Как узнать как у меня блок питания: Как узнать какой стоит блок питания на пк через программу

Содержание

Как проверить блок питания программой AIDA64

На заре эры компьютеров блоки питания имели вес от 15 до 20 кг. Сегодня же они выглядят, как маленькая коробка. Блок питания предназначается для преобразования напряжения электросети и доставки его к остальным элементам ПК.

Блок питания не включает в себя большое количество микросхем, не является сложным в техническом плане устройством. Он не оказывает влияния на скорость обработки данных, но, тем не менее, это важнейший элемент компьютера. Если он выйдет из строя, ПК не получится запустить. Продолжительные нагрузки, пылевые отложения, вибрационное воздействие – все это приводит к тому, что температурные показатели оборудования повышаются.

Проверять блок питания требуется для того, чтобы предотвратить возникновение неполадок. Увеличение температурных и снижение мощностных показателей считается признаком того, что охлаждающая система неисправна. Располагая данными о состоянии элементов компьютера, можно решить, как предотвратить поломку.

Процедура проверки

АИДА64 – одна из самых популярных программ для диагностики. Посредством нее возможно узнавать параметры программно-аппаратного обеспечения, тестировать производительность оборудования. Для того чтобы посмотреть блок питания через эту программу, требуется следовать такому алгоритму:

  1. Запуск AIDA64.
  2. Выбор пункта «Компьютер».
  3. Переход в раздел «Датчики». Здесь размещены сведения о мощностных и температурных показателях.
  4. Переход в раздел «Электропитание» (если в разделе «Датчики» нет нужной информации).
  5. Выбор пункта «Суммарная информация».

Если через AIDA 64 узнать параметры оборудования не удалось, это значит, что блок питания не передает данные, так как отсутствуют определенные датчики либо необходимо обновить драйвера.

Далее приведены рекомендации для тех, кому не удалось посмотреть блок питания через AIDA64:

  • Если охлаждающая система стала сильно гудеть, отключите ПК, установите причину подобных звуков. Обычно гудение появляется из-за пылевых отложений либо элементов, которые расшатаны вибрацией.
  • О наличии проблем с оборудованием свидетельствуют внезапные отключения ПК либо проблемы с запуском.
  • Для проверки температуры блока питания компьютера прикоснитесь к корпусу рукой. Стоит сказать, что подобный метод проверки неточный, использовать его необходимо при отключенном ПК. О неполадках с охлаждающей системой также может свидетельствовать поток горячего воздуха из вентилятора в блоке питания.

Распространенные неполадки, методы их устранения

Таблица неисправностей и методов их устранения:

Вид неполадки Чем обусловлена Как устранить
Не загорается датчик питания ПК Перегоревший предохранитель Смена предохранителя
Новый предохранитель, установленный вместо старого, при запуске ПК сгорает Поломка компонентов входных цепей Проверка входных цепей
Предохранитель целый, блок питания не включается Неисправность МКТ либо управляющей схемы Проверка работоспособности МКТ и управляющей схемы
Отсутствие выходного напряжения Поломка микрочипа ШИМ-генератора Замена микрочипа
Вентилятор не включается Поломка конденсатора в управляющей схеме, неисправность датчика обратной связи Замена конденсатора, проверка датчиков обратной связи
Не включается частотный преобразователь Поломка трансформатора, образование короткозамкнутых витков Замена либо ремонт трансформатора
Компьютер не запускается, напряжение присутствует Отсутствие сигнала «Power good» Проверка микрочипа, вырабатывающего сигнал
Блок питания функционирует пару секунд, затем выключается Срабатывание защиты от перегрузки Проверка цепи нагрузки
Выходное напряжение располагает повышенной степенью пульсаций Поломка цепей фильтрации и стабилизации Ремонт фильтрующих, стабилизирующих элементов

Выбирая место подключения компьютера к электросети, примите во внимание такие рекомендации:

  • подключайте компьютер к отдельным линиям с защитными автоматами;
  • выполните проверку сопротивления заземляющей шины;
  • удостоверьтесь, что нет провалов напряжения;
  • старайтесь не использовать удлинители, из-за них может происходить снижение мощности блока питания;
  • не подсоединяйте к розетке с компьютером иную бытовую технику (микроволновку, кондиционерное устройство).

Помните, что чем чаще вы запускаете и выключаете ПК, тем сильнее изнашивается оборудование.

Программа АИДА64 – оптимальный вариант для диагностики блока питания, а также других элементов персонального компьютера, относящихся к аппаратному обеспечению. Через нее вы можете определить, есть ли проблемы с оборудованием, решить, стоит ли заменять блок питания или нет.

Видео

Как подобрать блок питания для ноутбука? Решение есть

 

Новый блок питания для ноутбука, как правило, требуется в двух случаях. Во-первых, когда родное зарядное устройство сломалось – в этом случае очень важно быстро найти замену, иначе аккумулятор ноутбука просто разрядится, и невозможно будет работать.

