практикуется использование таких версий:

  • для рабочих файлов;
  • для резервного копирования;
  • для долговременной архивации.

Все перечисленные виды storage-аппаратов обладают чрезвычайно широким набором сфер возможного применения.

Ленточные

Используются для создания вторичных дубликатов и архивированных структур. Как правило, поставляются в формате следующих категорий:

  • отдельные полноформатные накопители;
  • автоматические загрузчики;
  • ленточные библиотеки.

Аналогичным образом применяются практически повсеместно.

Варианты подключений СХД

Для коммутации жестких дисков, пребывающих в составе единого хранилища, задействуются все возможные внутренние интерфейсы:

Также оборудование подобного профиля комплектуется и внешними средами:

Еще есть узел взаимодействия между кластерами – Infiniband, также применяемый для получения доступа к рассматриваемым конструкциям.

Возможные топологии

Каждое стандартизированное хранилище состоит из набора некоторых активных элементов, обеспечивающих непосредственную функциональность всей аппаратуры:

  • модуль коммутации серверов;
  • емкости для хранения;
  • компоненты сейфовых сетей и пр.

Такая архитектура была разработана в середине девяностых годов прошлого столетия. Она обладает некоторым перечнем неотъемлемых преимуществ: сниженные затраты, простое управление, уменьшенный трафик локальных сеток, высокая степень готовности и отличная протекция.

Для того чтобы добраться до вопросов о сетевом построении, современный предприниматель должен справиться с огромным количеством проблем радикально другого характера. Сегодня каждый инновационный бизнес не может существовать без средств автоматизации, поставкой которых занимается, например, российская компания «Клеверенс». Продукты можно использовать в магазинах, на складах, в различных учреждениях и на производствах.

Системы прямого подключения (DAS)

Модели Direct Attached Storage, коммутация которых выполняется непосредственно к серверной части всего построения. По сути, представляют собой разумный способ дискового расширения отдельно взятой ячейки, позволяющей пользователям взаимодействовать с конструкцией через сеть, в дистанционном, удаленном формате.

Устройства хранения данных, подключаемые к NAS

Накопитель, подключенный к сетевым настройкам, обеспечивающий файловый доступ к информации для сред LAN/WAN. Главные преимущества – высокая скорость развертывания, отлично организованные операции взаимодействия с контейнерами и возможность использования в узконаправленных секторах.

SAN

Структура блочного формата – отдельная сеть, служащая для организации доступа со стороны серверов и рабочих станций, отвечающих за мероприятия по обработке внутренних аккумулированных единиц. Благодаря наличию такого интерфейса, оборудование получает отличную готовность и хорошие параметры, связанные с интенсивностью осуществления запросов.

Решётка

Дополнительный вариант соединения, посредством которого создается архитектура с узлами, образующими регулярный одномерный решетчатый сервис. При этом каждое ребро полученного построения расположено параллельно наличествующей оси, и объединяет две смежных точки.

Кольцо

Сеть с такой топологией единообразно формирует все элементы, выстраивая их в окружность, коммутируемую каналами связи. Выход одного компьютера подключается к входу другого, а начав движение из одного места, сведения в итоге возвращаются в начало.

Центрально-распределенная система обработки и хранения данных

Каскадная решетка, основным предметным отличием которой являются элементы, с числом включений, варьирующимся в зависимости от топологических параметров всей конструкции. Используется в качестве принципиального модуля для создания распределительных структур, в формате сложных программируемых объектов.

Многоуровневая топология

Понятие Data multi tiering – наверное, один из самых классических аспектов процесса виртуализации. Первоначальный термин получил огласку в 1959 году, выступая в качестве обозначения виртуальной внешней памяти на дисках, расширяющих внутреннее контейнерное устройство, собираемое из магнитных сердечников. В рамках прогресса специалисты сумели создать сеть, состоящую из четырех отдельных уровней, на нулевом цикле которой монтируется классическая версия SSD. Далее идут быстрые узлы SAS, а затем – ленты.

Программный и аппаратный RAID

Все комплексы СХД, существующие и активно использующиеся в 2021 году, подразделяются на два класса:

  1. Использование отдельного RAID-контроллера с собственным процессором и кэшируемой памятью.
  2. Специализированное создание обеспечения, применяемого для расчета RAID.

Наиболее современным и качественным видом ПО считается именно программируемая структура. Например, в российском прайс-листе брендов, занимающихся поставками рассматриваемых архитектур, системы занимают до 20-30% от общей стоимости всей разработки.

Системы хранения информации на мировом рынке

Для того чтобы понять, что СХД – это элемент, обладающий по-настоящему весомой важностью во всемирном масштабе, можно просмотреть некоторые статистические показатели. Уже в 2018 году объем сектора составил порядка 5,9 млрд долларов, а, по прогнозам экспертов, ежегодный прирост отрасли колеблется в районе 24,53%. Таким образом, уже через несколько лет общая операционная прибыль сегмента достигнет планки в $17,8 – невероятные величины, даже в условиях повальной цифровизации абсолютно любых аспектов жизнедеятельности. Основными потребителями подобной продукции остаются классические дата-центры.

Российский рынок

По аналогичным показателям формируется и отрасль разработки и продажи систем хранения данных в Российской Федерации. Наша страна не отстает от мировых тенденций: объем профильного рынка еще в 2010 году достиг величины в 65 млн долларов.

Чрезвычайная динамика развития обусловлена молодостью большинства крупных фирм – отечественные создатели ПО и архитектур стремятся наверстать упущенные годы, постепенно зарабатывая авторитет на европейских и американских площадках. Сегодня подобными модулями пользуются не только традиционно крупные организации, но и бренды, представляющие различные отрасли малого и среднего бизнеса.

Основные этапы проектов создания хранилищ данных

Чтобы понять, что такое СХД на самом деле, следует просмотреть небольшую карту построения формаций:

  1. Выбор носителя.
  2. Создание технологии для оборудования ХД.
  3. Построение логической модели.
  4. Размещение информации из подобранных источников.

Конечно, каждый этап делится на огромное количество подкатегорий, обладающих различными нюансами. Мероприятия по формированию подобной конструкции отнимают множество времени, а проведением изысканий, как правило, занимаются специалисты с внушительным опытом практической деятельности.

Тенденции и перспективы

Компания Western Digital провела обширное исследование, основная цель которого – определение того, как именно будет развиваться вся отрасль СХД в обозримом будущем. Результаты, опубликованные в апреле 2020 года, выглядят приблизительно так:

  • увеличение численности ЦОД;
  • появление новых архитектур;
  • стандартизация ИИ;
  • способы простого развертывания периферийных устройств;
  • деление базовых компонентов структуры на дополнительные уровни;
  • появление инноваций в областях создания носителей;
  • формирование решений для унификации доступа к контейнерам и пр.

Конечно, представленные идеи – это всего лишь прогнозы, которые, однако, могут с высокой вероятностью перейти в реальную жизнь.

Сравнение технологий обмена данными

Понять прогресс всего рынка в целом можно, например, благодаря сравнительному анализу прошлых, базисных устройств, используемых для компиляции классических сеток, с нынешними веяниями и аппаратами отрасли. Нетрудно догадаться, что новые серверные базы, а также совершенные комплексы, достигли невероятных высот как в плане технических характеристик, так и в функциональности. Прошлые перфокарты и решетчатые сервисы все еще существуют на отдельных порталах, однако до их полной замены осталось совсем небольшое количество времени.

Система обработки и хранения данных: отказоустойчивость

Один из самых главных показателей, влияющих как на стоимость, так и на привлекательность модуля в глазах потребителя. Оценить его можно по двум основным коэффициентам.

RPO (recovery point objective)

Максимальный период, за который может быть потеряна сохраняемая информация в результате какого-либо катастрофического и неприятного инцидента. Грубо говоря, представляет собой границу, в рамках которой специалисты могут действовать для проведения восстановительных работ.

RTO (recovery time objective)

Промежуток времени, в течение которого конструкция остается недоступной после аварийной деактивации. Чем меньше показатель, тем больше ресурсов требуется на финансовое обеспечение всей сетки.

Резервное копирование

Возможность создавать вторичные копии и дубликаты с определенной частотой. Такими модулями комплектуются практически все современные структуры, так что его важность уходит на второй план.

Как выбрать

Хранение данных – это отрасль, характеризующаяся по-настоящему широким ассортиментом решений, каждое из которых подходит под индивидуальные параметры конкретной задачи. Чтобы подобрать качественную и эффективную в заданных условиях конструкцию, потребитель должен обратить внимание на некоторый перечень показателей: число серверов, наличие блочного и файлового доступа, количество контроллеров, форм-фактор дисков, планируемый годовой рост архитектуры и требуемый рабочий объем. Учитывая все величины, пользователь без труда совершит нужную и действительно стоящую своих денег покупку.


Количество показов: 273

Создание файла данных Outlook (PST) для хранения информации

  1. В почтовом ящике выберите Создать элемент > Другие элементы > Файл данных Outlook.

  2. Введите имя файла.

  3. Чтобы задать пароль, установите флажок Добавить дополнительный пароль.

  4. Нажмите кнопку ОК. В текстовых полях Пароль и Подтверждение введите пароль и нажмите кнопку ОК еще раз.

    Если установлен пароль, его нужно будет вводить при каждом открытии файла данных — например, когда запускается Outlook или когда файл данных открывается в Outlook.

О файлах данных Outlook (PST и OST)

При первом запуске Outlook необходимые файлы данных создаются автоматически.

Иногда возникает необходимость создать дополнительные файлы данных. Файлы данных Outlook (PST) сохраняются на компьютере в папке Документы\Файлы Outlook.

  • Старые сообщения и элементы, которые вы не используете регулярно, можно архивировать в Файл данных Outlook (PST).

  • Если ваш почтовый ящик почти заполнен, некоторые элементы можно экспортировать в файл данных Outlook (PST). Эти файлы также можно использовать для создания архивов, файлов проектов и резервных копий из любой учетной записи Outlook.

  • Файлы данных Outlook (PST) используются для учетных протокол POP3 электронной почты

Совет: Если размер Файл данных Outlook (PST), это может замедлить синхронизацию OneDrive и показать «Обработка изменений» или «Файл используется». Узнайте, как удалить PST-файл данных Outlook из OneDrive.

В некоторых учетных записях (IMAP, Microsoft Exchange Server и Outlook.com) используется автономный файл данных Outlook (OST). Это синхронизированная копия сообщений, сохраненных на сервере. Доступ к ней можно получить с нескольких устройств и приложений, таких как Outlook. 

Автономные файлы данных Outlook сохраняются на диске :\Users\имя пользователя\AppData\Local\Microsoft\Outlook.

Совет: Нет необходимости делать это для автономного файла данных Outlook (OST), так как он уже является копией данных в режиме жизни на сервере. Если снова настроить учетную запись либо на другом компьютере или устройстве, синхронизированная копия сообщений будет скачина.

О файлах данных Outlook

Outlook использует файл данных для сохранения элементов на компьютере в файле личных папок Outlook (PST). С помощью учетной записи Microsoft Exchange элементы обычно доставляются на почтовый сервер и сохраняются на этом сервере.

Чтобы вы могли работать с сообщениями без подключения к почтовому серверу, в Outlook есть автономные папки, которые сохраняются в файле автономных папок (OST) на компьютере.

  • OST-файлы Outlook применяются только в том случае, если у вас есть учетная запись Exchange и вы работаете в автономном режиме или используете режим кэширования Exchange.

  • PST-файлы Outlook используются для учетных записей протокол POP3, IMAP и HTTP. Чтобы создать архивы, файлы проектов или резервные копии папок и элементов Outlook на компьютере, включая учетные записи Exchange, необходимо создать и использовать дополнительные PST-файлы.

При первом запуске Outlook необходимые файлы данных создаются автоматически.

Создание PST-файла в формате Outlook 2003/Office Outlook 2007

По умолчанию Outlook создает PST-файл в самом новом формате, который поддерживает файлы больших размеров и наборы знаков Юникода. Файлы такого формата нельзя открыть с помощью Microsoft Outlook 97, 98, 2000 или 2002.

  1. В меню «Файл» выберите пункт «Новый»,а затем выберите «Файл данных Outlook».

  2. Щелкните файл личных папок Office Outlook (PST)и нажмите кнопку «ОК».

  3. В диалоговом окне «Создание или открытие файла данных Outlook» в поле «Имя файла» введите имя файла и выберите «ОК».

  4. В диалоговом окне «Создание личных папок Майкрософт» в поле «Имя» введите отображаемую папке PST-папку.

    Примечание: Это поможет различать PST-файлы данных Outlook. Рекомендуем выбрать имя, которое имеет значение.

  • Если вы хотите защитить файл данных паролем, в поле «Пароль»введите пароль в текстовых полях «Пароль» и «Проверка пароля».

    Примечание: По соображениям безопасности при вводе пароля на экране отображаются только точки.

    Советы по паролям

  • Выберите содержательное имя.

  • При этом выберите пароль для этого файла данных. Если вы не хотите, чтобы каждый раз при его открытие вводить пароль к файлу, выберите его в списке паролей.

  • Пароль может содержать до 15 символов.

  • Используйте надежные пароли, состоящие из букв в верхнем и нижнем регистре, цифр и символов. В ненадежных паролях не используются сочетания таких элементов. Надежный пароль: Y6dh!et5. Ненадежный пароль: House27.

  • Пароль должен состоять не менее чем из 8 знаков. Лучше всего использовать парольную фразу длиной не менее 14 знаков.

  • Очень важно запомнить свой пароль. Если вы забудете пароль, корпорация Майкрософт не сможет его восстановить. Все записанные пароли следует хранить в надежном месте отдельно от сведений, для защиты которых они предназначены.

  • Даже если установлен флажок Сохранить пароль в списке паролей, запомните или запишите этот пароль на тот случай, если PST-файл потребуется открыть на другом компьютере. Устанавливать этот флажок следует только при условии, что ваша учетная запись пользователя Windows защищена паролем и никто другой не имеет доступа к учетной записи вашего компьютера.

    Важно: Ни корпорация Майкрософт, ни поставщик услуг Интернета, ни администратор электронной почты не имеют доступа к этому паролю. Если вы забудете его, они не смогут помочь вам восстановить содержимое PST-файла.

Имя папки, связанной с сохраненным файлом данных, отображается в списке папок. Чтобы просмотреть список папок, в меню Переход выберите пункт Список папок. По умолчанию папке назначено имя «Личные папки».

Создание PST-файла в формате Outlook 97–2002

Чтобы получить файл данных, совместимый с Outlook 97, 98, 2000 или 2002, необходимо создать файл личных папок (PST-файл) Outlook 97–2002. Формат этого PST-файла такой же, какой использовался в Outlook 97, 98, 2000 и 2002.

  1. В меню «Файл» выберите пункт «Новый»,а затем выберите «Файл данных Outlook».

  2. Щелкните файл личных папок Outlook 97–2002 (PST)и нажмите кнопку «ОК».

  3. В поле «Имя файла» введите имя файла и выберите «ОК».

  4. В поле «Имя» введите отображаемую папке PST-папку.

  5. Если вы хотите защитить файл данных паролем, в разделе Пароль введите свой пароль в текстовых полях Пароль и Подтверждение.

    Примечание: По соображениям безопасности при вводе пароля на экране отображаются только точки.

    Советы по паролям

  • Пароль может содержать до 15 символов.

  • Используйте надежные пароли, состоящие из букв в верхнем и нижнем регистре, цифр и символов. В ненадежных паролях не используются сочетания таких элементов. Надежный пароль: Y6dh!et5. Ненадежный пароль: House27.

  • Пароль должен состоять не менее чем из 8 знаков. Лучше всего использовать парольную фразу длиной не менее 14 знаков.

