Информатика монитор: Монитор (устройство) — Википедия – Монитор (устройство) — это… Что такое Монитор (устройство)?

Доклад по информатике на тему: «Мониторы: назначение, классификация»

ГОА ПОУ «Липецкий Индустриально-строительный коледж»

Работа на тему: «Мониторы: назначение, классификация»

______________

Липецк 2019

Монитор — универсальное устройство визуального отображения всех видов информации состоящее из дисплея и устройств предназначенное для вывода текстовой, графической и видео информации на дисплей. Различают алфавитно-цифровые и графические мониторы, а также монохромные мониторы и мониторы цветного изображения — активно-матричные и пассивно-матричные ЖКМ.

Век мониторов с электронно-лучевой трубкой неотвратимо уходит в прошлое. Невероятно, но за каких-то полгода многостраничные журнальные обзоры новейших моделей традиционных мониторов уступили место обстоятельным описаниям свойств плоскопанельных дисплеев, прежде всего жидкокристаллических, а теперь и плазменных. Да, технологии не стоят на месте, и вот уже плазма, высшее энергетическое состояние вещества, работает там, где требуется молниеносная скорость обмена информацией, поразительная оперативность, ослепительная новизна. Однако коммерческий цикл любого изобретения не вечен, и вот уже производители, запустившие массовое производство LCD-панелей, готовят следующее поколение технологий изображения информации. Устройства, которые придут на замену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer — ветоизлучающие полимеры), только выходят из научных лабораторий, а другие, например, на основе плазменной технологии, уже представляют собой законченные коммерческие продукты. Хотя плазменный эффект известен науке довольно давно (он был открыт в лабораториях Иллинойского университета в 1966 году), плазменные панели появились только в 1997 году в Японии. Почему так произошло? Это связано и с дороговизной таких дисплеев, и с их ощутимой «прожорливостью» — потребляемой мощностью. Хотя технология изготовления плазменных дисплеев несколько проще, чем жидкокристаллических, тот факт, что она еще не поставлена на поток, способствует поддержанию высоких цен на этот пока экзотический товар. Несравненное качество изображения и уникальные конструктивные особенности делают информационные панели на плазменной технологии особенно привлекательными для государственного и корпоративного сектора, здравоохранения, образования, индустрии развлечений.

По способу формирования изображения мониторы можно разделить на группы:

  • Жидкокристаллические экраны

  • Плазменные дисплеи

  • C электронно-лучевой трубкой(ЭЛТ)

Классификация мониторов

По виду выводимой информации:

  • алфавитно-цифровые

  • дисплеи, отображающие только алфавитно-цифровую информацию

  • дисплеи, отображающие псевдографические символы

  • интеллектуальные дисплеи, обладающие редакторскими возможностями и осуществляющие предварительную обработку данных

  • графические

  • векторные

  • растровые

По строению:

  • ЭЛТ — на основе электронно-лучевой трубки (англ. cathode ray tube, CRT)

  • ЖК — жидкокристаллические мониторы (англ. liquid crystal display, LCD)

  • Плазменный — на основе плазменной панели

  • Проекционный — видеопроектор и экран, размещённые отдельно или объединённые в одном корпусе (как вариант — через зеркало или систему зеркал)

  • OLED-монитор — на технологии OLED (англ. organic light-emitting diode — органический светоизлучающий диод)

  • Виртуальный ретинальный монитор — технология устройств вывода, формирующая изображение непосредственно на сетчатке глаза.

  • Простой монитор — простой монитор для просмотра фильмов.

По типу видеоадаптера:

  1. HGC

  2. CGA

  3. EGA

  4. VGA, SVGA

По типу интерфейсного кабеля:

  • композитный

  • раздельный

  • D-Sub

  • DVI

  • USB

  • HDMI

  • DisplayPort

  • S-Video

По типу устройства использования

  • в телевизорах

  • в компьютерах

  • в телефонах

  • в калькуляторах

  • в инфокиосках

По цветности мониторы, как правило, разделяют на:

  • цветные;

  • монохромные;

Плазменные дисплеи

Разработка плазменных дисплеев, начатая еще в 1968 г., базировалась на применении плазменного эффекта, открытого в Иллинойсском университете в 1966 г.