 

Для подбора блока питания ноутбука напишите к нам на ватцап или позвоните по телефону и наши консультанты подберут зарядное устройство для вашего ноутбука

 

 

Во-вторых, если пользователь использует ноутбук постоянно и в нескольких местах (на работе и дома), то каждый раз отключать блок питания, сворачивать шнур от него, носить с собой элементарно неудобно и хоть на немного, но прибавляет вес к уже имеющемуся багажу в виде самого ноутбука и всевозможных деловых бумаг…

 

Когда возникает вопрос, где купить блок питания для ноутбука, сразу вспоминается магазин, в котором покупался сам мобильный компьютер.

 

 

Но в указанном выше первом случае время не терпит, в магазине элементарно может не быть данной модели и… и нужно знать еще, а какая, собственно, модель, нужна.

 


Какое зарядное устройство подходит к Вашему ноутбуку?


1. Нужно обязательно определить технические параметры старого блока питания. То, что он как иногда говорится «сгорел», не значит, что он в прямом смысле сгорел синим пламенем.

 

Просто он не работает, но все характеристики написаны на нем самом же – на наклейке одной из поверхностей. Важно выходное напряжение (Output), измеряемое в Вольтах и обозначаемое V (как правило, от 15 до 20V), также важна сила тока (A, амперы). Кроме блока питания эти параметры чаще всего наносятся и на дно ноутбука, но не всегда.

 

 

2. Разъем для подключения не менее важен.

 

В принципе, если покупать оригинальное зарядное устройство для ноутбука, то чаще всего хватит и названия производителя (совпадает с ноутбуком) вместе с техническими параметрами. Ну и хоть и редки, но бывают случаи, когда у одного и того же производителя есть несколько разных разъемов.

Поэтому собираясь в магазин, стоит прихватить с собой ноутбук, ну или хотя бы сфотографировать разъем как на блоке, так и на ноутбуке (лучше все-таки первое).

 

 

3. Мощность блока питания должна быть не ниже, чем требуется ноутбуку, но может быть выше. Мощность блока питания равна произведению номинального выходного напряжения на выходной ток.

Например, 19 умножаем на 3,34 и получаем не менее 65 Вт. Т.е. выбрать в этом случае можно как блок 65Вт, так, например, и 90. В последнем случае он даже меньше будет нагреваться, а, значит, скорее всего, прослужит дольше.

 

 


Несколько примечаний.


• В принципе можно переложить всю работу на продавца, назвав просто модель самого ноутбука, но в ситуации когда зарядное устройство для ноутбука нечем заменить, будет ценной каждая секунда.

 

• При покупке универсального блока питания, даже подходящего по указанным выше параметрам – техническим характеристикам и разъему – важно помнить, что не все ноутбуки будут работать с не оригинальными блоками.

Т.е. скорее всего блок питания подключится и не даст аккумулятору разряжаться, но вот и заряжаться тоже не позволит. Поэтому не советую приобретать универсальные зарядные устройства.

 

• Некоторые модели блоков питания для ноутбуков наоборот взаимозаменяемы. Поэтому купить адаптер для ноутбука можно и не всегда оригинальный (кроме случая, указанного выше).

 

 


Данные по примерной совместимости блоков питания приведены в таблице (рекомендуются к рассмотрению при выборе, но не являются законом):

 

 


И, напоследок, советы по правильному использованию блока питания для ноутбука:

1. Запрещается подключать блоки питания к сети с несоответствующими его характеристикам напряжением или частотой.

 

2. Нельзя накрывать зарядное устройство чем-нибудь или помещать его в узкие проемы без доступа воздуха (во избежание перегрева).

 

3. Не нужно разбирать блок питания самостоятельно и производить ремонт.

 

4. Адаптер для ноутбука следует держать в чистоте, избегать попадания на него жидкостей.

 

5. При неиспользовании ноутбука и во время грозы желательно отключать блок питания от сети.

 

6. При подключении сначала важно подсоединить штекер блока питания в разъем ноутбука, а потом уже включить блок в сеть.

 

Эти правила вам помогуть избежать покупки зарядного устройства и сохранить ваш ноутбук от ремонта.

 

Вопросы и ответы, связанные с режимами быстрой зарядки и супербыстрой зарядки (SuperCharge)

  • В каком режиме заряжается мой телефон?

Режим зарядки

Значок батареи в строке состояния

Обычная зарядка

Быстрая зарядка

Супербыстрая зарядка (SuperCharge)

Супербыстрая зарядка (SuperCharge)

Значок батареи в строке состояния показывает, в каком режиме осуществляется зарядка.

  • Какие режимы зарядки поддерживает мой телефон?

На блоке питания, входящем в комплект поставки телефона, указана выходная сила тока и выходное напряжение. Эти параметры определяют поддерживаемые режимы зарядки.