  • Очень важно запомнить свой пароль. Если вы забудете пароль, корпорация Майкрософт не сможет его восстановить. Все записанные пароли следует хранить в надежном месте отдельно от сведений, для защиты которых они предназначены.

  • Даже если установлен флажок Сохранить пароль в списке паролей, запомните или запишите этот пароль на тот случай, если PST-файл потребуется открыть на другом компьютере. Устанавливать этот флажок следует только при условии, что ваша учетная запись пользователя Windows защищена паролем и никто другой не имеет доступа к учетной записи вашего компьютера.

    Важно: Ни корпорация Майкрософт, ни поставщик услуг Интернета, ни администратор электронной почты не имеют доступа к этому паролю. Если вы забудете его, они не смогут помочь вам восстановить содержимое PST-файла.

Имя папки, связанной с сохраненным файлом данных, отображается в списке папок. Чтобы просмотреть список папок, в меню Переход выберите пункт Список папок. По умолчанию папке присваивается имя «Личные папки».

Память, кодирование, хранение и поиск

  1. Когнитивная психология
  2. Память

Кодирование, хранение и поиск

Этапы памяти

Кодирование, хранение и поиск

Saul McLeod «Память — это процесс сохранения информации во времени». (Matlin, 2005)

«Память — это средство, с помощью которого мы опираемся на наш прошлый опыт, чтобы использовать эту информацию в настоящем» (Sternberg, 1999).

Память — это термин, используемый для структур и процессов, участвующих в хранении и последующем поиске информации.

Память важна для всей нашей жизни. Без памяти о прошлом мы не можем действовать в настоящем или думать о будущем. Мы не сможем вспомнить, что мы делали вчера, что мы сделали сегодня или что мы планируем делать завтра. Без памяти мы ничего не могли бы узнать.

Память участвует в обработке огромных объемов информации.Эта информация принимает множество различных форм, например изображения, звуки или значение.

Для психологов термин память охватывает три важных аспекта обработки информации:


1. Кодирование памяти

1. Кодирование памяти

Когда информация поступает в нашу систему памяти (от сенсорного ввода), она должна быть преобразован в форму, с которой может справиться система, чтобы ее можно было сохранить.

Думайте об этом как об обмене денег на другую валюту, когда вы путешествуете из одной страны в другую.Например, слово, которое видели (в книге), может быть сохранено, если оно изменено (закодировано) в звук или значение (то есть семантическая обработка).

Существует три основных способа кодирования (изменения) информации:

1. Визуальный (изображение)

2. Акустический (звук)

3. Семантический (значение )

Например, как запомнить телефонный номер, который вы искали в телефонной книге? Если вы это видите, значит, вы используете визуальное кодирование, но если вы повторяете это про себя, вы используете акустическое кодирование (по звуку).

Имеются данные, свидетельствующие о том, что основной системой кодирования в кратковременной памяти (STM) является акустическое кодирование. Когда человеку предлагают список цифр и букв, он пытается удержать их в СТМ, репетируя их (устно).

Репетиция — это словесный процесс, независимо от того, представлен ли список предметов акустически (кто-то их зачитывает) или визуально (на листе бумаги).

Принципиальной системой кодирования в долговременной памяти (LTM) является семантическое кодирование (по значению).Однако информация в LTM также может быть закодирована как визуально, так и акустически.


2. Хранение в памяти

2. Хранение в памяти

Это касается характера хранилищ в памяти, т. Е. Где хранится информация, как долго хранится память (продолжительность), сколько может быть сохранено в любое время (емкость) и какая информация хранится.

То, как мы храним информацию, влияет на то, как мы ее получаем. Было проведено значительное количество исследований относительно различий между краткосрочной памятью (STM) и долгосрочной памятью (LTM).

Большинство взрослых могут хранить в своей кратковременной памяти от 5 до 9 предметов. Миллер (1956) выдвинул эту идею и назвал ее магическим числом 7. Он считал, что объем кратковременной памяти составляет 7 (плюс-минус 2) элементов, потому что в нем есть только определенное количество «ячеек», в которых могут быть размещены элементы. хранится.

Однако Миллер не указал объем информации, который может храниться в каждом слоте. В самом деле, если мы можем «разбить» информацию на части, мы сможем хранить гораздо больше информации в нашей краткосрочной памяти.Напротив, емкость LTM считается неограниченной.

Информация может храниться в STM только в течение короткого времени (0-30 секунд), но LTM может длиться всю жизнь.


3. Извлечение из памяти

3. Извлечение из памяти

Это относится к извлечению информации из хранилища. Если мы что-то не можем вспомнить, это может быть потому, что мы не можем это восстановить. Когда нас просят извлечь что-то из памяти, различия между STM и LTM становятся очень ясными.

STM сохраняется и извлекается последовательно. Например, если группе участников дается список слов для запоминания, а затем их просят вспомнить четвертое слово в списке, участники просматривают список в том порядке, в котором они его слышали, чтобы получить информацию.

LTM сохраняется и извлекается по ассоциации. Вот почему вы можете вспомнить, зачем вы поднялись наверх, если вернетесь в комнату, где впервые подумали об этом.

Организация информации может помочь в поиске.Вы можете организовать информацию в последовательности (например, в алфавитном порядке, по размеру или по времени). Представьте себе пациента, которого выписывают из больницы, лечение которого включало прием различных таблеток в разное время, смену одежды и выполнение упражнений.

Если врач дает эти инструкции в том порядке, в котором они должны выполняться в течение дня (т. Е. В последовательности времени), это поможет пациенту их запомнить.


Критика экспериментов с памятью

Критика экспериментов с памятью

Большая часть исследований памяти основана на экспериментах, проводимых в лабораториях.Тех, кто принимает участие в экспериментах — участников — просят выполнить такие задачи, как вспомнить списки слов и чисел.

Обстановка — лаборатория — и задачи далеки от повседневной жизни. Во многих случаях обстановка искусственная, а задачи бессмысленны. Имеет ли это значение?

Психологи используют термин экологическая значимость для обозначения степени, в которой результаты научных исследований могут быть обобщены на другие параметры. Эксперимент имеет высокую экологическую значимость, если его результаты могут быть обобщены, применены или распространены на условия за пределами лаборатории.

Часто предполагается, что если эксперимент реалистичен или соответствует действительности, то с большей вероятностью его результаты можно будет обобщить. Если это нереально (если лабораторная обстановка и задачи искусственны), то вероятность того, что результаты могут быть обобщены, меньше. В этом случае эксперимент будет иметь низкую экологическую ценность.

Многие эксперименты по исследованию памяти критиковались за низкую экологическую ценность.Во-первых, лаборатория — это искусственная ситуация. Людей удаляют из их обычных социальных условий и просят принять участие в психологическом эксперименте.

Они управляются «экспериментатором» и могут быть помещены в компанию совершенно незнакомых людей. Для многих людей это совершенно новый опыт, далекий от повседневной жизни. Повлияет ли эта настройка на их действия, будут ли они вести себя нормально?

Его особенно интересовали характеристики людей, которые, по его мнению, достигли своего индивидуального потенциала.

Часто задачи, которые участники должны выполнить, могут казаться искусственными и бессмысленными. Лишь немногие люди, если таковые имеются, попытаются запомнить и вспомнить список несвязанных слов в своей повседневной жизни. И непонятно, как такие задачи соотносятся с использованием памяти в повседневной жизни.

Искусственность многих экспериментов заставила некоторых исследователей усомниться в том, можно ли обобщить их результаты в реальной жизни. В результате многие эксперименты с памятью подвергались критике за низкую экологическую ценность.

Как сослаться на эту статью:
Как сослаться на эту статью:

McLeod, S. A. (2013, 5 августа). Этапы памяти — кодирование, хранение и поиск . Просто психология. www.simplypsychology.org/memory.html

Ссылки на стили APA

Matlin, M. W. (2005). Познание . Крофордсвилль: John Wiley & Sons, Inc.

Миллер, Г. А. (1956). Магическое число семь, плюс-минус два: некоторые ограничения нашей способности обрабатывать информацию. Психологический обзор , 63 (2): 81–97.

Штернберг, Р. Дж. (1999). Когнитивная психология (2-е изд.) . Форт-Уэрт, Техас: Издательство колледжа Харкорт Брейс.

Как ссылаться на эту статью:
Как ссылаться на эту статью:

McLeod, S. A. (2013, 5 августа). Этапы памяти — кодирование, хранение и поиск . Просто психология. www.simplypsychology.org/memory.html

Память (кодирование, хранение, поиск) | Noba

В 2013 году Саймон Рейнхард сидел перед 60 людьми в комнате Вашингтонского университета, где он запоминал все более длинные серии цифр.В первом раунде компьютер генерировал 10 случайных цифр — 6 1 9 4 8 5 6 3 7 1 — на экране в течение 10 секунд. После того, как серия исчезла, Саймон ввел их в свой компьютер. Его воспоминания были прекрасными. На следующем этапе на экране на 20 секунд появилось 20 цифр. И снова Саймон все понял правильно. Никто из присутствующих (в основном профессора, аспиранты и студенты) не мог точно вспомнить 20 цифр. Затем последовали 30 цифр, изучаемые в течение 30 секунд; И снова Саймон не пропустил ни одной цифры.В последнем испытании на экране на 50 секунд появилось 50 цифр, и Саймон снова их понял. Фактически, Саймон был бы счастлив продолжить работу. Его рекорд в этой задаче, которая называется «прямой диапазон цифр», составляет 240 цифр!

В некотором смысле память похожа на файловые ящики, в которых вы храните мысленную информацию. Память также представляет собой серию процессов: как эта информация сначала сохраняется и как она извлекается при необходимости? [Изображение: M Cruz, https://goo.gl/DhOMgp, CC BY-SA 4.0, https: // goo.gl / SWjq94]

Когда большинство из нас становится свидетелем выступления Саймона Рейнхарда, мы думаем об одном из двух: во-первых, возможно, он каким-то образом жульничает. (Нет, это не так.) Во-вторых, Саймон должен обладать более развитыми способностями, чем остальное человечество. В конце концов, психологи установили много лет назад, что нормальный объем памяти для взрослых составляет около семи цифр, причем некоторые из нас могут вспомнить несколько больше, а другие несколько меньше (Miller, 1956). Вот почему первые телефонные номера были ограничены семью цифрами — психологи определили, что много ошибок происходило (стоило денег телефонной компании), когда номер увеличивался даже до 8 цифр.Но при нормальном тестировании никто не получает правильных 50 цифр подряд, не говоря уже о 240. Итак, у Саймона Рейнхарда просто фотографическая память? Он не. Вместо этого Саймон научил себя простым стратегиям запоминания, которые значительно увеличили его способность запоминать практически любой тип материала — цифры, слова, лица и имена, стихи, исторические даты и так далее. Двенадцатью годами ранее, до того, как он начал тренировать свои способности к памяти, у него, как и у большинства из нас, был размах цифр 7. На момент написания этой статьи Саймон тренировал свои способности около 10 лет и стал одним из двух лучших спортсменов по запоминанию.В 2012 году он занял второе место на чемпионате мира по запоминанию (состоящий из 11 заданий), проходившем в Лондоне. В настоящее время он занимает второе место в мире после другого немецкого конкурента Йоханнеса Маллоу. В этом модуле мы рассказываем, что психологи и другие специалисты узнали о памяти, а также объясняем общие принципы, с помощью которых вы можете улучшить свою память на основе фактического материала.

Чтобы стать хорошим шахматистом, вы должны научиться увеличивать рабочую память, чтобы вы могли заранее планировать несколько наступательных ходов, одновременно ожидая — посредством использования памяти — как другой игрок может противостоять каждому из ваших запланированных ходов.[Изображение: karpidis, https://goo.gl/EhzMKM, CC BY-SA 2.0, https://goo.gl/jSSrcO]

Для большинства из нас запоминание цифр зависит от кратковременной памяти , или рабочая память — способность удерживать информацию в уме на короткое время и работать с ней (например, умножение 24 x 17 без использования бумаги будет зависеть от рабочей памяти). Другой тип памяти — это эпизодическая память — способность запоминать эпизоды нашей жизни. Если бы вам дали задание вспомнить все, что вы делали 2 дня назад, это была бы проверка эпизодической памяти; от вас потребуется мысленно путешествовать по дню и отмечать основные события.Семантическая память — это хранилище более или менее постоянных знаний, таких как значения слов на языке (например, значение «зонтика») и огромная коллекция фактов о мире (например, в мире 196 стран. мир и 206 костей в вашем теле). Коллективная память относится к типу памяти, которую разделяют люди в группе (будь то семья, сообщество, одноклассники или граждане штата или страны). Например, жители небольших городов часто сильно отождествляют себя с этими городами, уникальным образом помня местные обычаи и исторические события.То есть коллективная память сообщества передает истории и воспоминания между соседями и будущими поколениями, образуя систему памяти для себя.

Психологи продолжают спорить о классификации типов памяти, а также о том, какие типы зависят от других (Tulving, 2007), но в этом модуле мы сосредоточимся на эпизодической памяти. Эпизодическая память — это обычно то, о чем люди думают, когда слышат слово «память». Например, когда люди говорят, что старшая родственница «теряет память» из-за болезни Альцгеймера, они имеют в виду неспособность вспомнить события или эпизодическую память.(Семантическая память фактически сохраняется при ранней стадии болезни Альцгеймера.) Хотя запоминание конкретных событий, которые произошли в течение всей жизни (например, вашего опыта в шестом классе), можно назвать автобиографической памятью, мы сосредоточимся в первую очередь на эпизодические воспоминания о более недавних событиях.

Психологи различают три необходимых этапа в процессе обучения и запоминания: кодирование, хранение и извлечение (Мелтон, 1963). Кодирование определяется как начальное изучение информации; хранение относится к сохранению информации во времени; поиск — это возможность получить доступ к информации, когда она вам нужна.Если вы впервые встречаетесь с кем-то на вечеринке, вам нужно закодировать ее имя (Лин Гофф), ассоциируя ее имя с ее лицом. Тогда вам нужно поддерживать информацию с течением времени. Если вы увидите ее неделю спустя, вам нужно узнать ее лицо и использовать его как подсказку, чтобы узнать ее имя. Любой успешный акт запоминания требует, чтобы все три стадии были нетронутыми. Однако также могут возникать ошибки двух типов. Забывание — это один из типов: вы видите человека, которого встретили на вечеринке, и не можете вспомнить ее имя.Другая ошибка — это неверное воспоминание (ложное воспоминание или ложное распознавание): вы видите кого-то, кто похож на Лин Гофф, и называете этого человека этим именем (ложное распознавание лица). Или вы можете увидеть настоящую Лин Гофф, узнать ее лицо, но затем назвать ее по имени другой женщины, которую вы встретили на вечеринке (неверное вспоминание ее имени).

Каждый раз, когда происходит забвение или неправильное воспоминание, мы можем спросить, на каком этапе процесса обучения / запоминания произошел сбой? — хотя часто бывает трудно ответить на этот вопрос с точностью.Одна из причин этой неточности заключается в том, что три этапа не так дискретны, как следует из нашего описания. Скорее, все три стадии зависят друг от друга. То, как мы кодируем информацию, определяет, как она будет храниться и какие сигналы будут эффективны, когда мы попытаемся ее получить. Кроме того, сам процесс поиска также изменяет способ последующего запоминания информации, обычно помогая позже вспомнить полученную информацию. На данный момент центральным моментом является то, что три этапа — кодирование, хранение и извлечение — влияют друг на друга и неразрывно связаны друг с другом.