Функциональные возможности плазменного монитора:

  • Экран обладает следующими функциональными возможностями и характеристиками:

  • Широкий угол обзора как по горизонтали, так и по вертикали (160° градусов и более).

  • Очень малое время отклика (4 мкс по каждой строке).

  • Высокая чистота цвета (эквивалентная чистоте трех первичных цветовЭЛТ).

  • Простота производства крупноформатных панелей (недостижимая при тонкопленочном технологическом процессе).

  • Малая толщина — газоразрядная панель имеет толщину около одного сантиметра или менее, а управляющая электроника добавляет еще несколько сантиметров;

  • Отсутствие геометрических искажений изображения.

  • Широкий температурный диапазон.

  • Отсутствие необходимости в юстировке изображения.

Механическая прочность плазменного монитора

Внедрение двух новых технологических структур резисторной и фосфорной позволило получить яркость и срок службы экрана на уровне, необходимом для практических применений. Новая фотолитографическая технология, а также метод станбластинга сделали возможным выполнить 40-дюймовую плазменную панель с высокой точностью.

Основные недостатки плазменного монитора

К числу недостатков можно отнести ограниченную разрешающую способность большинства существующих плазменных мониторов, которая не превышает 640х480 пикселей. Исключение составляет модели PDP-V501MX и 502MX фирмы Pioneer. Обеспечивая реальное разрешение 1280х768 пиксел, данный дисплей имеет максимальный на сегодняшний день размер экрана 50 дюймов по диагонали (110х62 см) и хороший показатель по яркости (350 Nit), за счет новой технологии формирования ячеек, и улучшенный контраст.

К недостаткам плазменных дисплеев также можно отнести невозможность «сшивания» нескольких дисплеев в «видеостену» с приемлемым зазором из-за наличия широкой рамки по периметру экрана

Тот факт, что размер коммерческих плазменных панелей обычно начинается с сорока дюймов, свидетельствует о том, что производство дисплеев меньшего размера экономически нецелесообразно, поэтому мы вряд ли увидим плазменные панели, скажем, в портативных компьютерах. Это предположение подкрепляется и другим фактом: уровень энергопотребления «плазменников» подразумевает подключение их к сети и не оставляет никакой возможности работы от аккумуляторов. Еще один неприятный эффект, известный специалистам, — это интерференция, «перекрывание» микроразрядов в соседних элементах экрана. В результате подобного «смешивания» качество изображения, естественно, ухудшается.

Также к недостаткам плазменных дисплеев следует отнести то, что например средняя яркость белого цвета плазменных дисплеев составляет на настоящий момент порядка 300 кд/м2 у всех основных производителей. В общем и целом это достаточно ярко, однако плазменным дисплеям далеко до яркости ЭЛТ, составляющей 700 кд/м2. Подобная яркость может быть достигнута с повышением светоотдачи с 0,7 — 1,1 до 2 лм/Вт, однако этот рубеж преодолеть будет непросто. А также в настоящее время нельзя не заметить очень высокую цену плазменных дисплеев, доступных далеко не всем желающим.

Жидкокристаллические экраны

Жидкий кристалл представляет собой некоторое состояние, в котором вещество обладает некоторыми свойствами как жидкости (текучестью), так и твердых кристаллов (например, анизотропией). Для изготовления ЖК-экранов используют так называемые нематические кристаллы, молекулы которых имеют форму палочек или вытянутых пластинок. ЖК-элемент помимо кристаллов включает в себя прозрачные электроды и поляризаторы. В отсутствие электрического поля молекулы нематических кристаллов образуют скрученные спирали. При прохождении в этот момент луча света через ЖК-элемент плоскость поляризации его поворачивается на некоторый угол. Если на входе и выходе этого элемента поместить поляризаторы, смещенные друг относительно друга на такой же угол, то свет беспрепятственно сможет проходить через этот элемент. Если же к прозрачным электродам приложено напряжение, спираль молекул распрямляется и поворота плоскости поляризации уже не происходит. Как следствие, выходной поляризатор не пропускает свет. Примером может служить ЖК-индикатор наручных электронных часов.