5 В/2 А: Обычная зарядка

9 В/2 А: Быстрая зарядка Huawei

5 В/4,5 А или 4,5 В/5 А: Супербыстрая зарядка Huawei SuperCharge

10 В/4 А или 5 В/8 А: Супербыстрая зарядка Huawei SuperCharge 40 Вт

Примечание. Модели с поддержкой режима SuperCharge обычно поддерживают и режим быстрой зарядки Huawei. Подробную информацию вы можете найти на официальном веб-сайте Huawei.

  • Какое оборудование необходимо для осуществления быстрой зарядки и супербыстрой зарядки?
  1. Телефон с поддержкой быстрой зарядки Huawei или супербыстрой зарядки SuperCharge.
  2. Блок питания с поддержкой быстрой зарядки Huawei или супербыстрой зарядки SuperCharge.
  3. Стандартный кабель передачи данных Huawei или кабель передачи данных с поддержкой быстрой или супребыстрой зарядки. Для зарядки в режиме SuperCharge требуется кабель с силой тока не ниже 5 А.

  • Почему мой телефон не заряжается в режиме быстрой зарядки и супербыстрой зарядки, когда я использую стандартный блок питания и стандартный кабель передачи данных?
  1. При подключении блока питания телефону требуется около 10 секунд, чтобы распознать блок питания и начать зарядку в режиме быстрой зарядки и супербыстрой зарядки. Это нормальное явление.
  2. Отключите кабель от USB-порта и сразу же подключите его повторно.
  3. Перезагрузите телефон и повторите попытку.
  4. Убедитесь, что зарядное устройство исправно и штекеры кабеля надежно размещены в разъемах.
    1. Убедитесь, что все устройства подключены правильно. Рекомендуется отключить блок питания от розетки, кабель передачи данных от блока питания и вашего устройства, а затем заново подключить все элементы. Если необходимо, используйте другую розетку.
    2. Убедитесь, что блок питания, кабель и коннекторы не повреждены. Поврежденный элемент не проводит ток. Не используйте поврежденные устройства и аксессуары, замените их на новые.
    3. Убедитесь, что в USB-порте и на USB-коннекторе не скопилась пыль. Если это произошло, аккуратно очистите порт и коннектор мягкой щеткой.
  • Почему даже в режиме быстрой зарядки и супербыстрой зарядки полная зарядка батареи занимает много времени?
  1. Убедитесь, что все устройства подключены правильно. Если телефон и блок питания подключены неправильно, сила тока падает, и время зарядки увеличивается.
  2. Используйте стандартный кабель передачи данных. Возможно, кабель стороннего производителя не поддерживает требуемые режимы, и время зарядки увеличивается.
  3. В процессе зарядки сила тока и напряжения динамически регулируются, и скорость зарядки постепенно снижается по мере повышения уровня заряда батареи. Этот механизм разработан специально для защиты батареи.

Если проблема не решена, сделайте резервную копию личных данных, возьмите телефон, зарядное устройство и кабель передачи данных и обратитесь в авторизованный сервисный центр Huawei.

Блок питания для компьютера, какой выбрать? Как узнать необходимую мощность БП. Производители блоков питания, какой лучше?

Самая ключевая фраза данной статьи будет :

«Не экономь на блоке питания!»

При покупке комплектующих и сборки системы с нуля, не стоит относить блок питания к второстепенным вещам.

Ведь именно он будет обеспечивать питание энергией ваши процессоры, видеокарты, материнские платы и жёсткие диски.

Начнём по порядку о том, на что же стоит обращать наибольшее внимание.

 

Производители.

Зачастую именно этот фактор является одним из самых главных. Производитель, который дорожит своей репутацией, точно не будет выпускать «бенгальские огни с верёвочками». По сему, в первую очередь подбираем проверенного производителя.

Сейчас, когда блоки питания, не просто преобразователи из переменного в постоянный ток. Производители наделяют их такими вещами как защита от короткого замыкания, повышенного и пониженного напряжения, перегрузки по току, пониженного напряжения выходных каналов, перегрева, непредвиденных импульсов. Особенно это полезно в странах пост советского пространства, где мягко говоря – «электричество, не очень качественное». Также, БП снабжаются тихими вентиляторами, модульной системой проводов и многими другими удобными вещами, очень даже необходимыми и полезными.

Бодрым середнячком по качеству является компания Chieftec , вместе с Thermaltake (те БП, что не ниже серии Toughpower). Также к середнячкам по качеству, смело можно отнести блоки питания от Enhance, Hiper и Antec. Особняком над ними по возрастанию расположились блоки питания Cooler Master, FSP, Zalman, Corsair, Seasonic, Enermax. В любом случае, купив один из перечисленных блоков питания, можно быть более уверенным за качество элементной базы внутри.