Кодирование относится к начальному опыту восприятия и изучения информации. Психологи часто изучают воспоминания, предлагая участникам изучить список картинок или слов. Кодирование в таких ситуациях довольно просто. Однако «реальное» кодирование намного сложнее. Например, когда вы идете по кампусу, вы сталкиваетесь с бесчисленными видами и звуками — проходящими мимо друзьями, людьми, играющими во фрисби, музыкой в ​​воздухе. Физическая и ментальная среда слишком богата, чтобы вы могли кодировать все происходящее вокруг вас или внутренние мысли, которые у вас возникают в ответ на них.Итак, первый важный принцип кодирования состоит в том, что оно избирательно: мы уделяем внимание одним событиям в нашей среде и игнорируем другие. Второй момент, касающийся кодирования, заключается в том, что оно плодовито; мы всегда кодируем события нашей жизни — заботимся о мире, пытаемся понять его. Обычно это не представляет проблемы, поскольку наши дни наполнены рутинными событиями, поэтому нам не нужно обращать внимание на все. Но если что-то действительно кажется странным — во время ежедневной прогулки по кампусу вы видите жирафа, — мы уделяем пристальное внимание и пытаемся понять, почему мы видим то, что видим.

Жираф в зоопарке или его естественной среде обитания может регистрироваться как не что иное, как обычный, но поместить его в другое место — в центре кампуса или оживленного города — и уровень его самобытности резко возрастет. Самобытность — ключевой атрибут запоминания событий. [Изображение: Колин Дж. Бэбб, https://goo.gl/Cci2yl, CC BY-SA 2.0, https://goo.gl/jSSrcO]

Сразу после обычной прогулки по кампусу (одна без жирафа) , вы смогли бы достаточно хорошо запомнить события, если бы вас спросили.Можно было сказать, с кем вы столкнулись, какая песня играла по радио и так далее. Однако предположим, что кто-то попросил вас вспомнить ту же прогулку месяц спустя. У тебя не будет ни единого шанса. Скорее всего, вы сможете рассказать об основах типичной прогулки по университетскому городку, но не о точных деталях этой прогулки. Тем не менее, если бы вы увидели жирафа во время прогулки, это событие запомнилось бы вам надолго, возможно, на всю оставшуюся жизнь. Вы рассказываете об этом своим друзьям, а в более поздних случаях, когда вы видели жирафа, вы могли бы вспомнить тот день, когда вы видели его в университетском городке.Психологи давно определили, что различимость — то, что событие резко выделяется на фоне аналогичных событий — является ключом к запоминанию событий (Hunt, 2003).

Кроме того, когда яркие воспоминания окрашены сильным эмоциональным содержанием, они часто, кажется, оставляют на нас неизгладимый след. Публичные трагедии, такие как теракты, часто вызывают яркие воспоминания у тех, кто был их свидетелем. Но даже те из нас, кто непосредственно не участвовал в таких событиях, могут иметь о них яркие воспоминания, в том числе воспоминания о том, как впервые о них услышали.Например, многие люди могут вспомнить свое точное физическое местонахождение, когда они впервые узнали об убийстве или случайной смерти национального деятеля. Термин «флэш-память» был первоначально введен Брауном и Куликом (1977) для описания такого рода ярких воспоминаний об обнаружении важной новости. Название относится к тому, как некоторые воспоминания кажутся запечатленными в уме, как фотография со вспышкой; из-за самобытности и эмоциональности новостей кажется, что они навсегда запечатлеваются в сознании с исключительной ясностью по сравнению с другими воспоминаниями.

Найдите минутку и вспомните о своей жизни. Есть ли какие-то воспоминания, которые кажутся острее других? Воспоминание, в котором вы можете вспомнить необычные детали, такие как цвета обыденных вещей вокруг вас или точное положение окружающих предметов? Хотя люди очень доверяют воспоминаниям с лампами-вспышками, подобным этим, правда в том, что наша объективная точность с ними далека от совершенства (Talarico & Rubin, 2003). То есть, даже если люди могут очень доверять тому, что они вспоминают, их воспоминания не так точны (например,g., каковы были настоящие цвета; там, где действительно были размещены объекты), как они обычно представляют. Тем не менее, при прочих равных, характерные и эмоциональные события хорошо запоминаются.

Детали не идеально переходят из мира в сознание человека. Можно сказать, что мы пошли на вечеринку и помним это, но то, что мы помним, — это (в лучшем случае) то, что мы закодировали. Как отмечалось выше, процесс кодирования является избирательным, и в сложных ситуациях замечаются и кодируются относительно немногие из многих возможных деталей.Процесс кодирования всегда включает в себя перекодирование, то есть извлечение информации из формы, которую она нам доставляет, а затем ее преобразование таким образом, чтобы мы могли понять ее смысл. Например, вы можете попытаться запомнить цвета радуги, используя аббревиатуру ROY G BIV (красный, оранжевый, желтый, зеленый, синий, индиго, фиолетовый). Процесс перекодировки цветов в имя может помочь нам запомнить. Однако перекодирование также может привести к ошибкам — когда мы случайно добавляем информацию во время кодирования, помните, что новый материал , как если бы он был частью реального опыта (как обсуждается ниже).

Хотя это требует больше усилий, использование изображений и ассоциаций может улучшить процесс перекодирования. [Изображение: psd, https://goo.gl/9xjcDe, CC BY 2.0, https://goo.gl/9uSnqN]

Психологи изучили множество стратегий перекодирования, которые можно использовать во время исследования для улучшения удержания. Во-первых, исследования советуют в процессе изучения думать о значении событий (Craik & Lockhart, 1972) и пытаться соотнести новые события с уже известной нам информацией. Это помогает нам формировать ассоциации, которые мы можем использовать для получения информации позже.Во-вторых, воображение событий также делает их более запоминающимися; создание ярких изображений из информации (даже словесной) может значительно улучшить последующее запоминание (Bower & Reitman, 1972). Создание изображений — это часть техники, которую Саймон Рейнхард использует для запоминания огромного количества цифр, но все мы можем использовать изображения для более эффективного кодирования информации. Основная концепция хороших стратегий кодирования заключается в формировании отличительных воспоминаний (выделяющихся) и в формировании связей или ассоциаций между воспоминаниями, чтобы помочь в последующем извлечении (Hunt & McDaniel, 1993).Использовать учебные стратегии, подобные описанным здесь, сложно, но эти усилия окупают преимущества улучшенного обучения и удержания.

Ранее мы подчеркивали, что кодирование является избирательным: люди не могут кодировать всю информацию, которой они подвергаются. Однако перекодирование может добавить информацию, которую даже не видели и не слышали на начальном этапе кодирования. Некоторые процессы перекодирования, такие как формирование ассоциаций между воспоминаниями, могут происходить без нашего ведома. Это одна из причин, по которой люди иногда могут вспомнить события, которых на самом деле не было, — потому что в процессе перекодирования добавлялись детали.Один из распространенных способов вызвать ложные воспоминания в лаборатории — это составить список слов (Deese, 1959; Roediger & McDermott, 1995). Участники слышат списки из 15 слов, например, дверь, стекло, стекло, штора, выступ, подоконник, дом, открытый, занавес, рама, вид, ветер, створка, экран, и ставня. Позже участникам предлагают тест, в котором им показывают список слов и просят выбрать те, которые они слышали ранее. Этот второй список содержит несколько слов из первого списка (например,g., дверь, стекло, рама ) и некоторые слова не из списка (например, рука, телефон, бутылка ). В этом примере одно из слов в тесте — это окно , которое, что важно, не появляется в первом списке, но связано с другими словами в этом списке. Когда испытуемые были протестированы, они были достаточно точны в изучаемых словах (, и т. Д.), Узнавая их в 72% случаев. Однако, когда window было на тесте, они ошибочно определили, что оно было в списке 84% времени (Stadler, Roediger, & McDermott, 1999).То же самое произошло и со многими другими списками, которые использовали авторы. Это явление называется эффектом DRM (от Диза-Рёдигера-Макдермотта). Одно из объяснений таких результатов состоит в том, что, пока студенты слушали элементы в списке, эти слова заставляли учащихся думать об окне , хотя окно никогда не было представлено. Таким образом кажется, что люди кодируют события, которые на самом деле не являются частью их опыта.

Поскольку люди творческие люди, мы всегда выходим за рамки той информации, которую нам дают: мы автоматически создаем ассоциации и делаем из них выводы о том, что происходит.Но, как и в случае с путаницей слов, описанной выше, иногда мы создаем ложные воспоминания из наших умозаключений, запоминая сами умозаключения, как если бы они были реальным опытом. Чтобы проиллюстрировать это, Брюэр (1977) дал людям запомнить предложения, которые были разработаны для получения прагматических выводов . Выводы, как правило, относятся к случаям, когда что-то явно не указано, но мы все еще можем угадать нераскрытое намерение. Например, если ваша подруга сказала вам, что не хочет идти куда-нибудь поесть, вы можете сделать вывод, что у нее нет денег, чтобы пойти куда-нибудь, или что она слишком устала.Из прагматических выводов обычно есть один конкретный вывод , который вы, вероятно, сделаете. Рассмотрим высказывание Брюэр (1977), сделанное ее участникам: «Чемпион по карате ударил по шлакоблоку». Услышав или увидев это предложение, участники, прошедшие тест на запоминание, как правило, вспоминали высказывание как следующее: «Чемпион по карате сломал шлакобетон». Это запомненное утверждение не обязательно является логическим выводом (т.е. вполне разумно, что чемпион по карате мог ударить шлакоблок, не сломав его).Тем не менее, прагматичный вывод из , услышав такое предложение, состоит в том, что блок, вероятно, был сломан. Участники запомнили этот вывод, который они сделали, когда слышали предложение вместо слов, которые были в предложении (см. Также McDermott & Chan, 2006).

Кодирование — начальная регистрация информации — имеет важное значение в процессе обучения и запоминания. Если событие не закодировано каким-либо образом, оно не будет успешно запомнено позже. Однако только потому, что событие закодировано (даже если оно хорошо закодировано), нет гарантии, что оно будет запомнено позже.

Следы памяти или инграммы НЕ являются идеально сохранившимися записями прошлых переживаний. Следы объединяются с текущими знаниями, чтобы восстановить то, что, как мы думаем, произошло в прошлом. [Саймон Бирдвальд, https://goo.gl/JDhdCE, CC BY-NC-SA 2.0, https://goo.gl/jSSrcO]

Каждый опыт меняет наш мозг. Поначалу это может показаться смелым и даже странным, но это правда. Мы кодируем каждый из наших переживаний в структурах нервной системы, делая в процессе новые впечатления — и каждое из этих впечатлений включает изменения в мозге.Психологи (и нейробиологи) говорят, что переживания оставляют следы памяти или инграммы (эти два термина являются синонимами). Воспоминания должны храниться где-то в мозгу, поэтому для этого мозг биохимически изменяет себя и свою нервную ткань. Точно так же, как вы можете написать себе записку, чтобы напомнить вам о чем-то, мозг «записывает» след в памяти, изменяя для этого свой собственный физический состав. Основная идея состоит в том, что события (события в нашей среде) создают инграммы в процессе консолидации: нейронные изменения, которые происходят после обучения, чтобы создать след в памяти опыта.Хотя нейробиологов интересует, какие именно нейронные процессы изменяются при создании воспоминаний, для психологов термин след памяти просто относится к физическим изменениям в нервной системе (какими бы они ни были), которые представляют наш опыт.

Хотя концепция инграммы или следа памяти чрезвычайно полезна, мы не должны понимать этот термин слишком буквально. Важно понимать, что следы памяти — это не идеальные маленькие пакеты информации, которые бездействуют в мозгу, ожидая, когда их вызовут, чтобы дать точный отчет о прошлом опыте.Следы памяти не похожи на видео или аудиозаписи, они фиксируют впечатления с большой точностью; как обсуждалось ранее, у нас часто бывают ошибки в нашей памяти, которых не существовало бы, если бы следы памяти были идеальными пакетами информации. Таким образом, неправильно думать, что запоминание подразумевает простое «зачитывание» достоверных записей прошлого опыта. Скорее, когда мы вспоминаем прошлые события, мы реконструируем их с помощью наших следов в памяти — но также и с нашей нынешней верой в то, что произошло. Например, если вы пытались вызвать в полицию драку в баре, у вас может не остаться в памяти следов, кто кого первым толкнул.Однако, допустим, вы помните, что один из парней придержал для вас дверь. Если вспомнить начало боя, это знание (как один парень был дружелюбен к вам) может бессознательно повлиять на ваше воспоминание о том, что произошло, в пользу хорошего парня. Таким образом, память — это конструкция из того, что вы на самом деле вспоминаете и что, по вашему мнению, произошло. Проще говоря, воспоминание является реконструктивным (мы реконструируем наше прошлое с помощью следов памяти), а не репродуктивным (совершенное воспроизведение или воссоздание прошлого).

Психологи называют время между обучением и тестированием интервалом удержания. Воспоминания могут консолидироваться в течение этого времени, помогая удерживать их. Однако также могут возникать переживания, подрывающие память. Например, подумайте, что вы ели вчера на обед — довольно простая задача. Однако, если вам пришлось вспомнить, что вы ели на обед 17 дней назад, вы вполне можете потерпеть неудачу (при условии, что вы не едите одно и то же каждый день). 16 обедов, которые вы съели с тех пор, вызвали обратное вмешательство.Обратное вмешательство относится к новым действиям (т. Е. Последующим обедам) в течение интервала сохранения (т. Е. Времени между обедом 17 дней назад и сейчас), которые мешают восстановлению конкретных, более старых воспоминаний (т. Е. Подробностей обеда из 17 дней назад). ). Но точно так же, как новые вещи могут мешать запоминанию старых, может произойти и обратное. Проактивное вмешательство — это когда прошлые воспоминания мешают кодированию новых. Например, если вы когда-либо изучали второй язык, часто грамматика и словарный запас вашего родного языка возникают у вас в голове, что ухудшает ваше свободное владение иностранным языком.

Обратное вмешательство — одна из основных причин забывания (McGeoch, 1932). В модуле Свидетельства очевидцев и предубеждения в памяти http://noba.to/uy49tm37 Элизабет Лофтус описывает свою увлекательную работу по изучению памяти очевидцев, в которой она показывает, как память о событии может быть изменена с помощью дезинформации, предоставленной во время интервала сохранения. Например, если вы стали свидетелем автомобильной аварии, но впоследствии услышали, как люди описывают ее со своей точки зрения, эта новая информация может помешать или нарушить ваши личные воспоминания об аварии.Фактически, вы даже можете вспомнить, что событие происходило именно так, как его описывали другие! Этот эффект дезинформации в памяти очевидцев представляет собой тип ретроактивного вмешательства, которое может происходить в течение интервала сохранения (см. Обзор в Loftus [2005]). Конечно, если в течение интервала сохранения предоставляется правильная информация, память свидетеля обычно улучшается.

Хотя может возникнуть интерференция между возникновением события и попыткой его вспомнить, сам эффект всегда проявляется, когда мы извлекаем воспоминания — тему, к которой мы обратимся дальше.

Эндел Тулвинг утверждал, что «ключевой процесс в памяти — это поиск» (1991, p. 91). Почему поиску следует уделять больше внимания, чем кодированию или хранению? Во-первых, если бы информация была закодирована и сохранена, но не могла быть получена, она была бы бесполезной. Как обсуждалось ранее в этом модуле, мы кодируем и сохраняем тысячи событий — разговоров, образов и звуков — каждый день, создавая следы в памяти. Однако позже мы получаем доступ только к крошечной части того, что мы приняли. Большая часть наших воспоминаний никогда не будет использована — в том смысле, что они будут возвращены в сознание.Этот факт кажется настолько очевидным, что мы редко задумываемся над ним. Все те события, которые произошли с вами в четвертом классе, которые тогда казались такими важными? Теперь, много лет спустя, вам будет сложно вспомнить даже несколько. Вы можете задаться вопросом, существуют ли все еще следы этих воспоминаний в какой-то скрытой форме. К сожалению, с помощью доступных в настоящее время методов узнать это невозможно.