Экран ЖК-дисплея представляет собой матрицу ЖК-элементов. В настоящее время существуют два основных метода адресации ЖК-элементов: прямой (или пассивный) и косвенный (или активный). В пассивной матрице ЖК-элементов выбранная точка изображения активируется подачей напряжения на соответствующие прозрачные адресные проводники-электроды строки и столбца. В этом случае невозможно достичь высокого контраста изображения, так как электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема вполне разрешима при использовании так называемой активной матрицы ЖК-элементов, когда каждой точкой изображения управляет свой электронный переключатель. Контраст при использовании активной матрицы ЖК-элементов может достигать значения от 50:1 до 100:1. Обычно активные матрицы реализованы на основе тонкопленочных полевых транзисторов (Thin Film Transistor, TFT). Неким компромиссом между активной и пассивной матрицей являются в настоящее время экраны, использующие технологию двойного сканирования (Dual Scan, DSTN), при которой одновременно обновляются две строки изображения.

Заключение

Обсуждая мониторы, мы ничего не сказали о видеокартах. Ведь даже самый замечательный монитор не покажет своих достоинств при работе с плохенькой видеокартой. Да и режима с желаемыми экранным разрешением и глубиной цвета на 1 МБ видеопамяти вы не получите. Итак, для 15″ монитора с максимальным рекомендованным разрешением 1024х768 и глубиной представления цвета в 16 или 24 разряда требуется хотя бы 2 МБ видеопамяти. А если вы работаете с 17″ монитором на разрешениях 1024х768 или 1280х1024 также с глубиной представления цвета в 16 или 24 разряда, вам уже потребуется 4 МБ видеопамяти. Кроме того, работа с высокими экранными разрешениями требует применения быстродействующей видеопамяти: SDRAM, SGRAM, MDRAM, VRAM или WRAM.

Ну и, конечно же, для реализации мониторами функций Plag and Play ваша видеокарта должна поддерживать стандарты DDC1/2B. Поэтому, планируя покупку нового монитора, не забудьте проверить возможности своей видеокарты (если у вас уже есть компьютер) либо удостоверьтесь в соответствии видеоадаптера требованиям монитора (если вы покупаете новую систему).

Виды мониторов и их свойства | Info-Comp.ru

Если вы читаете эти строки, то точно знаете, что такое монитор. А иначе, откуда бы вы прочитали эти строки? С монитора мы получаем всю текстовую и графическую информацию. Без него компьютер всего лишь ящик, в котором много чего есть, но невозможно узнать, что именно.

Какие бывают мониторы?

Со времени своего рождения и до сегодня мониторы прошли определенное «эволюционное» развитие. Оно выразилось в появление на свет трех видов устройств.

1. ЭЛТ-мониторы.

Отличаются крупными габаритными размерами, внушительным весом и мерцающим экраном.

Обязательный элемент конструкции этих приборов — электронно-лучевая трубка (ЭЛТ). Она представляет собой стеклянный сосуд, заполненный вакуумом. С одной стороны трубка узкая, как горловина, а с другой широкая и плоская. Это и есть экран. С фронтальной стороны он покрыт специальным веществом – люминофором. Оно обладает свойством светиться под воздействием потока электронов. Слегка мерцающее изображение на экране ЭЛТ-монитора является результатом бомбардировки люминофора управляемым потоком заряженных частиц.

В цветных мониторах экран покрыт мельчайшими частицам красного, синего и зеленого люминофора. Поток заряженных частиц обеспечивают три электронных пушки. Так возникает цветное изображение на экранах ЭЛТ-мониторов.