На сайте realhardtechx.com можно посмотреть реальных производителей блоков питания (OEM). Ведь более 80% «производителей» блоков питания, просто заказывают их у других 20%, а сами разрабатывают только дизайн и клеят наклейки.

 

Какие же фирмы можно отнести к ненадёжным? Espada, Gembird, PowerMan, FOX (в большинстве случаев) и список можно продолжать.

Как же не попасться на удочку мошенников? Нужно всего лишь внимательнее смотреть на ценник.

Если вам предлагают БП мощностью 600W, по цене за которую конкуренты предлагают 450W модель, то в 90% случаев — вам предлагают некачественный товар (бенгальские огни). Отправную точку в цене, лучше всего брать усреднённую у таких компаний как FSP и Chieftec.

*Данные взяты в суммарно по данным сервис центров, проблемах у пользователей и с помощью препарирования блоков питания.

Необходимая мощность блока питания.

Всевозможные калькуляторы по выбору БП, на сайтах производителей, обычно завышают необходимую мощность, которая действительно необходима системе.

Тем не менее, лучше всего брать БП с запасом.

Недостаток мощности, в лучшем случае может способствовать появлению графических артефактов от нехватки питания видеокарты, внезапным выключением компьютера, перегревом комплектующих и «ни на что не похожей» работе компьютера.

Так же, если блок питания постоянно работает на пределе, он гораздо быстрее изнашивается. Уменьшается ёмкость конденсаторов, высыхает электролит из-за постоянно высокой температуры, выходит из строя вентилятор из за постоянно высоких оборотов, происходит общий износ всех фильтрующих компонентов, из-за более высокой температуры и высокой нагрузки на них.

В худшем случае же, вас ждёт замена сгоревшего БП, вместе со сгоревшей материнской платой, видеокартой и жёстким диском (не дай Бог). Так что, «Не экономьте на блоке питания». Запомните это словосочетание, во избежании проблем.

Запас в 150-250w, хоть как то защитит ваш блок питания от преждевременного выхода из строя, а так же сбережёт бюджет на новый БП, при будущем апгрейде. Плюс изрядно уменьшит шум от вентилятора БП. Не стоит также забывать, что со временем блок питания теряет мощность. Связано это с износом компонентов, в основном конденсаторов.

 

Узнать в среднем, какая именно мощность блока питания вам нужна просто:

Складываем:

Процессор.

Нужно узнать на сайте производителя процессора или на сайте продавца, о его максимальном тепловыделении (в Ваттах). Это и будет (буквально) его потребляемая мощность.

Видеокарта.

Визуально определить сколько штырьков, вставляется в видеокарту.

Ни одного – меньше 75W, один 6-pin до 150W, два 6-pin до 225W, 8-pin + 6-pin – до 300W.

Так же нельзя не отметить, что при выборе БП под мощную систему, стоит обратить внимание на то, чтобы в блоке питания, было достаточно разъёмов для питания видеокарт, а так же чтобы сила тока соответствовала требованиям. Зачастую, видеокарты требуют по 25А на канал, имейте это в виду. Ничего страшного конечно не будет при нехватке, но провода могут ощутимо греться, а компоненты блока питания сильно изнашиваться.

При сложении потребления процессора и видеокарты, получаем число к которому прибавляем мат. плату (не больше 30W), оперативную память (не больше 20W), cd—rom+ жёсткие диски (не более 50W), pci— периферия ( <30W).

И в сумме получаем примерное количество ватт, нужное вашей системе. Остаётся приплюсовать запасные, 150-250W мощности и мы получаем нужную мощность, требуемого БП.

*Данные взяты с учётом того, что в системе будет не больше 4 планок памяти, не больше 2-х CD-приводов, 4 жёстких дисков, и 3-х pci-устройств без доп. питания

Тишина работы.

Тихий блок питания – несомненно, огромный плюс.

Блоки питания с вертикальным расположением вентилятора благополучно уходят в прошлое, оставляя место блокам питания с горизонтально расположенным вентилятором большего диаметра и более низкими оборотами (хотя есть тихие индивиды от Antec, с двумя вертикально расположенными вентиляторами), что создаёт гораздо меньше шума от подшипника вентилятора, и меньше шума трения воздуха о лопасти, за счёт уменьшения скорости его вращения.

Некоторые компании пошли дальше, создав ещё более тихие блоки питания, которые практически невозможно услышать; на столь низких оборотах они работают. Всё благодаря высокому КПД, что значительно уменьшает выброс энергии в виде тепла. А так же благодаря вентиляторам, основанным на системе плавного управления скоростью вращения, с использованием широтно-импульсной модуляции (ШИМ). Это позволяет в зависимости от температуры и нагрузки, плавно управлять скоростью вращения вентилятора.

Очень хочется отметить блоки питания, такой известной компании в мире блоков питания как Enermax, с её серией 87+

Вентилятор которой может работать со скоростью 330 оборотовмин при низкой нагрузке.