Психологи различают информацию, которая доступна в памяти, от информации, доступной (Tulving & Pearlstone, 1966). Доступная информация — это информация, которая хранится в памяти, но точно неизвестно, сколько и какие типы хранятся. То есть все, что мы можем знать, это то, какую информацию мы можем извлечь — доступных данных. Предполагается, что доступная информация представляет собой лишь крошечный фрагмент информации, доступной в нашем мозгу. У большинства из нас был опыт попытки вспомнить какой-то факт или событие, сдаваться, а затем — внезапно! — это приходит к нам позже, даже после того, как мы перестали пытаться его вспомнить.Точно так же все мы знаем опыт неспособности вспомнить факт, но тогда, если нам дается несколько вариантов выбора (как в тесте с множественным выбором), мы легко можем его распознать.

Мы не можем знать все, что находится в нашей памяти, а знать только ту часть, которую мы действительно можем извлечь. То, что сейчас невозможно восстановить и что, казалось бы, утеряно из памяти, может снова появиться с применением различных сигналов. [Изображение: Ores2k, https://goo.gl/1du8Qe, CC BY-NC-SA 2.0, https://goo.gl/jSSrcO]

Какие факторы определяют, какую информацию можно извлечь из памяти? Одним из критических факторов является тип подсказок, или подсказок, , в окружающей среде.Вы можете услышать по радио песню, которая внезапно пробуждает воспоминания о более раннем периоде вашей жизни, даже если вы не пытались вспомнить ее, когда эта песня началась. Тем не менее, песня тесно связана с тем временем, поэтому она напоминает о переживаниях.

Общий принцип, лежащий в основе эффективности поисковых сигналов, — это принцип специфичности кодирования (Tulving & Thomson, 1973): когда люди кодируют информацию, они делают это определенным образом. Например, возьмем песню по радио: возможно, вы слышали ее, когда были на потрясающей вечеринке, во время отличного философского разговора с другом.Таким образом, песня стала частью этого сложного опыта. Спустя годы, даже если вы не думали об этой вечеринке целую вечность, когда вы слышите песню по радио, все переживания возвращаются к вам. В общем, принцип специфичности кодирования гласит, что в той степени, в которой поисковый сигнал (песня) совпадает или перекрывает след в памяти опыта (вечеринки, беседы), он будет эффективен в пробуждении воспоминания. В классическом эксперименте по принципу специфичности кодирования участники запоминали набор слов в уникальной обстановке.Позже участников проверяли на наборах слов либо в том же месте, где они выучили слова, либо в другом. В результате специфичности кодирования студенты, которые проходили тест в том же месте, где они выучили слова, на самом деле смогли вспомнить больше слов (Godden & Baddeley, 1975), чем студенты, которые проходили тест в новых условиях.

Одно предостережение в отношении этого принципа состоит в том, что для того, чтобы сигнал сработал, он не может совпадать со слишком многими другими переживаниями (Nairne, 2002; Watkins, 1975).Рассмотрим лабораторный эксперимент. Предположим, вы изучаете 100 предметов; 99 слов, а одно изображение — пингвина, позиция 50 в списке. После этого реплика «вспомнить картинку» будет идеально вызывать «пингвина». Никто бы этого не пропустил. Однако, если бы слово «пингвин» было помещено в то же место среди других 99 слов, его запоминаемость была бы исключительно хуже. Этот результат демонстрирует силу различения, которую мы обсуждали в разделе о кодировании: одно изображение прекрасно запоминается из 99 слов, потому что оно выделяется.Теперь подумайте, что бы произошло, если бы эксперимент повторился, но в списке из 100 пунктов было бы распределено 25 изображений. Хотя изображение пингвина все еще будет там, вероятность того, что сигнал «вспомнить картинку» (пункт 50) будет полезна для пингвина, соответственно снизится. Уоткинс (1975) назвал этот результат демонстрацией принципа перегрузки реплики. То есть, чтобы быть эффективным, поисковый сигнал не может быть перегружен слишком большим количеством воспоминаний. Чтобы подсказка «вспомнить картинку» была эффективной, она должна соответствовать только одному элементу в целевом наборе (как в случае с одним изображением, из 99 слов).

Подводя итог тому, как работают реплики памяти: для того, чтобы поисковая реплика была эффективной, должно существовать соответствие между репликой и желаемой целевой памятью; кроме того, для обеспечения наилучшего поиска отношения метка-цель должны быть четкими. Далее мы увидим, как принцип специфичности кодирования может работать на практике.

Психологи измеряют производительность памяти с помощью производственных тестов (включающих вспоминание) или тестов распознавания (включающих выбор верной информации из неверной, например.g., тест с множественным выбором). Например, с нашим списком из 100 слов одну группу людей можно попросить вспомнить список в любом порядке (бесплатный тест на запоминание), в то время как другую группу можно попросить обвести 100 изученных слов из смеси с другой. 100, неизученные слова (тест распознавания). В этой ситуации тест на распознавание, вероятно, даст участникам больше результатов, чем тест на запоминание.

Обычно мы думаем, что тесты распознавания довольно просты, потому что сигнал для поиска — это копия реального события, которое было представлено для изучения.В конце концов, что может быть лучшим сигналом, чем точная цель (память), к которой человек пытается получить доступ? В большинстве случаев это рассуждение верно; тем не менее, тесты распознавания не дают точных указателей того, что хранится в памяти. То есть вы можете не распознать цель, смотрящую вам прямо в лицо, но в то же время сможете вспомнить ее позже с другим набором сигналов (Watkins & Tulving, 1975). Например, предположим, что вам нужно было узнать фамилии известных авторов. Сначала вы могли подумать, что настоящая фамилия всегда будет лучшим сигналом.Однако исследования показали, что это не обязательно так (Muter, 1984). Когда им дают такие имена, как Толстой, Шоу, Шекспир и Ли, испытуемые вполне могут сказать, что Толстой и Шекспир — известные авторы, а Шоу и Ли — нет. Но, когда люди проходят тест на запоминание с использованием имен, люди часто вспоминают (производят их) предметы, которые они не могли распознать раньше. Например, в этом случае реплика типа George Bernard ________ часто приводит к воспоминанию о «Шоу», хотя люди изначально не могли распознать Shaw как имя известного автора.Тем не менее, когда люди получают реплику «Уильям», люди могут не придумать Шекспира, потому что Уильям — это распространенное имя, которое подходит многим людям (принцип перегрузки репликами в действии). Этот странный факт — напоминание может иногда приводить к более высокой производительности, чем распознавание — можно объяснить принципом специфичности кодирования. Например, Джордж Бернард _________ лучше соответствует способу сохранения в памяти известного писателя, чем его фамилия Шоу (хотя это и является целью). Кроме того, матч довольно характерен для Джордж Бернар ___________, но реплика William _________________ намного более перегружена (принц Уильям, Уильям Йейтс, Уильям Фолкнер, будут.я).

Явление, которое мы описали, называется неудачей распознавания запоминаемых слов , что подчеркивает тот момент, что реплика будет наиболее эффективной в зависимости от того, как была закодирована информация (Tulving & Thomson, 1973). Дело в том, что сигналы, которые лучше всего работают, чтобы вызвать поиск, — это те, которые воссоздают событие или имя, которое нужно запомнить, тогда как иногда даже сама цель, такая как Shaw в приведенном выше примере, не является лучшим сигналом. Какой сигнал будет наиболее эффективным, зависит от того, как была закодирована информация.

Каждый раз, когда мы думаем о своем прошлом, мы участвуем в поиске. Обычно мы думаем, что извлечение информации — это объективный акт, потому что мы склонны представлять себе, что извлечение воспоминаний похоже на снятие книги с полки, и после того, как мы закончили с ней, мы возвращаем книгу на полку в том виде, в котором она была. Однако исследования показывают, что это предположение неверно; память не является статическим хранилищем данных, она постоянно меняется. Фактически, каждый раз, когда мы извлекаем память, она изменяется. Например, сам процесс извлечения (факта, концепции или события) увеличивает вероятность повторного извлечения извлеченной памяти, явление, называемое эффектом тестирования или эффектом практики извлечения (Pyc & Rawson, 2009; Родигер и Карпике, 2006).Однако получение некоторой информации может фактически заставить нас забыть другую информацию, относящуюся к ней, — явление, называемое забыванием, вызванным поиском, (Anderson, Bjork, & Bjork, 1994). Таким образом, извлечение информации может быть палкой о двух концах — укреплять только что извлеченную память (обычно в большом количестве), но при этом наносить ущерб связанной информации (хотя этот эффект часто относительно невелик).

Как обсуждалось ранее, восстановление далеких воспоминаний является реконструктивным. Мы вплетаем конкретные фрагменты событий с предположениями и предпочтениями, чтобы сформировать связную историю (Bartlett, 1932).Например, если во время вашего 10-летия ваша собака добралась до вашего торта раньше вас, вы, вероятно, будете рассказывать эту историю в течение многих лет после этого. Итак, скажем, в более поздние годы вы неправильно помните, где собака на самом деле нашла торт, но повторяете эту ошибку снова и снова во время последующих пересказов истории. Со временем эта неточность станет основным фактом происходящего в вашей голове. Подобно тому, как практика поиска (повторение) усиливает точные воспоминания, она также усиливает ошибки или ложные воспоминания (McDermott, 2006).Иногда воспоминания можно даже создать, просто услышав яркую историю. Рассмотрим следующий эпизод, рассказанный Жаном Пиаже, известным психологом в области развития, из своего детства:

Одно из моих первых воспоминаний датируется, если это правда, моим вторым годом. Я все еще могу отчетливо разглядеть следующую сцену, в которую я верил, пока мне не исполнилось 15 лет. Я сидел в своей детской коляске. . . когда мужчина пытался меня похитить. Меня держали за ремешок, застегнутый вокруг меня, пока моя няня отважно пыталась встать между мной и вором.Она получила различные царапины, и я все еще смутно вижу их на ее лице. . . . Когда мне было около 15 лет, мои родители получили письмо от моей бывшей медсестры, в которой говорилось, что она была обращена в Армию спасения. Она хотела признаться в своих прошлых ошибках и, в частности, вернуть часы, которые ей подарили в качестве награды по этому поводу. Она выдумала всю историю, подделав царапины. Поэтому я, должно быть, в детстве слышал эту историю, в которую верили мои родители, и спроецировал ее в прошлое в форме визуального воспоминания.. . . Несомненно, многие настоящие воспоминания принадлежат к тому же порядку. (Norman & Schacter, 1997, стр. 187–188)

Яркий отчет Пиаже представляет собой случай чистой реконструктивной памяти. Он слышал эту сказку неоднократно и, несомненно, сам рассказывал ее (и думал над ней). Повторяющееся повествование закрепило события так, как если бы они действительно произошли, точно так же, как мы все открыты для возможности иметь «много настоящих воспоминаний … одного порядка». Тот факт, что можно вспомнить точные детали (местоположение, царапины), не обязательно означает, что воспоминание верное, что также было подтверждено в лабораторных исследованиях (например,г., Norman & Schacter, 1997).

Центральной темой этого модуля была важность процессов кодирования и извлечения, а также их взаимодействия. Напомним: чтобы улучшить обучение и память, нам нужно кодировать информацию в сочетании с отличными сигналами, которые будут возвращать запомненные события, когда они нам нужны. Но как нам это сделать? Помните о двух важных принципах, которые мы обсудили: для максимального извлечения информации мы должны сконструировать значимых сигналов , которые напоминают нам об исходном опыте, и эти сигналы должны быть отличительными и , не связанными с другими воспоминаниями .Эти два условия имеют решающее значение для максимизации эффективности сигнала (Nairne, 2002).

Итак, как эти принципы можно адаптировать для использования во многих ситуациях? Давайте вернемся к тому, как мы начали модуль, с умением Саймона Рейнхарда запоминать огромное количество цифр. Хотя это и не было очевидным, он применил те же общие принципы памяти, но более осознанно. Фактически, все мнемонические устройства или вспомогательные средства / уловки полагаются на эти фундаментальные принципы. В типичном случае человек изучает набор сигналов, а затем применяет эти сигналы для изучения и запоминания информации.Рассмотрим набор из 20 пунктов ниже, которые легко выучить и запомнить (Bower & Reitman, 1972).

  1. — ружье. 11 — это булочка для хот-догов за пенни.
  2. — это башмак. 12 — пенни-два, самолетный клей.
  3. — дерево. 13 — пенни три, шмель.
  4. — это дверь. 14 март, продуктовый магазин.
  5. — это ножи. 15 — пять пенни, большой улей.
  6. — это палочки. 16 — шесть пенни, фокусы.
  7. — духовка. 17 — семь пенни, иди в рай.
  8. пластина. 18 — восемь пенни, золотые ворота.
  9. — вино. 19 — пенни-девять, клубок шпагата.
  10. курица. 20 пенни десять, шариковая ручка.

Возможно, вам понадобится менее 10 минут, чтобы выучить этот список и попрактиковаться в его повторении несколько раз (не забудьте использовать практику поиска!). Если бы вы сделали это, у вас был бы набор ключевых слов, на которые вы могли бы «повесить» воспоминания. Фактически, этот мнемонический прием называется техникой слов .Если затем вам нужно было запомнить какие-то отдельные элементы — например, список покупок или моменты, которые вы хотели высказать в своей речи, — этот метод позволит вам сделать это очень точным, но гибким способом. Предположим, вам нужно вспомнить хлеб, арахисовое масло, бананы, салат и так далее. Способ использования метода — сформировать яркое изображение того, что вы хотите запомнить, и представить, как это взаимодействует с вашими ключевыми словами (столько, сколько вам нужно). Например, для этих предметов вы можете представить себе, как большой пистолет (первое слово-колышек) стреляет в буханку хлеба, затем банку с арахисовым маслом внутри обуви, затем большие связки бананов, свисающие с дерева, а затем хлопнувшую дверь. кочан салата с развевающимися повсюду листьями.Идея состоит в том, чтобы дать хорошие, отличительные подсказки (чем страннее, тем лучше!) Для информации, которую вам нужно запомнить, пока вы ее изучаете. Если вы сделаете это, то позже восстановить его будет относительно легко. Вы прекрасно знаете свои реплики (одна из них — пистолет и т. Д.), Поэтому вы просто просматриваете свой список ключевых слов и мысленно «смотрите» на сохраненное в нем изображение (в данном случае хлеб).

Пример пневмонической системы, созданной студентом для изучения черепных нервов. [Изображение: Kelidimari, https://goo.gl/kiA1kP, CC BY-SA 3.0, https://goo.gl/SCkRfm]

Этот метод привязки слов может сначала показаться странным, но он работает довольно хорошо, даже после небольшого обучения (Roediger, 1980). Однако одно предупреждение заключается в том, что элементы, которые нужно запомнить, нужно сначала представлять относительно медленно, пока вы не научитесь связывать каждый с его ключевым словом. Со временем люди становятся быстрее. Еще один интересный аспект этой техники заключается в том, что вызывать элементы в обратном порядке так же легко, как и вперед. Это связано с тем, что ключевые слова обеспечивают прямой доступ к запомненным элементам независимо от порядка.

Как Саймон Рейнхард запомнил эти цифры? По сути, у него гораздо более сложная система, основанная на тех же принципах. В своем случае он использует «дворцы памяти» (сложные сцены с отдельными местами) в сочетании с огромными наборами изображений для цифр. Например, представьте, что вы мысленно идете по дому, в котором вы выросли, и определяете как можно больше отдельных областей и объектов. У Саймона есть сотни таких дворцов памяти, которые он использует. Затем, чтобы запомнить цифры, он запомнил набор из 10 000 образов.Каждое четырехзначное число немедленно вызывает у него мысленный образ. Так, например, 6187 может вспомнить Майкла Джексона. Когда Саймон слышит все числа, идущие к нему, он помещает изображение для каждых четырех цифр в места своего дворца памяти. Он может делать это с невероятно высокой скоростью, быстрее, чем 4 цифры за 4 секунды, когда они мигают визуально, как в демонстрации в начале модуля. Как уже отмечалось, его запись составляет 240 цифр, вызываемых в точном порядке. Саймон также является мировым рекордсменом в мероприятии под названием «Скоростные карты», которое включает в себя запоминание точного порядка перетасованной колоды карт.Саймон смог сделать это за 21,19 секунды! Опять же, он использует свои дворцы памяти и кодирует группы карт как отдельные изображения.