Мониторы с ЭЛТ уходят в прошлое из-за своих главных недостатков – больших габаритов, высокого электропотребления и электромагнитного излучения. Но в то же время они обладают достоинствами, которыми не всегда могут похвастаться более современные виды мониторов. Главные из них – большая скорость вывода изображения на экран и высокое его качество под любым углом обзора. Поэтому с ЭЛТ-мониторами не спешат расставаться любители DVD-фильмов и заядлые геймеры.

2. Жидкокристаллические мониторы.

Их еще называют LSD-мониторами, что в принципе одно и то же. Технология воспроизведения изображения в таких устройствах построена на использовании жидких кристаллов, обладающих уникальными свойствами. Они способны в зависимости от направления электромагнитного поля пропускать или не пропускать определенную цветовую составляющую. То есть можно говорить о том, что молекулы жидких кристаллов являются фильтрами, которыми можно управлять и тем самым регулировать выдачу на экран нужных цветовых эффектов в виде изображений.

К главным достоинствам LSD-мониторов можно отнести их компактность, низкое электропотребление, отсутствие излучения и мерцания экрана. Поэтому, наверное, большинство людей сегодня хотят купить монитор с жидкокристаллическим экраном.

3. Плазменные мониторы.

Отличаются выразительной яркостью и контрастностью изображения. Но есть и недостатки – сравнительно большое электропотребление и невысокая разрешающая способность. Экран плазменного монитора состоит из множества мелких колб, заполненных инертным газом. Их внутренняя поверхность покрыта люминофором, мельчайшие точки которого засвечиваются нужным цветом под воздействием плазменного разряда в среде инертного газа. Разряд возникает в результате подачи напряжения на электроды, которыми «прошиты» колбы.

Рассмотрев все виды мониторов, можно придти к следующему выводу, что наиболее востребованными в настоящее время являются жидкокристалические устройства. Благодаря своим неоспоримым преимуществам, они сумели полностью вытеснить с рынка ЭЛТ-мониторы. Плазменные конструкции для работы с компьютером применяются редко. Они чаще используются в качестве телевизоров и мониторов для больших аудиторий.

Если информации о мониторах в данной статьи для кого-то окажется недостаточно, то больше об этих приборах можно узнать тут.

Монитор (дисплей) — Физика, Информатика и ИКТ

Монитор — конструктивно законченное устройство, предназначенное для визуального отображения информации.

Основные параметры:

  • Соотношение сторон экрана — стандартный (4:3), широкоформатный (16:9, 16:10) или другое соотношение (например, 5:4).
  • Размер экрана — определяется длиной диагонали, чаще всего в дюймах.
  • Разрешение — число пикселей по горизонтали и вертикали.
  • Глубина цвета — количество бит на кодирование одного пикселя (от монохромного до 32-битного).
  • Размер зерна или пикселя.
  • Частота обновления экрана (Гц).
  • Время отклика пикселей (не для всех типов мониторов).
  • Угол обзора.

Дисплей (англ. display — показывать, от лат. displicare — рассеивать, разбрасывать) — электронное устройство, предназначенное для визуального отображения информации. Дисплеем в большинстве случаев можно назвать часть законченного устройства, используемую для отображения цифровой, цифро-буквенной или графической информации электронным способом.

Современный монитор состоит из экрана (дисплея), блока питания, плат управления и корпуса. Информация для отображения на мониторе поступает с электронного устройства, формирующего видеосигнал (в компьютере — видеокарта). В некоторых случаях в качестве монитора может применяться и телевизор.

Электронная бумага (англ. e-paper, electronic paper; также электронные чернила, англ. e-ink) — технология отображения информации, разработанная для имитации обычной печати на бумаге и основанная на явлении электрофореза.