Кроме того, одними из «не громких» производителей БП, считаются Seasonic, Corsair и Zalman. К сожалению, бюджетные блоки питания, зачастую бывают обделены такими привилегиями как тихая работа.

 

Отдача мощности по линии 12W.

Почти все компоненты современного компьютера, питаются от линии 12 вольт. И надобность в линиях 3.3V и 5V не такая большая. Однако китайские производители, гордо именуемые NoName, думают иначе. Вместо того, чтобы отдавать большую мощность по 12 вольтовой линии, они отдают половину по линиям 3.3V и 5V. Это значительно уменьшает стоимость производства за счёт выравнивания нагрузки (спаренная стабилизация) между линиями, однако чревато тем, что при повышенной нагрузке на линию 12V — все линии начинают «проваливаться» в напряжении. Чревато это произвольными выключениями компьютера (при наличии защиты) или данный блок питания просто сгорит. Чаще всего горят компоненты напрямую подключенные к БП – видеокарты, материнские платы, жёсткие диски.

Во первых, нужно убедиться в том, что блок сертифицирован по стандарту ATX 12V версии 2. 1 и выше. Это практически автоматически избавляет вас от неправильно спроектированного блока питания. Начиная с этой версии стандарта, все блоки оснащаются минимум двумя 12V с отдаваемой мощностью выше 14А.

Смотреть стоит и на этикетку, в колонку 12V — суммарная нагрузочная мощность.

Если эта цифра на 150W и более отличается от общей заявленной мощности, то такой блок питания приобретать точно не стоит. У самых качественных блоков питания, отдача по линии 12V доходит до 99%(!). Бывает так, что на наклейке ничего не сказано про максимальную нагрузочную мощность по линии 12V. Это означает, что производитель скрывает истинные характеристики, и от приобретения данного блока питания также стоит отказаться.

Такие блоки питания, ставят и производители корпусов в комплекте с которыми идёт блок питания. Однако, если производитель корпуса – довольно известный производитель блоков питания, это может означать – более высокое качество комплектного БП.

И всё же, очень ценным пожеланием при покупке корпуса с БП, будет его замена на более качественный. Или же можно сэкономить и приобрести сразу корпус без БП, коих сейчас всё больше и больше. Цена за блок питания в них не учитывается (~500-800р).

В будущем это, возможно, сэкономит вам нервы, время и деньги.

Узнать, сколько мощности отдаёт блок питания по линии 12V, можно на сайте производителя или на сайте магазина где вы хотите купить блок питания, в описании товара. Чем больше это значение стремится к общей мощности блока питания, тем качественнее блок питания и тем лучше его элементная база.

 

Второстепенные факторы и удобства.

Многие, кроме убранного рабочего места, желают видеть и убранные, не торчащие из всех мест провода внутри системного блока. Для этого была придумана модульная система проводов.

Те провода, которые не используются, просто отстёгиваются и не болтаются, где попало в системном блоке. К тому же, модульные провода всегда идут в оплётке. Это не позволяет им растрепаться и получить повреждения, их можно уложить так, как захочется. Кроме эстетической, это имеет и практическую пользу в виде уменьшения зон с застоявшимся тёплым воздухом, благодаря свободному от проводов пространству в системном блоке.

Так же стоит обратить внимание на длину проводов. Довольно часто не хватает длинны проводов основного питания для материнской платы (24+4). Особенно если на вашей материнской плате разъём питания располагается не с краю, а в центре, или вы имеете просторный корпус, в котором материнская плата располагается над блоком питания.

 

Пара слов о КПД, корректоре мощности, рабочих диапазонах.

Высокий КПД (коэффициент полезного действия) — очень важен тем, кто не хочет платить за нагретый воздух лишние деньги.

 

То есть — чем выше КПД, тем меньше энергии теряется, и тем меньше блок питания выделяет тепла -> меньше шумит -> больше срок службы.

При мощном «железе», так же будет ощутимая экономия на счетах за электричество.

Активная коррекция коэффициента мощности (PFC) – более эффективна чем, пассивная.

Стоит выбирать блоки питания именно с активной коррекцией коэффициента мощности. Она даёт блоку питания возможность работать в различных диапазонах напряжений, и как следствие – чуть лучший КПД (используется полностью электронная система без дросселя, что помогает свести паразитные токи к минимуму). Ещё одним небольшим плюсом Active PFC над Passive PFC, является выделение меньшего количества электромагнитного излучения.

 

Мифы о КПД и PFC в блоках питания.

Есть миф, что PFC как то влияет на КПД — так вот это действительно миф. PFC и КПД связаны только косвенно и друг на друга почти не влияют. Предназначение PFC — это разгрузка питающей сети от реактивной мощности.