Существует множество книг о том, как улучшить память с помощью мнемонических устройств, но все они включают формирование отличительных операций кодирования, а затем наличие надежного набора подсказок памяти. Мы должны добавить, что разработка и использование этих систем памяти, выходящих за рамки базовой системы привязки, описанной выше, требует большого количества времени и концентрации. Чемпионаты мира по запоминанию проводятся каждый год, и показатели продолжают улучшаться.Однако для наиболее распространенных целей просто имейте в виду, что для хорошего запоминания вам необходимо кодировать информацию особым образом и иметь хорошие подсказки для поиска. Вы можете адаптировать систему, которая будет соответствовать практически любой цели.

Обработка информации: кодирование, хранение и извлечение — видео и стенограмма урока

Хранение

После того, как информация закодирована, ее можно сохранить. Пока вы все еще используете его, информация хранится в оперативной памяти вашего компьютера, которая используется только для кратковременного хранения.Это похоже на кратковременную память вашего мозга. Когда вы сохраняете файл, это все равно, что помещать информацию в долговременную память, которая похожа на жесткий диск мозга. Информация, хранящаяся в оперативной памяти, не будет там после перезагрузки компьютера. Но жесткий диск подобен вашей долговременной памяти, и информация там постоянно.

Кратковременная память хранит небольшие объемы информации в течение очень короткого времени, иногда менее минуты. Между тем, ваша долговременная память может хранить большие объемы информации в течение гораздо больших периодов времени, даже в течение всей жизни.Информация должна пройти через кратковременную память, чтобы войти в долговременную память.

Вы сохраняете информацию в хранилище, чтобы потом ее можно было восстановить.

Получение

Вы сохранили информацию, чтобы вы могли восстановить ее позже. Вспомните тот образ парка. Вы можете поискать файл «Картина Сёра» на жестком диске вашего компьютера. Как вы вспомнили эту информацию, хранящуюся в вашем мозгу?

Легче запоминать информацию, когда вы находитесь в том же настроении, что и во время ее изучения.Также помогает пребывание в похожей среде. Но для улучшения вашей памяти ничто не сравнится с ассоциациями.

Вы можете извлечь детали из своей памяти, связав их с тем парком на берегу реки, в который вы хотите пойти. Или, может быть, вы помните, как люди, стоявшие на солнышке, были раскрашены в теплые цвета, а те, что в тени, — в более холодные синие и пурпурные. В любом случае, какие бы ассоциации вы ни использовали для организации и хранения информации, используйте те же самые, чтобы работать в обратном направлении и извлекать ее.

Процессы памяти

Вы рассмотрели, как обрабатывается информация. Обычно обработка происходит через: кодирование , хранилище и извлечение . Кодирование преобразует информацию в формат, который может хранить ваш мозг. Информация может храниться в вашей краткосрочной или долгосрочной памяти. Наконец, извлечение — это ваша способность вспомнить информацию, которую вы сохранили. Не забудьте сохранить эту информацию в своей долговременной памяти, чтобы вы могли восстановить ее при прохождении теста!

Практика:

Обработка информации: тест по кодированию, хранению и извлечению

Инструкции: Выберите ответ и нажмите «Далее».В конце вы получите свой счет и ответы.

Как НАИЛУЧШИЙ способ извлекать информацию из вашего мозга?

Создайте учетную запись, чтобы пройти этот тест

Как участник, вы также получите неограниченный доступ к более чем 84 000 уроков математики, Английский язык, наука, история и многое другое. Кроме того, получайте практические тесты, викторины и индивидуальные тренировки, которые помогут вам добиться успеха.

Попробуй это сейчас

Настройка займет всего несколько минут, и вы можете отменить ее в любой момент.

Уже зарегистрированы? Авторизуйтесь здесь для доступа

Долговременная визуальная память имеет огромную емкость для хранения деталей объекта

Abstract

Один из главных уроков исследования памяти состоит в том, что человеческая память подвержена ошибкам, неточна и подвержена помехам.Таким образом, хотя наблюдатели могут помнить тысячи изображений, широко распространено мнение, что в этих воспоминаниях отсутствуют детали. Вопреки этому предположению, здесь мы показываем, что долговременная память способна хранить огромное количество объектов с деталями из изображения. Участники просмотрели фотографии 2500 объектов в течение 5,5 часов. После этого им показали пары изображений и указали, какое из двух они видели. Ранее просмотренный элемент может быть связан либо с объектом из новой категории, либо с объектом из той же категории базового уровня, либо с тем же объектом в другом состоянии или позе.Производительность в каждом из этих условий была чрезвычайно высокой (92%, 88% и 87% соответственно), что свидетельствует о том, что участники успешно поддерживали детальные представления тысяч изображений. Эти результаты имеют значение для когнитивных моделей, в которых ограничения емкости накладывают основное вычислительное ограничение (например, модели распознавания объектов) и создают проблему для нейронных моделей хранения и извлечения памяти, которые должны быть в состоянии учитывать такие большие и подробный объем памяти.

У всех нас был опыт просмотра трейлера к фильму, и у нас возникало непреодолимое чувство, что мы можем увидеть гораздо больше, чем могли бы сообщить позже. Этот субъективный опыт согласуется с исследованиями человеческой памяти, которые предполагают, что по мере передачи информации от сенсорной памяти к кратковременной и долговременной памяти количество сохраняемых перцептивных деталей уменьшается. Например, в течение нескольких сотен миллисекунд после восприятия изображения сенсорная память дает поистине фотографический опыт, позволяя сообщить о любых деталях изображения (1).Через несколько секунд кратковременная память позволяет сообщать только разреженные детали изображения (2). Через несколько дней вы сможете сообщить только суть увиденного (3).

В то время как обычно считается, что долговременной памяти недостает деталей, хорошо известно, что долговременная память может хранить огромное количество элементов. Знаменательные исследования 1970-х годов показали, что после просмотра 10000 сцен в течение нескольких секунд каждая, люди могли определить, какое из двух изображений было просмотрено с точностью 83% (4).Такой уровень производительности указывает на наличие большой емкости для хранения изображений.

Однако запоминание сути изображения (например, «Я видел фотографию свадьбы, а не пляжа») требует хранения гораздо меньшего количества информации, чем запоминание сути и конкретных деталей (например, «Я видел ту конкретную свадебную фотографию. »). Таким образом, чтобы правильно оценить информационную емкость долговременной памяти, необходимо определить как количество элементов, которые можно запомнить, так и точность (количество деталей), с которой каждый элемент запоминается.Этот момент подчеркивает важное ограничение крупномасштабных исследований памяти (4–6): уровень детализации, необходимый для успешного прохождения тестов памяти, систематически не исследовался. В этих исследованиях стимулы представляли собой изображения, взятые из журналов, где предметы из фольги, используемые в двухальтернативных тестах с принудительным выбором, были случайными изображениями, взятыми из того же набора (4). Таким образом, предметы из фольги обычно сильно отличались от исследуемых изображений, что не позволяло сделать вывод о том, состояли ли воспоминания для каждого предмета в этих предыдущих экспериментах только из «сущности» или категории изображения, или же они содержали конкретные детали об изображении. картинки.Поэтому остается неясным, какой именно объем визуальной информации может храниться в долговременной памяти человека.

Есть основания полагать, что воспоминания для каждого элемента в этих крупномасштабных экспериментах могли состоять только из сущности или категории изображения. Например, хорошо известное исследование показало, что наблюдатели-люди часто не замечают значительных изменений в визуальных сценах; например, если их собеседник переключается на другого человека или если большие фоновые объекты внезапно исчезают (7, 8).Эти исследования «слепоты к изменениям» показывают, что количество информации, которую мы запоминаем по каждому пункту, может быть довольно низким (8). Кроме того, было элегантно продемонстрировано, что детали зрительных воспоминаний могут быть легко нарушены предложением экспериментатора, что вызывает серьезную озабоченность в отношении показаний очевидцев, а также является еще одним признаком того, что зрительные воспоминания могут быть очень редкими (9). Взятые вместе, эти результаты привели многих к выводу, что репрезентации, используемые для запоминания тысяч изображений из экспериментов Шепарда (5) и Стэндинга (4), на самом деле были довольно редкими, с небольшими или отсутствующими подробностями об изображениях, за исключением их категории базового уровня (8, 10–12).

Однако недавняя работа также показала, что визуальные представления долговременной памяти могут быть более подробными, чем считалось ранее. Долговременная память для объектов в сценах может содержать больше информации, чем только суть объекта (13–16). Например, Холлингворт (13) показал, что, когда требуется память для сотни или более объектов, у наблюдателей остается значительно больше шансов запомнить, какой образец объекта они видели (например, «вы видели эту дрель или тот?» ) даже после просмотра до 400 объектов между изучением объекта и тестированием на нем.Этот результат предполагает, что память способна хранить довольно подробные визуальные представления объектов в течение длительных периодов времени (например, дольше, чем рабочая память).

Настоящее исследование было разработано для оценки информационной емкости зрительной долговременной памяти путем одновременного воздействия на систему с точки зрения как количества, так и точности репрезентаций, которые должны быть сохранены. Во-первых, мы использовали изолированные объекты, которые не были встроены в сцены, чтобы более систематически контролировать концептуальное содержание набора стимулов и предотвратить роль контекстных сигналов, которые, возможно, повлияли на производительность памяти в предыдущих экспериментах.Кроме того, мы использовали очень тонкие визуальные различия, чтобы проверить точность визуальных представлений. Наконец, люди запомнили несколько тысяч объектов. В совокупности эти манипуляции позволяют нам оценить новую границу способности памяти хранить визуальную информацию.

Результаты

Наблюдателям были представлены фотографии 2 500 реальных объектов в течение 3 секунд каждый. Инструкции и дисплеи эксперимента были разработаны для оптимизации кодирования информации об объектах в памяти.Во-первых, наблюдателям сообщили, что они должны попытаться запомнить все детали предметов (17). Во-вторых, для минимизации концептуального вмешательства были выбраны объекты в основном из различных категорий базового уровня (18). Наконец, память была проверена с помощью двухальтернативного теста с принудительным выбором, в котором изучаемый элемент был соединен с фольгой, и задача состояла в том, чтобы выбрать изучаемый элемент, позволяя распознавать память, а не вызывать память (как в 4).

Варьировали сходство исследуемого предмета и предмета из фольги тремя способами (рис.1). В новом состоянии старый предмет был соединен с новым предметом, который категорически отличался от всех ранее изученных предметов. В этом случае достаточно запомнить категорию объекта, даже не запоминая визуальных деталей объекта, чтобы выбрать соответствующий пункт. В условиях образца старый предмет был соединен с физически подобным новым предметом из той же категории базового уровня. В этом состоянии запоминание только категории базового уровня объекта приведет к случайному выполнению.Наконец, в условии состояния старый элемент был соединен с новым элементом, который был точно таким же объектом, но появился в другом состоянии или в другом состоянии. В этом случае памяти для категории объекта или даже для идентификации объекта будет недостаточно для выбора старого элемента из пары. Таким образом, требуется память для конкретных деталей изображения, чтобы выбрать соответствующий объект как в образце, так и в условиях состояния. Крайне важно, что во время учебной сессии наблюдатели не знали, какие предметы из 2500 будут проверены позже, и против чего они будут проверяться.Таким образом, любое стратегическое кодирование конкретной детали, которое могло бы отличить предмет от фольги, было невозможно. Чтобы работать в среднем хорошо как в образце, так и в условиях состояния, наблюдатели должны будут кодировать множество конкретных деталей каждого объекта.

Рисунок 1.

Примеры тестовых пар, представленных во время двухальтернативного задания с принудительным выбором для всех трех условий (новизна, образец и состояние). Количество наблюдателей, сообщивших о правильном элементе, показано для каждой из изображенных пар.Экспериментальные стимулы доступны у авторов.

Показатели были замечательно высокими во всех трех условиях испытаний в двух альтернативном принудительном выборе (рис. 2). Как и ожидалось на основании предыдущего исследования (4), эффективность в новом состоянии была высокой: участники правильно сообщили о старом элементе в 92,5% (SEM, 1,6%) испытаний. Удивительно, но производительность также была исключительно высокой в ​​обоих условиях, когда требовалась память для деталей с изображений: в среднем участники ответили правильно на 87.6% (SEM, 1,8%) образцов испытаний и 87,2% (SEM, 1,8%) государственных испытаний. Однофакторный дисперсионный анализ с повторными измерениями выявил значимое влияние состояния: F (2,26) = 11,3, P <0,001. Запланированные попарные тесты t показывают, что производительность в новых условиях была значительно более точной, чем в состоянии и в образцовых условиях [новые по сравнению с образцом: t (13) = 3,4, P <0,01; роман по сравнению с государством: t (13) = 4,3, P <0.01; и образец vs. состояние, н.у. P > 0,10]. Однако данные о времени реакции были самыми медленными в условиях состояния, промежуточными в условиях примера и самыми быстрыми в новых условиях [M = 2,58 с, 2,42 с, 2,28 с, соответственно; роман по сравнению с образцом: t (13) = 1,81, P = 0,09; роман по сравнению с состоянием: t (13) = 4,05, P = 0,001; и «образец по сравнению с состоянием»: t (13) = 2,71, P = 0,02], что согласуется с идеей о том, что новые, образцовые и государственные условия требуют увеличения детализации.В последующих отчетах участников указывалось, что они обычно четко осознавали, какой предмет они видели, поскольку выражали уверенность в своей работе и добровольно предоставляли информацию о деталях, которые позволяли им выбрать правильные предметы.

Рис. 2.

Производительность памяти для каждого из трех условий тестирования (новый, образец и состояние) показана выше. Планки погрешностей представляют SEM. Пунктирная линия указывает на случайную производительность.

Во время презентации 2500 объектов участники отслеживали любые повторяющиеся изображения.Участники не знали, что эти повторы произошли где-то от 1 до 1024 изображений ранее в последовательности (в среднем, одно из восьми изображений было повторением). Эта задача гарантировала, что участники активно наблюдали за потоком изображений, когда они были представлены, и предоставили онлайн-оценку емкости памяти в течение всего сеанса исследования.

Производительность в задаче обнаружения повторов также продемонстрировала замечательную память. Участники редко подают ложную тревогу (1.3%; SEM, ± 1%), и были очень точными при регистрации фактических повторов (96% в целом; SEM, ± 1%). Точность была близка к потолку для повторяющихся изображений с 63 промежуточными элементами и постепенно снижалась для обнаружения повторяющихся элементов с большим количеством промежуточных элементов (вспомогательная информация (SI) , текст и рис. S1). Даже при самом продолжительном условии, когда было 1023 промежуточных элемента (то есть предметов, которые изначально были представлены ≈2 часа ранее), повторы обнаруживались в ≈80% случаев. Корреляция между эффективностью наблюдателей в задаче повторного обнаружения и их эффективностью в принудительном выборе была высокой ( r = 0.81). Частота ошибок как функция количества промежуточных элементов хорошо согласуется со стандартным степенным законом забывания ( r 2 = 0,98). Задача обнаружения повторения также показывает, что эта память большой емкости возникает не только в двухальтернативных задачах с принудительным выбором, но также и в текущих старых / новых задачах распознавания, хотя задача обнаружения повторения не проверяла более подробные представления за пределами категории уровень. Вместе с тестом памяти эти результаты указывают на огромную емкость системы памяти с точки зрения как количества, так и точности визуальной информации, которую можно запомнить.