В отличие от традиционных плоских жидкокристаллических дисплеев, в которых используется просвет матрицы для формирования изображения, электронная бумага формирует изображение в отражённом свете, как обычная бумага, и может хранить изображение текста и графики в течение достаточно длительного времени, не потребляя при этом электрической энергии и затрачивая её только на изменение изображения. В отличие от традиционной бумаги, технология позволяет произвольно изменять записанное изображение.

Первая электронная бумага, названная Гирикон (англ. Gyricon), состояла из полиэтиленовых сфер от 20 до 100 мкм в диаметре. Каждая сфера состояла из отрицательно заряженной чёрной и положительно заряженной белой половины. Все сферы помещались в прозрачный силиконовый лист, который заполнялся маслом, чтобы сферы свободно вращались. Полярность подаваемого напряжения на каждую пару электродов определяла, какой стороной повернется сфера, давая, таким образом, белый или чёрный цвет точки на дисплее.

В 1990-х годах Джозеф Якобсон изобрел другой тип электронной бумаги.

Принцип действия был следующий: в микрокапсулы, заполненные окрашенным маслом, помещались электрически заряженные белые частички. В ранних версиях низлежащая проводка управляла тем, будут ли белые частички вверху капсулы (чтобы она была белой для того, кто смотрит) или внизу (смотрящий увидит цвет масла).[6] Это было фактически повторное использование уже хорошо знакомой электрофоретической (от электро- и греч. φορέω — переносить) технологии отображения, но использование капсул позволило сделать дисплей с использованием гибких пластиковых листов вместо стекла.

История изобретения и развития монитора

Одна из важнейших частей персонального компьютера – монитор. Именно с этим устройством визуального отображения информации регулярно происходит зрительный контакт. Параметры этого устройства напрямую влияют на то, насколько глазам человека будет комфортно работать. Поэтому по мере развития ПК люди пытались улучшить и работу монитора, сделать его более универсальным и безопасным для зрения.

Открытие Фердинанда Брауна во второй половине XIX века положило путь к созданию монитора, ученый путем долгих экспериментов на протяжении 18 лет пытался создать и, в конце концов, создал прибор, который формировал изображение при помощи электронно-лучевой трубки. История монитораБраун не запатентовал свое изобретение и на протяжении десятилетий этот механизм совершенствовали другие специалисты в области техники. Такие приборы получили названия «кинескопы». Изначально они были векторными: один луч с высокой скоростью передвигался по экрану и «рисовал» изображение. Именно это устройство было заложено в основе первых ЭВМ. Главный минус векторного кинескопа — невозможность отображать долгое время графические элементы. Поэтому на смену векторным пришли растровые, однако они в свою очередь подходили больше для телевидения, чем для компьютерной техники. Их использование требовало большой объем памяти для восстановления картинки.

Первые компьютеры выводили всю информацию на печатные носители. По мере развития электронно-лучевой трубки, ее начали внедрять в ЭВМ. Впервые такое устройство было представлено 1948 году и носило название «Manchester Small-Scale Experimental Machine». Наряду с этим механизмом были созданы и другие, но все они отличались от современных компьютерных мониторов, так как в основном работали как осциллографы.

Начиная с 1951 года, электронно-лучевые трубки активно развиваются в США. Их использовали для отображения в небе вражеских самолетов в случае воздушной атаки. Уже к 1960-м годам такие мониторы стали одной из составляющих ЭВМ. При этом для улучшения работы монитора, а также качества изображения, в устройство добавили дисплейные станции. Они форматировали знаки на экране.

Так как в те времена ЭВМ была дорогостоящая вещь, решением этой проблемы стало создание терминалов (экранов), позволявших подключаться к одному компьютеру с разных мониторов. Сначала это приспособление помогало отображать только текст из 12 строк по 80 символов в каждом. В 1972 году терминал мог демонстрировать 4 цвета.

В 1975 году был выпущен первый компьютер со встроенным монитором. История монитораОднако скорость его работы была медленной. Поэтому в 1981 году был создан видеоадаптер Monochrome Display Adapter, бравший на себя работу центрального процессора. Однако он мог выводить лишь текстовые изображения. Несколько месяцев спустя был выпущен цветовой адаптер, отображавший 16 цветов на экране, но такие устройства не позволяли сделать картинку качественной и четкой.