Ещё один глупый миф, но не менее актуальный — «если блок 400W, то он потребляет 400W постоянно«. Блок питания потребляет из сети только то, что необходимо комплектующим в компьютере + издержки КПД. Допустим КПД блока питания 80%, значит для отдачи 100W он заберет из них ещё 20W (100-80=20). Итого получается 120W. Для подачи 400W, потребуется 480W из розетки.

 

Заключение.

Мы разобрали все критерии, на основе которых не сложно выбрать качественный, соответствующий своим характеристикам блок питания, который сохранит питание всех ваших комплектующих на должном уровне.

1. Обратим внимание на опыт производителя.
2. Определим нужную мощность.
3. Определимся с шумовыми характеристиками.
4. Проверим отдачу по линии 12V
5. Узнаем о PFC, КПД, длине проводов

И повторим самый главный совет:

Не экономьте на блоке питания и не покупайте блок питания «на сдачу».

Удачного выбора!

Как узнать серийный номер (S/N, Serial Number)

На разных типах продукции:

Материнские платы

  • Этикетка находится на упаковочной коробке.
  • Серийный номер — ряд символов, расположенный после слов «Serial No:»

Ноутбуки

  • Этикетка находится на нижней части корпуса ноутбука. (10 символов)
  • Серийный номер — ряд символов, расположенный после слов «Serial No:»
  • Этикетка находится на нижней части корпуса ноутбука. (15 символов)
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.

Оптические приводы

  • Этикетка находится на упаковочной коробке.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.

Видеокарты

  • Этикетка находится на упаковочной коробке.
  • Серийный номер — ряд символов, расположенный после слов «Serial No:»

КПК

  • Этикетка размещена на корпусе КПК.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.

Беспроводное сетевое оборудование

  • Этикетка размещена на корпусе устройства.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.
  • Этикетка размещена на корпусе устройства.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.

Мобильные телефоны

  • Этикетка размещена на обратной стороне телефона.
  • Серийный номер — ряд символов, расположенный после «SN:».

Barebone-системы

  • Этикетка размещена на задней стороне устройства.
  • Серийный номер — ряд символов, расположенный после «SN:».

Категория «Цифровой дом»

  • Этикетка размещена на упаковочной коробке.
  • Серийный номер — 12 символов, расположенные непосредственно под штрих-кодом.
  • Этикетка размещена на задней панели устройства.
  • Серийный номер — 12 символов, расположенные непосредственно под штрих-кодом.

Eee PC

  • Этикетка размещена на нижней части корпуса Eee PC.
  • Серийный номер — ряд символов, расположенный после «SN:».

Карты HSDPA

  • Этикетка размещена на нижней стороне карты.
  • Серийный номер — ряд символов, расположенный после «SN:».

Интернет-радио ASUS (AIR)

  • Этикетка размещена на нижней стороне устройства.
  • Серийный номер — ряд символов, расположенный после «SN:».

Настольные ПК

  • Этикетка размещена на задней стороне устройства рядом с панелью разъемов.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом после «SN:».

Мониторы

  • Этикетки расположены на задней части корпуса монитора (a) и на упаковочной коробке (b).
  • • Этикетки расположены на задней части корпуса монитора (a) и на упаковочной коробке (b).

Сетевое оборудование

  • Этикетка размещена на нижней стороне устройства.
  • Серийный номер — символы, расположенные непосредственно под штрих-кодом.
  • Этикетка размещена на нижней стороне устройства.
  • Серийный номер — символы, расположенные непосредственно под штрих-кодом.

Серверные системы (стоечные)

  • Этикетка размещена либо на боковой стороне шасси (1), либо на верхней крышке (2) устройства.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.
  • The serial number can be found on the side of chassis(1) or the top of the chassis cover(2).

Серверные системы (пьедестальные)

  • Этикетка размещена на задней стороне корпуса.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.
  • The serial number can be found on the back of chassis.

Серверные материнские платы

  • Серийный номер нанесен на наклейке-этикетке.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.

Материнские платы для рабочих станций

  • Серийный номер нанесен на наклейке-этикетке.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом.

Моноблочные компьютеры

  • Этикетка размещена на задней части корпуса рядом с панелью разъемов.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом после «SN:».

Планшетные компьютеры

  • Этикетка расположена на боковой грани упаковочной коробки и в гарантийном листе.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом после «SN:».
  • Также Серийный номер можно увидеть через меню «Settings» -> «About tablet» -> «Status»

Eee Note

  • Этикетка расположена на боковой грани упаковочной коробки и в гарантийном листе.
  • Серийный номер — ряд символов, расположенный непосредственно под штрих-кодом после «SN:», или под штрих-кодом.

Определение нагрузки источника питания

Советы по поиску и устранению неисправностей от нашей технической группы

Здесь, в Jameco, мы получаем множество звонков и писем от клиентов с просьбами дать советы по устранению неполадок, а также советы о том, как максимально повысить производительность их продуктов. В этой статье приведены советы по устранению наиболее распространенных вопросов, которые мы получаем. Если вы хотите, чтобы мы решили техническую проблему или предложили решение, которое, по вашему мнению, заслуживает внимания, отправьте сообщение по адресу: [электронная почта защищена].