Обсуждение

Мы обнаружили, что наблюдатели могут успешно запоминать детали тысяч изображений только после одного просмотра. Что эти данные говорят об информационной емкости долговременной зрительной памяти? Из предыдущих исследований известно, что люди могут запомнить большое количество изображений (4–6), но часто предполагалось, что они сохраняли только суть этих изображений (8, 10–12). Несмотря на то, что некоторые данные свидетельствуют о том, что наблюдатели способны запоминать детали о нескольких сотнях объектов в течение длительных периодов времени (13), насколько нам известно, ни один эксперимент ранее не продемонстрировал точную память на уровне образца или состояния в таком большом масштабе.Настоящие результаты демонстрируют, что визуальная память — это огромный запас, который не исчерпывается набором из 2500 подробных изображений объектов. Важно отметить, что эти данные не могут раскрыть формат этих представлений, и их не следует рассматривать как предположение о том, что у наблюдателей есть фотографическая память (19). Необходима дальнейшая работа, чтобы понять, как детали изображений кодируются и сохраняются в долговременной визуальной памяти.

Информационная емкость памяти.

Емкость памяти нельзя охарактеризовать только количеством хранимых элементов: правильная оценка емкости принимает во внимание количество запомненных элементов и умножает это на количество информации для каждого элемента.В настоящем эксперименте мы показываем, что количество запоминаемой информации по каждому элементу намного выше, чем предполагалось ранее, поскольку наблюдатели могут правильно выбирать среди визуально похожих фольг. Следовательно, любая оценка емкости долговременной памяти будет значительно увеличена существующими данными. В идеале мы могли бы количественно оценить это увеличение, например, используя теоретико-информационные биты, в терминах фактического визуального кода, используемого для представления объектов. К сожалению, нужно знать, как мозг кодирует визуальную информацию в память, чтобы точно таким образом определить емкость.

Однако Ландауэр (20) предоставил альтернативный метод количественной оценки емкости памяти путем вычисления количества битов, необходимых для правильного принятия решения о том, какие элементы были просмотрены, а какие нет (21). Вместо того, чтобы назначать коды изображений на основе визуального сходства, эта модель назначает каждому изображению случайный код независимо от его внешнего вида. Ошибки памяти возникают, когда двум изображениям назначается один и тот же код. В этой модели оптимальная длина кода вычисляется из общего количества элементов, которые нужно запомнить, и процента правильных ответов, достигнутого в двухальтернативной задаче с принудительным выбором (см. SI Text ).Важно отметить, что эта модель не учитывает содержание запоминаемых элементов: такая же длина кода была бы получена, если бы люди запомнили 80% из 100 естественных сцен или 80% из 100 цветных букв. Другими словами, биты в модели относятся к адресам памяти, независимым от содержимого, а не к оценочным кодам, используемым визуальной системой.

Учитывая производительность 93% в новом состоянии, оптимальный код потребует 13,8 бит на элемент, что сопоставимо с оценками в 10–14 бит, необходимыми для предыдущих крупномасштабных экспериментов (20).Чтобы расширить модель Ландауэра, мы предполагаем иерархическую модель памяти, в которой мы сначала указываем категорию, а дополнительные биты информации определяют образец и состояние элемента в этой категории (см. SI Text ). Чтобы соответствовать 88% производительности в условиях образца, для каждого элемента требуется 2,0 дополнительных бита на элемент. Точно так же требуется 2,0 дополнительных бита для достижения 87% правильности состояния. Таким образом, мы увеличиваем предполагаемую длину кода с 13,8 до 17.8 бит на элемент. Это на порядок повышает нижнюю границу нашей оценки репрезентативной способности долговременной памяти с ≈14000 (2 13,8 ) до ≈228000 (2 17,8 ) уникальных кодов. Это число не говорит нам об истинной способности системы к визуальной информации. Однако эта модель — формальный способ продемонстрировать, насколько быстро растет любая оценка объема памяти, если мы увеличиваем размер представления каждого отдельного объекта в памяти.

Зачем нужно исследовать способность людей запоминать визуальную информацию? Одна из причин заключается в том, что эволюция более сложных когнитивных и поведенческих репертуаров включала постепенное увеличение возможностей долговременной памяти мозга (22).В частности, есть основания полагать, что способность наших систем памяти хранить перцептивную информацию может быть решающим фактором в абстрактных рассуждениях (23, 24). Утверждалось, например, что абстрактное концептуальное знание, которое кажется амодальным и абстрагированным от реального опыта (25), на самом деле может быть основано на перцептивном знании (например, перцептуальных системах символов; см. Ссылку 26). Согласно этой точке зрения, абстрактные концептуальные свойства создаются на лету с помощью ментального моделирования перцептивного знания.Эта точка зрения предполагает адаптивное значение способности кодировать большой объем информации в памяти: хранение больших объемов перцепционной информации позволяет абстрагироваться на основе всей доступной информации, а не требовать решения о том, какая информация может потребоваться в какой-то более поздний момент времени. (24, 27).

Организация памяти.

Все 2500 пунктов в нашем потоке исследования были категориально разными и, следовательно, имели разные концептуальные представления высокого уровня.Долговременная память часто рассматривается как организованная на основе концептуального сходства (например, в распространяющихся моделях активации; см. Ссылки 28 и 29). Таким образом, концептуальная индивидуальность объектов, возможно, уменьшила интерференцию между ними и помогла поддержать замечательную производительность памяти, которую мы наблюдали (18). Кроме того, в недавней работе было высказано предположение, что представление перцептивных характеристик объекта может часто отличаться в зависимости от категории, из которой взят объект (30). Взятые вместе, эти идеи предполагают важную роль категорий и концепций в хранении визуальных деталей объектов, что является важной областью будущих исследований.

Еще одно возможное различие в организации памяти — это память для объектов, память для коллекций объектов и память для сцен. В то время как некоторые работы показали, что можно запомнить детали из сцен, взятых из той же категории (15), в будущем потребуется изучить массивную и детальную память для сложных сцен.

Знакомство против воспоминаний.

В литературе по долговременной памяти часто различают два типа памяти распознавания: знакомство, ощущение, что вы что-то видели раньше; и воспоминание, конкретное знание того, где вы это видели (31).Тем не менее, остается спорным вопрос о том, в какой степени эти типы памяти могут быть диссоциированы, и в какой степени суждения, основанные на принудительном выборе, больше влияют на знакомство, чем воспоминания, или наоборот (32). Кроме того, хотя некоторые утверждали, что перцептивная информация часто больше связана со знакомством, а концептуальная информация больше связана с воспоминаниями (31), эта точка зрения также остается спорной (32, 33). Таким образом, неясно, в какой относительной степени выбор наблюдателей в текущих двухальтернативных тестах принудительного выбора был основан на знакомстве или воспоминании.Учитывая перцептивную природу деталей, требуемых для выбора изучаемого элемента, вполне вероятно, что знакомство играет важную роль, и что воспоминание помогает характеристикам распознавания в подмножестве испытаний, в которых наблюдатели были явно осведомлены о деталях, которые были наиболее полезны для них. решение (потенциально большая часть испытаний, основанная на самоотчетах). Однако важно то, что независимо от того, зависели ли наблюдатели от воспоминаний или знакомых, сохраненное представление по-прежнему требует достаточно деталей, чтобы отличить его от фольги при тестировании.Наш главный вывод один и тот же, независимо от того, обслуживается ли память знакомством или воспоминанием: наблюдатели кодируют и сохраняют множество конкретных деталей о каждом объекте.

Ограничения на модели распознавания и категоризации объектов.

Объем долговременной памяти накладывает ограничения на когнитивные функции высокого уровня и нейронные модели таких функций. Например, подходы к распознаванию объектов часто различаются либо в зависимости от онлайн-обработки грубой силы, либо от массивной параллельной памяти (34, 35).Настоящие данные подтверждают подходы к распознаванию объектов, которые требуют массивного хранения множества точек обзора и образцов объектов (36–39). Аналогичным образом, в области категоризации популярный класс моделей, так называемые модели-образцы (40), предположил, что категоризацию человека можно лучше всего смоделировать, установив хранение каждого образца, который просматривается в категории. Настоящие результаты демонстрируют реализуемость моделей, требующих такой большой емкости памяти.

В области нейронных моделей настоящие результаты подразумевают, что на этапах обработки изображений в мозгу не обязательно отбрасываются визуальные детали.Современные модели зрительного восприятия постулируют иерархию этапов обработки, которые достигают все более и более абстрактных представлений в корковых областях более высокого уровня (35, 41). Таким образом, для сохранения характерных деталей представления объектов в долговременной памяти могут храниться по всей иерархии потока визуальной обработки, включая ранние визуальные области, которые, возможно, извлекаются по запросу посредством процесса обратной связи (41, 42). Действительно, было показано, что процессы визуализации, форма поиска представлений, активируют как зрительные области коры высокого уровня, так и первичную зрительную кору (43).Кроме того, функциональные исследования МРТ показали, что визуальная область относительно среднего уровня, правая веретенообразная извилина, больше реагирует, когда наблюдатели кодируют объекты, для которых они позже будут помнить конкретный образец, по сравнению с объектами, для которых они позже будут помнить только суть (44). Понимание нейронных субстратов, лежащих в основе этого массивного и подробного хранилища визуальной информации, является важной целью для будущих исследований и будет способствовать изучению распознавания и категоризации визуальных объектов.

Заключение

Информационная емкость человеческой памяти играет важную роль в когнитивных и нейронных моделях памяти, распознавания и категоризации, поскольку модели этих процессов неявно или явно заявляют об уровне детализации, хранящейся в памяти. Подробные представления обеспечивают большую вычислительную гибкость, поскольку они позволяют выполнять обработку на релевантных для задачи уровнях абстракции (24, 27), но эти вычислительные преимущества сводятся к компромиссу с затратами на дополнительное хранилище.Следовательно, установление границ информационной емкости человеческой памяти имеет решающее значение для понимания вычислительных ограничений для визуальных и когнитивных задач.

Верхний предел размера зрительной долговременной памяти не был достигнут, даже с предыдущими попытками увеличить количество элементов (4) или попыткой настоящего исследования увеличить как количество, так и точность воспроизведения. Здесь мы поднимаем только нижнюю границу возможного, показывая, что визуальные представления долговременной памяти могут содержать не только существенную информацию, но и детали, достаточные для различения примеров и состояний.Мы думаем, что проверка верности представлений в памяти является важным дополнением к существующим структурам визуального объема долговременной памяти. В то время как в повседневной жизни мы часто не можем кодировать детали объектов или сцен (7, 8, 17), наши результаты показывают, что в условиях, когда мы пытаемся кодировать такие детали, мы способны добиться успеха.

Материалы и методы

участников.

Четырнадцать взрослых (в возрасте 20–35 лет) дали информированное согласие и приняли участие в эксперименте.Все участники были протестированы одновременно с использованием компьютерных рабочих станций, которые были точно подобранные по размеру монитора и расстоянию до просмотра.

Стимулы.

стимулов были собраны с использованием как коммерчески доступной базы данных (Hemera Photo-Objects, Vol. I и II), так и поиска в Интернете с помощью поиска изображений Google. В целом, для основной базы данных было собрано 2600 категориально различных изображений, плюс 200 парных образцовых изображений и 200 парных изображений состояний, взятых из категорий, не представленных в основной базе данных.Экспериментальные стимулы доступны у авторов. После того, как эти изображения были собраны, 200 из 2600 объектов были случайным образом выбраны для использования в новых условиях испытаний. Таким образом, все участники были протестированы с одними и теми же 300 парами романов, образцов и государственных изображений. Однако предмет, который видели во время сеанса исследования, и предмет, использованный в качестве фольги при испытании, были рандомизированы среди участников.

Учебные блоки.

Эксперимент был разбит на 10 учебных блоков по ≈20 минут каждый, за которыми следовала 30-минутная сессия тестирования.Между блоками участникам был дан 5-минутный перерыв, и им не разрешили обсуждать какие-либо изображения, которые они видели. Во время блока было показано ≈300 изображений, всего было показано 2896 изображений: 2500 новых и 396 повторных изображений. Каждое изображение (с углом обзора 7,5 на 7,5 °) было представлено в течение 3 с, после чего следовало фиксационное крестовое изображение продолжительностью 800 мс.

Задача повторного обнаружения.

Чтобы удержать внимание и проверить объем оперативной памяти, участники выполнили задачу по обнаружению повторов в течение 10 блоков исследования.Повторяющиеся изображения были вставлены в поток, так что было от 0 до 1023 промежуточных элементов, и участникам было сказано отвечать, используя клавишу пробела в любое время, когда изображение повторялось на протяжении всего периода исследования. Они не были проинформированы о структуре повторных условий. Участники получали обратную связь только тогда, когда они отвечали, при этом крестик фиксации становился красным, если они неправильно нажали пробел (ложная тревога), или зеленым, если они правильно обнаружили повтор (попадание), и не получали обратной связи за промахи или правильные отклонения .

В целом, 56 изображений были повторены немедленно (1-back), 52 были повторены с 1 промежуточным элементом (2-back), 48 были повторены с 3 промежуточными элементами (4-back), 44 были повторены с 7 промежуточными элементами (8- назад) и так далее, до 16 повторений с 1023 промежуточными элементами (1024-back). Повторяющиеся элементы были вставлены в поток равномерно с ограничением, что все длины n-back (1-back, 2-back, 4-back и 1024-back) должны были встречаться одинаково в первой половине эксперимента. и вторая половина.Такой дизайн гарантировал, что усталость не будет по-разному влиять на изображения, которые повторяются на более поздних этапах потока. Из-за сложности создания правильно сбалансированного набора повторов у всех участников повторяющиеся изображения появлялись в одних и тех же местах в потоке. Однако каждый участник видел 2500 объектов в разном порядке, и конкретные изображения, повторяемые в условиях n-back, также были разными для разных участников. Изображения, которые позже будут проверены в одном из трех состояний памяти, никогда не повторялись в течение периода исследования.

Тесты с принудительным выбором.

После 10-минутного перерыва после периода исследования мы проверили, с какой точностью запоминаются объекты. На экране были представлены два предмета: один старый предмет, который вы видели ранее, и один новый предмет из фольги. Наблюдатели сообщили, какой элемент они видели раньше в двух альтернативном задании с принудительным выбором.

Участникам было разрешено действовать в своем собственном темпе, и им было сказано уделять особое внимание точности, а не скорости при вынесении суждений. 300 тестовых испытаний были представлены в случайном порядке для каждого участника с чередованием трех типов тестовых испытаний (новые, образцовые и государственные).Изображения, которые позже будут протестированы, были равномерно распределены на протяжении всего периода исследования.

Благодарности

Мы благодарим П. Кавана, М. Чуна, М. Грина, А. Холлингворта, Г. Креймана, К. Накаяму, Т. Поджио, М. Поттера, Р. Ренсинка, А. Шахнера, Т. Томпсона, А. Торральбу и Дж. Вулф за полезный разговор и комментарии к рукописи. Эта работа частично финансировалась грантом T32-MH020007 Национального института здравоохранения (T.F.B.), стипендией для аспирантов по науке и технике национальной обороны (T.K.), стипендия Национальной исследовательской службы F32-EY016982 (для G.A.A.) и награда за карьеру Национального научного фонда (NSF) IIS-0546262 и грант NSF IIS-0705677 (для A.O.).

Сноски

  • * Кому может быть адресована корреспонденция. Электронная почта: tfbrady {at} mit.edu или oliva {at} mit.edu
  • Вклад авторов: T.F.B., T.K., G.A.A. и A.O. разработал исследование, провел исследование, проанализировал данные и написал статью.