Монитор, использовавший все функции адаптера, был создан в 1983 году. Первопроходцем можно назвать компанию IBM, уже за ней стали появляться аналоги по всему миру. На протяжении нескольких лет каждая фирма вносила новшества в свои изобретения, улучшая тем самым объем памяти, качество изображения, а также возможности мониторов.

Стоит выделить видеоадаптер VGA, который был представлен в 1987 году. История монитораПо сравнению с другими устройствами он мог отобразить 256 цветов, а его разрешение было 640×480 пикселей, чего не было раньше. Этот разрешение признали мониторным-стандартом.

Однако вскоре на смену ЭЛТ пришли ЖК мониторы. И если XX век можно назвать эрой электронно-лучевых трубок, то последние десятилетия на пике популярности находятся ЖК-мониторы.

Что такое монитор — все определения :: SYL.ru

Мало кто знает, что экран, на который мы смотрим, работая за компьютером,- это вовсе не «монитор». Данное понятие закрепилось в сленге пользователей, однако изначально означало совсем другой аппарат. Именно о нем мы и поведем сегодня свой разговор. Что такое монитор?

что такое монитор

Определение

Слово «монитор» пришло к нам из латыни. Monitor — тот, кто присматривает, следит, напоминает. Как видите, исконное значение кардинально отличается от того, которое мы ему присваиваем, называя монитором прибор, который выводит изображение с компьютера. Впрочем, само по себе оно не так далеко от правды.

В современном толковом словаре нет однозначного понятия монитора. Оно подразделяется на множество значений, которые зависят от области применения. Давайте узнаем, что такое монитор в разных аспектах нашей жизни.

Техника

В данном случае более правильное название находится в английском словаре. Дисплей, экран — это устройство, предназначенное для вывода изображения. Тогда что такое монитор?

подключение монитора
  1. Это аппарат, служащий для выведения изображения на дисплей. То есть вся совокупность технических устройств, которые, работая все вместе, показывают нам картинку на экране, создаваемую компьютером.
  2. Либо отслеживающий и показывающий нам определённые параметры прибор. Например, счетчик Гейгера, позволяющий контролировать уровень радиации.
  3. В музыке, а точнее на сцене, это звуковой прибор, направленный на исполнителя, чтобы тот мог слышать все звуки и ориентироваться между всеми партиями музыкантов.
  4. Продолжая тему музыки, в студийной записи монитор — это прибор, служащий для контроля качества записываемого звука.

Контакт

Отдельно стоит сказать о подключение монитора (дисплея) к персональному компьютеру. С развитием техники качество изображения повышалось, и росла необходимость в передаче большего объёма данных, а значит, росла и потребность в новых интерфейсах.

  1. Первым интерфейсом, создававшим связку «системный блок — монитор», с которым могли столкнуться пользователи, был VGA-кабель. Он представлял собой 15-контактный разъём и имел одинаковые интерфейсы для подключения к монитору и компьютеру.
  2. На настоящий момент используется формат DVI. Он представляет собой 24-штырьковый и крестообразный разъём. Поскольку замена и переход мониторов на новый интерфейс происходила постепенно, можно встретить переходники DVI-VGA для подключения дисплеев к старым видеокартам.
  3. Отдельной веткой развития стали HDMI-разъёмы. Они предназначаются для подключения к телевизору компьютера и чем-то напоминают USB, только в форме трапеции, а не прямоугольника.

Подключить монитор очень просто. У вас есть всего два шнура. Один мы подключаем к сети питания, второй к видеокарте в системном блоке. Если порты различаются, вам нужно приобрести в магазине переходник. Никаких драйверов для монитора вам не понадобится, всё предустанавливается вместе с видеокартой.