Вопрос: В техническом описании моего блока питания что-то упоминается о применении полной и минимальной нагрузки.Что такое полная нагрузка, минимальная нагрузка и как узнать ее размер?

Каждый источник питания предназначен для работы в определенном диапазоне условий, и каждый из них имеет максимальные рабочие условия, превышение которых не допускается.

полная нагрузка блока питания относится к максимальным рабочим характеристикам блока питания. Если он выдает номинальный ток (такой же, как максимальный ток) при номинальном напряжении, то подключенная нагрузка является полной нагрузкой. Не существует заданного значения для полной нагрузки, потому что каждый блок питания рассчитан на разные характеристики.

Более важное значение, которое должно волновать многих, — это требование минимальной нагрузки . Это значение необходимо для правильной работы многих импульсных источников питания, а также многих нерегулируемых источников питания.

Когда не применяется надлежащая минимальная нагрузка, источник питания обычно мерцает и, кажется, быстро включается и выключается. Если оставить вывод без нагрузки, это может произойти. Это связано с тем, что для большинства импульсных и нерегулируемых источников питания выходы необходимо стабилизировать.

Используя закон Ома: V = IR, вы можете рассчитать минимальную нагрузку, зная номинальное напряжение и минимальный ток.

I = ток в амперах (А)
В = напряжение в вольтах (В)
R = сопротивление в омах (Ом)

Манипулирование этой формулой дает резистивную нагрузку R = V / I. Отсюда просто введите значения для V и I, и это будет ваше минимальное значение сопротивления нагрузки. Важно: помните о номинальной мощности вашего блока питания. Он должен соответствовать номинальной мощности минимальной резистивной нагрузки.Хорошим практическим правилом является использование нагрузки с номинальной мощностью, по крайней мере, в 1,5 раза большей, чем номинальная мощность источника питания.

Для импульсных и нерегулируемых источников питания :
1) Найдите номинальное напряжение и минимальный ток каждого выхода.
2) Используйте закон Ома: R = V / I для расчета каждой выходной нагрузки.

Пример: У вас есть источник питания переменного / постоянного тока с тройным выходом , который имеет следующие характеристики:

+5 В при 0,6 А (канал 1)
+12 В при 0.2 А (канал 2)
-12 В при 0,1 А (канал 3)
Используя закон Ома, мы рассчитываем минимальную резистивную нагрузку для каждого канала:
Канал 1: R = V / I = 5 В / 0,6 A = 8,3 Ом
Канал 2: R = V / I = 12 В / 0,2 A = 60 Ом
Канал 3: R = V / I = 12 В / 0,1 A = 120 Ом

Обратите внимание, что канал 3 рассчитан на -12 В, но это не учитывается как отрицательное значение в наших расчетах. Мы не можем применять отрицательную резистивную нагрузку. Еще раз, номинальная мощность нагрузки должна быть не менее чем в 1,5 раза больше номинальной мощности источника питания. Используйте формулу для мощности: мощность = напряжение x ток или P = VI.

Если вы пытаетесь рассчитать минимальную нагрузку и знаете только номинальную мощность и напряжение вашего источника питания, вы можете использовать формулу P = V 2 / R, которая может стать R = V 2 /П.

Если по какой-либо причине у вас есть только номинальные значения тока и мощности вашего источника питания, вы можете использовать P = I 2 R, которое можно изменить на R = P / I 2 .

Как видите, расчет минимально необходимой нагрузки вашего блока питания — очень простой процесс.Просто найдите несколько оценок в таблице, и вы сможете мгновенно применить нагрузку правильного размера.

Примечание: Помните, что не следует прикладывать нагрузку, превышающую значение полной нагрузки, в течение достаточного периода времени, поскольку это может привести к повреждению или перегреву вашего источника питания.

Для получения дополнительной информации о блоках питания и принадлежностях посетите центр ресурсов питания Jameco.

Как установить блок питания в компьютер

Не стоит недооценивать важность источника питания вашего ПК.Хороший источник питания — краеугольный камень не требующего обслуживания и очень надежного компьютера. Но чаще всего готовые настольные компьютеры в штучной упаковке поставляются с самыми дешевыми блоками питания, которые соответствуют критериям гарантий на их продукцию.

Это означает, что через два или три года после покупки компьютера вы можете обнаружить совершенно функциональный рабочий стол, который однажды решит либо не включаться, либо испустить клуб черного дыма. В зависимости от модели при обновлении видеокарты мощность блока питания вашего ПК может превысить допустимые пределы.

Но не бойтесь. Установка блока питания — удивительно простой процесс. Это намного проще, чем на самом деле , выбрать лучший блок питания для вашего ПК. Мы покажем вам, как безопасно снять блок питания с вашего текущего компьютера, а затем проведем вас через шаги по установке нового блока питания. Переходите к этому разделу, если вы собираете совершенно новый компьютер.