  • Авторы заявляют об отсутствии конфликта интересов.

  • Эта статья представляет собой прямое представление PNAS.

  • Эта статья содержит вспомогательную информацию на сайте www.pnas.org/cgi/content/full/08033/DCSupplemental.

  • Доступен бесплатно в режиме онлайн через опцию открытого доступа PNAS.

  • © 2008 Национальная академия наук США

9.1 Воспоминания как типы и стадии — Введение в психологию — 1-е канадское издание

Цели обучения

  1. Сравните и сопоставьте явную и неявную память, определив особенности, которые определяют каждую из них.
  2. Объясните функцию и продолжительность эйдетических и эхо-воспоминаний.
  3. Обобщите возможности кратковременной памяти и объясните, как рабочая память используется для обработки информации в ней.

Как видно из таблицы 9.1 «Память, концептуализированная в терминах типов, стадий и процессов», психологи концептуализируют память в терминах типов , стадий и процессов . В этом разделе мы рассмотрим два типа памяти , явную память и неявную память , а затем три основных этапа памяти : сенсорную , краткосрочную и долгосрочную (Аткинсон и Шиффрин, 1968).Затем, в следующем разделе, мы рассмотрим природу долговременной памяти, уделяя особое внимание когнитивным методам, которые мы можем использовать для улучшения нашей памяти. Наше обсуждение будет сосредоточено на трех процессах, которые являются центральными для долговременной памяти : кодирование , хранение и поиск .

Таблица 9.1. Память, представленная в терминах типов, этапов и процессов.
Как типы
  • Явная память
  • Неявная память
Как ступени
  • Сенсорная память
  • Кратковременная память
  • Долговременная память
Как процессы
  • Кодировка
  • Хранилище
  • Извлечение

Явная память

Когда мы оцениваем память, прося человека вспомнить вещи сознательно, мы измеряем явную память . Явная память относится к знаниям или опыту, которые можно сознательно запомнить . Как вы можете видеть на рисунке 9.2, «Типы памяти», существует два типа явной памяти: эпизодическая и семантическая . Эпизодическая память относится к личным переживаниям, которые у нас были (например, воспоминаниям о нашем выпускном дне средней школы или о фантастическом ужине, который мы ели в Нью-Йорке в прошлом году). Семантическая память относится к нашим знаниям фактов и концепций о мире (e.g., что абсолютное значение -90 больше, чем абсолютное значение 9 и что одно определение слова «аффект» — это «переживание чувства или эмоции»).

Рисунок 9.2 Типы памяти.

Явная память оценивается с использованием показателей, при которых испытуемый должен сознательно пытаться запомнить информацию. Тест отзыва памяти — это мера явной памяти, которая включает извлечение из памяти информации, которая ранее была запомнена .Когда мы сдаем тест для сочинения, мы полагаемся на нашу память воспоминаний, потому что тест требует, чтобы мы генерировали ранее запомненную информацию. Тест с множественным выбором — это пример теста распознавания памяти, , — мера явной памяти, которая включает определение того, была ли информация просмотрена или изучена до .

Ваш собственный опыт прохождения тестов, вероятно, приведет вас к согласию с выводами научных исследований о том, что вспоминать труднее, чем узнавать.Напоминание, которое требуется при тестировании эссе, включает в себя два этапа: сначала создание ответа, а затем определение того, является ли он правильным. Распознавание, как и в тесте с множественным выбором, включает только определение того, какой элемент из списка кажется наиболее правильным (Haist, Shimamura, & Squire, 1992). Хотя в них задействованы разные процессы, показатели памяти при вспоминании и узнавании, как правило, коррелированы. Студенты, которые лучше сдают экзамен с несколькими вариантами ответов, также в целом лучше сдают эссе (Bridgeman & Morgan, 1996).

Третий способ измерения памяти известен как повторное обучение (Nelson, 1985). Меры повторного обучения (или экономии) оценивают, насколько быстрее информация обрабатывается или изучается, когда она изучается снова после того, как она уже была изучена, но затем забыта . Если вы, например, проходили несколько курсов французского в прошлом, возможно, вы забыли большую часть выученного словарного запаса. Но если бы вам снова пришлось поработать над своим французским, вы бы выучили словарный запас намного быстрее во второй раз.Повторное обучение может быть более чувствительной мерой памяти, чем вспоминание или распознавание, потому что оно позволяет оценивать память с точки зрения «сколько» или «как быстро», а не просто «правильные» или «неправильные» ответы. Повторное обучение также позволяет нам измерить память на такие процедуры, как вождение автомобиля или игру на фортепиано, а также память на факты и цифры.

Неявная память

В то время как явная память состоит из вещей, о которых мы можем сознательно сообщить, что мы знаем, имплицитная память относится к знаниям, к которым мы не можем сознательно получить доступ.Однако неявная память, тем не менее, чрезвычайно важна для нас, потому что она напрямую влияет на наше поведение. Неявная память относится к влиянию опыта на поведение, даже если человек не осознает этих влияний . Как вы можете видеть на рисунке 9.2, «Типы памяти», существует три основных типа неявной памяти: процедурная память, классические эффекты кондиционирования и прайминг.

Процедурная память относится к нашим часто необъяснимым знаниям о том, как что-то делать .Когда мы ходим из одного места в другое, разговариваем с другим человеком на английском, набираем номер мобильного телефона или играем в видеоигру, мы используем процедурную память. Процедурная память позволяет нам выполнять сложные задачи, даже если мы не можем объяснить другим, как мы их выполняем. Невозможно научить кого-то ездить на велосипеде; человек должен учиться на этом. Идея имплицитной памяти помогает объяснить, как младенцы могут учиться. Способность ползать, ходить и разговаривать — это процедуры, и эти навыки легко и эффективно развиваются в детстве, несмотря на то, что, будучи взрослыми, мы не имеем сознательной памяти о том, что изучили их.

Второй тип имплицитной памяти — это классических обусловливающих эффектов , в которых мы учимся, часто без усилий или осознания, связывать нейтральные стимулы (например, звук или свет) с другим стимулом (например, с едой), что создает естественная реакция, такая как удовольствие или слюноотделение . Память на ассоциацию проявляется, когда условный раздражитель (звук) начинает вызывать ту же реакцию, что и безусловный раздражитель (еда) до обучения.

Последний тип неявной памяти известен как первичная или изменений в поведении в результате переживаний, которые случались часто или недавно . Прайминг относится как к активации знания (например, мы можем подготовить концепцию доброты, представляя людям слова, относящиеся к доброте), так и к влиянию этой активации на поведение (люди, ориентированные на концепцию доброты, могут действовать более доброжелательно. ).

Одним из способов измерения влияния прайминга на неявную память является тест фрагмента слова , в котором человека просят заполнить пропущенные буквы, чтобы составить слова.Вы можете попробовать это сами: сначала попробуйте закончить следующие отрывки слова, но работайте над каждым только по три-четыре секунды. Какие-нибудь слова быстро приходят в голову?

_ я б _ а _ у

_ h _ s _ _ i _ n

_ о _ к

_ ч _ я с _

Теперь внимательно прочтите следующее предложение:

«Он взял свои материалы с полок, проверил их и затем покинул здание».

Затем попробуйте еще раз составить слова из фрагментов слов.

Я думаю, вы можете обнаружить, что после прочтения предложения легче заполнить фрагменты 1 и 3 как «библиотеку» и «книгу» соответственно, чем до того, как вы его прочитали. Однако прочтение предложения не помогло вам заполнить фрагменты 2 и 4 как «врач» и «фаэтон». Это различие в неявной памяти, вероятно, произошло из-за того, что, когда вы читали предложение, понятие «библиотека» (и, возможно, «книга») было задействовано, хотя они никогда не упоминались явно. Как только концепция подготовлена, она влияет на наше поведение, например, при тестировании фрагментов слова.

На наше повседневное поведение влияет подготовка в самых разных ситуациях. Увидев рекламу сигарет, мы можем начать курить, вид флага нашей родной страны может пробудить в нас патриотизм, а вид ученика из конкурирующей школы может пробудить наш дух соперничества. И эти влияния на наше поведение могут происходить без нашего ведома.

Направление исследований: привлечение внимания извне влияет на поведение

Одной из наиболее важных характеристик неявных воспоминаний является то, что они часто формируются и используются автоматически , без особых усилий или осознания с нашей стороны.В ходе одной демонстрации автоматизма и влияния эффектов прайминга Джон Барг и его коллеги (Bargh, Chen, & Burrows, 1996) провели исследование, в котором они показали студентам бакалавриата списки из пяти зашифрованных слов, каждое из которых они должны были преобразовать в предложение. Кроме того, для половины участников исследования эти слова были связаны со стереотипами о пожилых людях. Эти участники видели такие слова, как:

в Виктории пенсионеры живут человек

человек в бинго, забывчивый играет

Другая половина участников исследования тоже составляла предложения, но из слов, не имеющих ничего общего со стереотипами пожилых людей.Целью этого задания было пробудить в памяти стереотипы о пожилых людях у одних участников, но не у других.

Затем экспериментаторы оценили, окажет ли насаждение пожилых стереотипов какое-либо влияние на поведение учеников — и это действительно так. Когда участник исследования собрал все свои вещи, думая, что эксперимент окончен, экспериментатор поблагодарил его или ее за участие и дал указания к ближайшему лифту. Затем, не зная об этом участников, экспериментаторы записали количество времени, которое участник провел, идя от дверного проема экспериментальной комнаты к лифту.Как вы можете видеть на Рисунке 9.3, «Результаты исследования». участники, которые составляли предложения с использованием слов, связанных со стереотипами пожилых людей, переняли поведение пожилых людей — они шли значительно медленнее, покидая экспериментальную комнату.

Рисунок 9.3 Результаты исследования. Барг, Чен и Берроуз обнаружили, что слова, связанные с пожилыми людьми, заставляют людей ходить медленнее (1996).

Чтобы определить, возникли ли эти эффекты прайминга из-за осведомленности участников, Барг и его коллеги попросили еще одну группу студентов выполнить задание по праймингу, а затем указать, думают ли они, что слова, которые они использовали для составления предложений, имеют какое-либо отношение друг к другу, или могли каким-либо образом повлиять на их поведение.Эти студенты не подозревали, что слова могли быть связаны с пожилыми людьми или повлиять на их поведение.

Стадии памяти: сенсорная, кратковременная и долговременная память

Другой способ понять память — рассматривать ее в терминах этапов, которые описывают продолжительность времени, в течение которого информация остается доступной для нас. Согласно этому подходу (см. Рисунок 9.4, «Продолжительность памяти») информация начинается в сенсорной памяти , перемещается в кратковременную память и в конечном итоге перемещается в долговременную память .Но не вся информация проходит через все три этапа; большая часть этого забыта. Будет ли информация перемещаться из памяти с более короткой продолжительностью в память с большей продолжительностью или она будет потеряна из памяти, полностью зависит от того, как информация обрабатывается и обрабатывается.

Рисунок 9.4 Продолжительность памяти. Память можно охарактеризовать с точки зрения этапов — продолжительности времени, в течение которого информация остается доступной для нас.

Сенсорная память

Сенсорная память относится к кратковременному хранению сенсорной информации .Сенсорная память — это буфер памяти, который длится очень недолго, а затем, если за ним не обращаются и не передают для дальнейшей обработки, он забывается. Цель сенсорной памяти — дать мозгу некоторое время для обработки поступающих ощущений и позволить нам увидеть мир как непрерывный поток событий, а не как отдельные части.

Зрительная сенсорная память известна как иконическая память . Иконическая память была впервые изучена психологом Джорджем Сперлингом (1960).В своем исследовании Сперлинг показал участникам отображение букв в рядах, подобное тому, что показано на Рисунке 9.5, «Измерение знаковой памяти». Однако дисплей длился всего около 50 миллисекунд (1/20 секунды). Затем Сперлинг дал своим участникам тест на запоминание, в котором их попросили назвать все буквы, которые они могли запомнить. В среднем участники могли вспомнить только около четверти букв, которые они видели.

Рисунок 9.5 Измерение пиктограмм памяти. Сперлинг показывал своим участникам такие дисплеи, как этот, всего лишь на 1/20 секунды.Он обнаружил, что когда он просил участников сообщить об одном из трех рядов букв, они могли это сделать, даже если сигнал был дан вскоре после того, как дисплей был удален. Исследование продемонстрировало существование иконической памяти.

Сперлинг рассудил, что участники видели все буквы, но запомнили их лишь очень короткое время, что сделало невозможным их сообщить обо всех. Чтобы проверить эту идею, в своем следующем эксперименте он сначала показал те же буквы, но затем, после того, как дисплей был удален, он дал участникам сигнал сообщить о буквах из первого, второго или третьего ряда.В этом состоянии участники теперь указали почти все буквы в этом ряду. Этот вывод подтвердил догадку Сперлинга: участники имели доступ ко всем буквам в их знаковых воспоминаниях, и если задача была достаточно короткой, они могли сообщить о той части дисплея, которую он просил. «Достаточно короткий» — это длина иконической памяти, которая составляет около 250 миллисекунд (секунды).

Слуховая сенсорная память известна как эхо-память .В отличие от культовых воспоминаний, которые очень быстро распадаются, эхо-воспоминания могут длиться до четырех секунд (Cowan, Lichty, & Grove, 1990). Это удобно, так как позволяет вам, среди прочего, запоминать слова, которые вы произнесли в начале длинного предложения, когда вы дойдете до его конца, и делать заметки к самому последнему высказыванию профессора психологии даже после того, как он или она закончила это говорить.

У некоторых людей иконическая память, кажется, длится дольше, явление, известное как эйдетических образов (или фотографическая память ), в котором человек могут сообщать детали изображения за длительные периоды времени .Эти люди, которые часто страдают психологическими расстройствами, такими как аутизм, заявляют, что они могут «видеть» изображение еще долго после того, как оно было представлено, и часто могут точно сообщить об этом изображении. Есть также некоторые свидетельства наличия эйдетической памяти в слухе; некоторые люди сообщают, что их эхо-воспоминания сохраняются в течение необычно долгих периодов времени. Композитор Вольфганг Амадей Моцарт, возможно, обладал эйдетической памятью на музыку, потому что даже когда он был очень молод и еще не имел большого музыкального образования, он мог слушать длинные композиции, а затем воспроизводить их почти идеально (Соломон, 1995) .

Кратковременная память

Большая часть информации, попадающей в сенсорную память, забывается, но информация, на которую мы обращаем внимание с целью ее запоминания, может перейти в кратковременную память . Кратковременная память (STM) — это место, где небольшие объемы информации могут временно храниться более нескольких секунд, но обычно менее одной минуты (Baddeley, Vallar, & Shallice, 1990). Информация в краткосрочной памяти не сохраняется постоянно, а становится доступной для обработки, и процессы, которые мы используем для осмысления, изменения, интерпретации и хранения информации в STM , известны как рабочая память .

Хотя это и называется памятью, рабочая память — это не хранилище памяти, как STM, а скорее набор процедур или операций с памятью. Представьте, например, что вас просят принять участие в такой задаче, как эта, которая является мерой рабочей памяти (Unsworth & Engle, 2007). Каждый из следующих вопросов по отдельности появляется на экране компьютера, а затем исчезает после того, как вы ответите на вопрос:

10 × 2-5 = 15? (Ответ ДА ​​ИЛИ НЕТ) Тогда запомните «S»
12 ÷ 6-2 = 1? (Ответ ДА ​​ИЛИ НЕТ) Тогда запомните «R»
10 × 2 = 5? (Ответ ДА ​​ИЛИ НЕТ) Тогда запомните «П»
8 ÷ 2 — 1 = 1? (Ответ ДА ​​ИЛИ НЕТ) Тогда запомните «Т»
Является ли 6 × 2 — 1 = 8? (Ответ ДА ​​ИЛИ НЕТ) Тогда запомните «U»
2 × 3 — 3 = 0? (Ответ ДА ​​ИЛИ НЕТ) Тогда запомните «Q»

Чтобы успешно выполнить задание, вы должны правильно ответить на каждую математическую задачу и в то же время запомнить букву, следующую за задачей.Затем после шести вопросов вы должны перечислить буквы, которые появлялись в каждом из испытаний, в правильном порядке (в данном случае S, R, P, T, U, Q).