блок монитор

Если вы хотите смотреть фильм не через монитор, а через телевизор, то подключите HDMI-кабель и настройте ТВ на получение сигнала с него. Остальное пройдет в автоматическом режиме и не потребует от вас никаких усилий. Картинка на экране монитора и телевизора не будет различаться, и вы сможете управлять содержимым, как вам захочется.

Программирование

Как мы уже поняли, мониторы служат для управления и контроля. Не обошлось без использования этого термина и в программировании. Мониторы — это класс подпрограмм, которые осуществляют мониторинг.

  1. Это механизмы, которые отвечают за взаимодействие разделенных процессов и элементов программы.
  2. Специальная программа, которая позволяет отслеживать и контролировать состояние персонального компьютера на низком уровне. Загрузка ОС, содержимое оперативной памяти.

По сути, все программы в персональном компьютере, которые отвечают за регулировку, контроль и управления, являются мониторами.

Другие значения

Существуют и некоторые другие определения, что такое монитор. Например, в западной системе образования, которая носит название Белл-Ланкастерской системы, в каждом классе присутствует ученик-монитор. Это помощник учителя, старший учащийся. Хотя, по сути, он имеет те же функции, что и старосты в российских учебных заведениях.

через монитор

Кроме того, монитор — это тип военного корабля. Его функции заключаются в береговой охране и подавлении береговой артиллерии.

Информатика. Шпаргалка. Монитор ПК. Клавиатура ПК (И. В. Воронина, 2009)

Монитор ПК. Клавиатура ПК

Монитор – это периферийное устройство для вывода на экран текстовой и графической информации. По принципу своего действия монитор аналогичен телевизору, но монитор является цифровым устройством, что повышает качество изображения. Новейшие модели мониторов произведены на основе жидкокристаллических экранов. Монитор имеет следующие характеристики.

1. Графическое разрешение – это количество пикселей, воспроизводимых на экране. Чем больше пикселей (точек) на экране, тем выше плотность информации, но ниже процент ее читаемости, по той причине, что размеры изображения уменьшаются.

2. Зернистость представляет собой шаг решетки с отверстиями, при помощи которых появляется цветное изображение, которое образуется за счет совмещения трех цветов: зеленого, красного, синего. Цвета сформированы с помощью трех электронных лучей, причем каждый луч должен попадать на участок своего цвета. Перед экраном ставится решетка с отверстиями, чтобы обеспечить высокую вероятность и точность попадания. Четкость изображения будет выше, если диаметр отверстий и расстояние между ними будет меньше.

3. Размер монитора измеряется по диагонали в дюймах. Размеру монитора должно соответствовать графическое разрешение.

4. Частота регенерации экрана представляет собой частоту смены кадров, которая защищает глаза пользователя при продолжительной работе на ПК.

5. Класс защиты – это показатель, соответствующий стандарту и определяющий вредное излучение экрана.

Клавиатура – это устройство ввода текстовой информации на ПК пользователем. На клавишах находятся буквы, цифры, знаки, наименования команд и так далее. С неисправной клавиатурой или без клавиатуры большинство компьютеров не запустится. На стандартной клавиатуре может быть 101, 102 или 104 клавиши, назначение которых зависит от программы, в которой работает пользователь.

Можно выделить 5 групп клавиш.

Первая группа клавиш применяется для ввода информации и имеет название алфавитно-цифровой. Назначение клавиш в этой группе постоянно.

Вторая группа называется функциональной и применяется для удобства вызова различных функций в программах. Назначение клавиш в этой группе может меняться в зависимости от программы, в которой работает пользователь.

Третья группа клавиш на клавиатуре носит название дополнительной-цифровой (малая цифровая клавиатура). Клавиши здесь работают в двух режимах, которые могут изменяться путем переключения NUM LOCK: для ввода цифр и для редактирования и управления курсором.

Четвертая группа клавиш применяется для редактирования и управления курсором.

Пятая группа имеет специальные и регистровые клавиши, которые предназначены для изменения назначения других клавиш и могут использоваться совместно с ними.

Leave a comment