Для выполнения этой непростой задачи вам необходимо использовать самые разные навыки. Очевидно, что вам нужно использовать STM, так как вы должны хранить письма в хранилище, пока вас не попросят их перечислить. Но вам также нужен способ наилучшим образом использовать имеющееся у вас внимание и обработку. Например, вы можете решить использовать стратегию повторения букв дважды, затем быстро решить следующую задачу, а затем повторить буквы еще раз дважды, включая новую.Поддержание этой (или других подобных) стратегии — это роль центрального исполнительного органа рабочей памяти , части рабочей памяти, которая направляет внимание и обрабатывает . Центральный исполнительный орган будет использовать любые стратегии, которые кажутся лучшими для данной задачи. Например, центральный исполнитель будет руководить процессом репетиции и в то же время направлять зрительную кору головного мозга на формирование образа списка букв в памяти. Вы можете видеть, что, хотя STM задействован, процессы, которые мы используем для работы с материалом в памяти, также имеют решающее значение.

Кратковременная память ограничена как по длине, так и по объему информации, которую она может хранить. Петерсон и Петерсон (1959) обнаружили, что, когда людей просили запомнить список трехбуквенных строк, а затем сразу же просили выполнить отвлекающее задание (считать в обратном порядке по тройкам), материал быстро забывался (см. Рис. 9.6, «STM»). Распад »), так что к 18 секундам он практически исчез.

Рисунок 9.6 Распад СТМ. Исследователи обнаружили, что информация, которую не репетировали, быстро улетучивалась из памяти.

Один из способов предотвратить распад информации из кратковременной памяти — использовать рабочую память для ее репетиции. Репетиция технического обслуживания — это процесс повторения информации мысленно или вслух с целью сохранения ее в памяти . Мы проводим профилактические репетиции, чтобы сохранить в памяти то, что мы хотим запомнить (например, имя человека, адрес электронной почты или номер телефона), достаточно долго, чтобы записать это, использовать или потенциально передать в долговременную память.

Если мы продолжим репетировать информацию, она останется в STM до тех пор, пока мы не перестанем ее репетировать, но есть также ограничение емкости для STM.Попробуйте читать каждую из следующих строк чисел, по одной строке за раз, со скоростью примерно одно число в секунду. Затем, когда вы закончите каждый ряд, закройте глаза и запишите столько чисел, сколько сможете вспомнить.

019

3586

10295

861059

1029384

75674834

657874104

6550423897

Если вы похожи на обычного человека, вы обнаружите, что в этом тесте рабочей памяти, известном как тест на диапазон цифр , вы довольно хорошо справились примерно до четвертой строки, а затем у вас начались проблемы.Готов поспорить, вы пропустили некоторые числа в последних трех рядах и очень плохо справились с последним.

Размах цифр у большинства взрослых составляет от пяти до девяти цифр, в среднем около семи. Когнитивный психолог Джордж Миллер (1956) назвал информацию «семь плюс-минус два» магическим числом кратковременной памяти. Но если мы можем хранить в кратковременной памяти максимум около девяти цифр, то как мы можем запоминать больший объем информации, чем этот? Например, как мы можем запомнить десятизначный телефонный номер, достаточно длинный, чтобы набрать его?

Один из способов расширить нашу способность запоминать вещи в STM — это использовать метод памяти под названием chunking . Разделение на части — это процесс организации информации в более мелкие группы (фрагменты), тем самым увеличивая количество элементов, которые могут храниться в STM . Например, попробуйте запомнить эту строку из 12 букв:

XOFCBANNCVTM

У вас, вероятно, не получится, потому что количество букв больше магического числа семи.

Теперь попробуйте еще раз с этим:

CTVCBCTSNHBO

Помогло бы вам, если бы я указал, что материал в этой строке можно разбить на четыре набора по три буквы в каждом? Я думаю, что да, потому что тогда, вместо того чтобы запоминать 12 букв, вам нужно было бы запомнить только названия четырех телеканалов.В этом случае разбиение на части изменяет количество элементов, которые вам нужно запомнить, с 12 до четырех.

Эксперты полагаются на фрагменты, которые помогают им обрабатывать сложную информацию. Герберт Саймон и Уильям Чейз (1973) показали мастерам шахмат и новичкам в шахматах различные положения фигур на шахматной доске в течение нескольких секунд каждое. Эксперты намного лучше, чем новички, запоминали позиции, потому что они могли видеть «общую картину». Им не нужно было запоминать положение каждой из частей по отдельности, они разбили части на несколько более крупных макетов.Но когда исследователи показали обеим группам случайные шахматные позиции — позиции, которые вряд ли встретятся в реальных играх, — обе группы показали одинаково плохие результаты, потому что в этой ситуации эксперты потеряли способность организовывать раскладки (см. Рисунок 9.7, «Возможные и Невозможные шахматные позиции »). То же самое и с баскетболом. Баскетболисты гораздо лучше запоминают настоящие баскетбольные позиции, чем не игроки, но только тогда, когда позиции имеют смысл с точки зрения того, что происходит на площадке или что может произойти в ближайшем будущем, и, таким образом, могут быть разделены на более крупные единицы (Дидьерджан И Marmèche, 2005).

Рисунок 9.7 Возможные и невозможные шахматные позиции. Опыт имеет значение: опытные шахматисты могут запоминать позиции игры справа намного лучше, чем новички в шахматах. Но специалисты запоминают позиции слева не лучше, чем новички, чего не может быть в реальной игре.

Если информация проходит мимо краткосрочной памяти, она может поступать в долговременную память (LTM), , память , которая может хранить информацию в течение дней, месяцев и лет .Объем долговременной памяти велик, и нет известного предела тому, что мы можем помнить (Wang, Liu, & Wang, 2003). Хотя мы можем забыть по крайней мере некоторую информацию после того, как мы ее узнаем, другие вещи останутся с нами навсегда. В следующем разделе мы обсудим принципы долговременной памяти.

Основные выводы

  • Память означает способность сохранять и извлекать информацию с течением времени.
  • Для некоторых вещей наша память очень хороша, но наша активная когнитивная обработка информации гарантирует, что память никогда не будет точной копией того, что мы испытали.
  • Явная память относится к переживаниям, которые можно намеренно и сознательно запомнить, и они измеряются с помощью воспоминаний, узнавания и повторного обучения. Явная память включает эпизодические и смысловые воспоминания.
  • Меры повторного обучения (также известные как «сбережения») оценивают, насколько быстрее информация усваивается, когда она изучается снова после того, как она уже была изучена, но затем забыта.
  • Неявная память относится к влиянию опыта на поведение, даже если человек не осознает этих влияний.Три типа имплицитной памяти — это процедурная память, классическая обусловленность и прайминг.
  • Обработка информации начинается в сенсорной памяти, переходит в кратковременную память и, в конечном итоге, переходит в долговременную память.
  • Репетиция и разбивка на части используются для хранения информации в кратковременной памяти.
  • Объем долговременной памяти велик, и нет известного предела тому, что мы можем запомнить.

Упражнения и критическое мышление

  1. Перечислите некоторые ситуации, в которых сенсорная память вам полезна.Как вы думаете, на что было бы похоже ваше восприятие стимулов, если бы у вас не было сенсорной памяти?
  2. Опишите ситуацию, в которой вам необходимо использовать рабочую память для выполнения задачи или решения проблемы. Как вам помогает ваша рабочая память?

Список литературы

Аткинсон Р. К. и Шиффрин Р. М. (1968). Человеческая память: предлагаемая система и процессы управления ею. В К. Спенс (ред.), Психология обучения и мотивации (Том 2). Оксфорд, Англия: Academic Press.

Баддели, А. Д., Валлар, Г., и Шаллис, Т. (1990). Развитие концепции рабочей памяти: значение и вклад нейропсихологии. В G. Vallar & T. Shallice (Eds.), Нейропсихологические нарушения кратковременной памяти (стр. 54–73). Нью-Йорк, Нью-Йорк: Издательство Кембриджского университета.

Барг, Дж. А., Чен, М., и Берроуз, Л. (1996). Автоматичность социального поведения: прямое влияние построения черты и активации стереотипа на действие. Журнал личности и социальной психологии, 71 , 230–244.

Бриджмен Б. и Морган Р. (1996). Успех в колледже для студентов с разницей в успеваемости по тестам с несколькими вариантами ответов и эссе. Журнал педагогической психологии, 88 (2), 333–340.

Коуэн Н., Личти В. и Гроув Т. Р. (1990). Свойства памяти для необслуживаемых разговорных слогов. Журнал экспериментальной психологии: обучение, память и познание, 16 (2), 258–268.

Didierjean, A., & Marmèche, E. (2005). Предварительное представление визуальных баскетбольных сцен новичками и опытными игроками. Визуальное познание, 12 (2), 265–283.

Хайст Ф., Шимамура А. П. и Сквайр Л. Р. (1992). О связи между воспоминанием и памятью узнавания. Журнал экспериментальной психологии: обучение, память и познание, 18 (4), 691–702.

Миллер, Г. А. (1956). Магическое число семь, плюс-минус два: некоторые ограничения нашей способности обрабатывать информацию. Психологический обзор, 63 (2), 81–97.

Нельсон Т. О. (1985). Вклад Эббингауза в измерение удержания: экономия при повторном обучении. Журнал экспериментальной психологии: обучение, память и познание, 11 (3), 472–478.

Петерсон, Л., и Петерсон, М. Дж. (1959). Кратковременное удержание отдельных словесных заданий. Журнал экспериментальной психологии, 58 (3), 193–198.

Саймон Х. А. и Чейз У. Г. (1973). Умение играть в шахматы. Американский ученый, 61 (4), 394–403.

Соломон, М. (1995). Моцарт: Жизнь . Нью-Йорк, Нью-Йорк: Харпер Многолетник.

Сперлинг, Г.(1960). Информация доступна в кратком наглядном представлении. Психологические монографии, 74 (11), 1–29.

Ансуорт, Н. и Энгл, Р. У. (2007). О разделении кратковременной и рабочей памяти: исследование простого и сложного диапазона и их связи со способностями более высокого порядка. Психологический бюллетень, 133 (6), 1038–1066.

Ван, Ю., Лю, Д., и Ван, Ю. (2003). Открытие возможностей человеческой памяти. Brain & Mind, 4 (2), 189–198.

Авторство изображения

Рисунок 9.4: По материалам Аткинсона и Шиффрина (1968).

Рисунок 9.5: По материалам Sperling (1960).

Рисунок 9.6: По материалам Peterson & Peterson (1959).

Произошла ошибка при установке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файле cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Документ без названия

Документ без названия ПАМЯТЬ


I. ПАМЯТЬ

1. Определение — Память — это способность сохранять и получить информацию.

2. Три основных процесса памяти — Есть три основных задачи памяти. Кодировка — это компонент сбора данных. Это преобразование необработанной информации в форму, в которой она может быть занесенным в память. Хранение — это хранение информации со временем. Retrieval — это возможность получить закодированный материал обратно в осознание.

3. Подход к обработке информации — Это подход к пониманию человеческой памяти, которая подчеркивает кодирование, хранение, и поиск информации.Здесь используется компьютерная аналогия.

II. ВИДЫ ХРАНЕНИЯ ПАМЯТИ

1. Сенсорная память — Это мгновенная настойчивость сенсорной информации после прекращения стимуляции. Начинается распадаться почти сразу, если вы не обращаете на это внимания. Ты постоянно подвергается бомбардировке сенсорной информацией, поэтому вы должны контролировать выбор того, что вы кодируете. Это называется селективным . внимание.

2. Кратковременная память — это система памяти, которая хранит ограниченный объем информации в течение относительно коротких периодов времени времени. Информация должна передаваться из сенсорной памяти в STM, чтобы он был обработан и стал значимым. Этот это то, что мы сознательно осознаем в любое время. Емкость кратковременной памяти составляет 7 +/- 2 элемента. Информация может храниться в STM неопределенно долго, репетируя его. Краткосрочная память считается, что существует в биоэлектрическом состоянии и преобразуется в долговременную память он должен быть включен в химический состав штат.

3. Долговременная память — Это система памяти для больших объемы информации за длительные периоды времени. Его емкость безграничен, но поиск информации не всегда прост. Например, иногда мы знаем, что что-то знаем, но не можем Запомни. Это явление упоминается как феномен кончика языка . Долговременная память может быть эпизодической памятью , которая является автобиографической. запись того, что мы видим, слышим или делаем, или Семантическая память , которая это организованные знания о словах или символах и правилах манипулируя ими.

III. ЗАБЫВАНИЕ

1. Гипотеза распада следа — Это простейший вид забывая. Просто информация, введенная в долгосрочные память тускнеет или затухает с течением времени. Ты можешь запомнить кто сидел рядом с тобой во втором классе?

2. Помехи — Если не время заставляет забыть вещи это может быть вмешательство других вещей, которые хранятся в памяти. Он может принимать две формы. Ретроактивная помеха когда информация, которую вы в настоящее время изучаете, мешает то, что уже есть в памяти. Проактивное вмешательство — это когда информация, ранее введенная в память, мешает тому, что вы пытаетесь учиться сейчас.

3. Инфантильная амнезия — Обычно вы мало что можете вспомнить всего, что случилось с вами в течение первых 3 лет жизни. Это могло быть из-за того, что вам не хватало структур мозга на долгое время. память в этом возрасте или недостаток языка, что может быть необходимо для закодировать информацию в долговременную память.Какие воспоминания люди думаю, что у них с этого периода обычно то, чем они были сказал кто-то позже, хотя вы можете быть уверены, что ты это помнишь. Сейчас это очень спорно, потому что некоторые люди после терапии настаивайте на том, чтобы они помнили детское насилие. Большинство экспертов в поле сбрасывать со счетов это как предложения, данные им их терапевт.

IV. ВОССТАНОВЛЕНИЕ ПАМЯТИ

1. Типы поиска — Извлечение имеет две формы. Признание понимает, что информацию уже видели или слышали раньше. Например, песня. Вы можете не знать всех слов, но вы знаете вы слышали это раньше. Отзыв влечет за собой активный поиск долговременной памяти для извлечения определенной информации.

2. Повторное обучение — Повторное изучение, казалось бы, забытой информации может занять меньше времени, чем оригинальное обучение, потому что даже если Вы забыли подробности, возможно, остался след, который облегчает хранение и поиск.

3. State Dependent Learning — Полученная информация в одном физиологическом состоянии может быть трудно восстановить, когда вы находятся в другом физиологическом состоянии. Если вы встретите кого-то, когда вы пьяны, возможно, ты не помнишь его трезвым, но в следующий раз пьяный ты делаешь.

4. Искажение памяти — Вы когда-нибудь что-нибудь помнили? так и друг вспомнил совсем другое? Мы все обладаем схемы , или когнитивные рамки, с помощью которых мы рассматриваем Мир.После того, как схема сформирована, она может повлиять на способ кодирования, хранить или извлекать информацию. Вы с большей вероятностью запомните вещи, которые поддерживают ваши убеждения.

5. Строительство — Наша память также зависит от строительства что является нашей тенденцией заполнять детали, вспоминая прошлые события или даже вспоминая переживания, которых у вас никогда не было. Вы не можете запомните все детали, чтобы, вспоминая опыт вы можете поместить туда вещи, которые, как вы предполагали, произошли или хотите, чтобы произошло.

Leave a comment