Как снять блок питания старого ПК

Сильверстоун

6 + 2-контактный разъем, используемый для питания видеокарт и процессоров.

Первое, что вам нужно сделать, это собрать инструменты — вероятно, пару перчаток и отвертку с крестообразным шлицем — и снять старый блок питания.

Для начала отсоедините от стены все кабели, подключенные к вашему компьютеру. Если ваш блок питания (PSU) включает переключатель питания, доступный на задней панели вашего ПК, переведите его в положение «выключено», а затем снимите боковую панель вашего корпуса, чтобы вы могли получить доступ к PSU.

Ряд различных разъемов питания ведут от блока питания и питают различные компоненты вашего компьютера.Вам нужно будет отсоединить все эти кабели перед тем, как вынуть блок питания, иначе они зацепятся за блок питания и будут удерживать его в корпусе.

Томас Райан

Не забудьте снять с материнской платы большой 24-контактный разъем питания.

Возможно, вам будет полезно сфотографировать, какие кабели питания к каким компонентам были подключены, чтобы у вас была справочная информация по подключению кабелей к новому источнику питания. Не забудьте снять четырех- или восьмиконтактный разъем питания ЦП, расположенный рядом с разъемом ЦП на материнской плате, и 24-контактный кабель питания, подключенный к материнской плате по средней линии с левой стороны.При извлечении каждого кабеля вытаскивайте его из корпуса, чтобы не запутать их с другими кабелями. Это также помогает гарантировать, что все кабели питания отключены, и упрощает извлечение блока питания из корпуса, когда вы закончите.

Затем вам нужно открутить винты, удерживающие блок питания на месте. В большинстве случаев используется всего четыре винта, но конструкции у разных производителей различаются. Надежно отложите их в сторону.

Теперь вы, наконец, можете вытащить старый блок питания из корпуса.

Thomas Ryan

Как установить блок питания в ваш компьютер

Выбор блока питания на замену может оказаться непростой задачей, но руководство PCWorld по выбору лучшего блока питания для ПК может направить вас на верный путь. Еще один полезный инструмент — это номинальная мощность, указанная на боковой стороне вашего старого блока питания.

Вы можете использовать эти два инструмента, чтобы понять, сколько мощности потребуется вашему новому блоку питания и какие функции вам понадобятся — если вы не переходите на новую, более мощную видеокарту, которая требует нового, более мощного блока питания.Имейте в виду, что нет ничего плохого в покупке блока питания, который обеспечивает большую мощность, чем вам на самом деле нужно, особенно если в будущем существует вероятность дальнейшего обновления компонентов ПК.

Если вы приобрели модульный блок питания со съемными кабелями, выясните, какие из них вам понадобятся для подачи энергии к вашим компонентам, и подключите их к источнику питания, прежде чем приступить к работе — гораздо проще сделать до того, как будет встроен блок питания. в вашем компьютере.

Подготовив новый блок питания, вставьте его точно в то же место, что и старый блок питания в корпусе вашего ПК. Ваш новый блок питания должен поставляться с винтами, чтобы прикрепить блок к задней панели корпуса; прикрутите их, как указано в вашем руководстве.

Томас Райан

После того, как вы установили новый блок питания на свой компьютер, пора повторно подключить питание ко всем вашим компонентам.

А теперь пора заняться подключением. Протяните кабели за материнской платой, затем используйте вырезанные в корпусе отверстия, чтобы протянуть каждый разъем рядом с соответствующим разъемом для каждого из них. Сначала подключите 24-контактный разъем питания к материнской плате, а затем выберите 4- или 8-контактный разъем питания процессора.При необходимости подключите оптические приводы, твердотельные накопители и жесткие диски. Наконец, подключите все необходимые разъемы питания PCI-E к вашей видеокарте (если применимо), затем дважды проверьте все разъемы, чтобы убедиться, что они надежно вставлены. Если вы сделали фотографии или пометили кабели на своем старом блоке питания, теперь вы можете использовать их в качестве справочника для выяснения того, как подключить кабели нового блока питания.

Если вы приобрели немодульный блок питания с кучей дополнительных проводов, спрячьте их за лотком материнской платы в задней части компьютера.Многие новые корпуса также включают кожухи блока питания, предназначенные для скрытия блока питания и любых лишних проводов.

Закройте корпус вашего компьютера, подключите все обратно, при необходимости нажмите выключатель питания на задней панели блока питания (если он у вас есть, он будет виден с задней стороны корпуса) и включите компьютер.

Теперь у вас есть компьютер, готовый к работе в течение многих лет без проблем — или, по крайней мере, без проблем, связанных с блоком питания. Знание, как исправить простые проблемы, такие как отказ блока питания, — отличный способ получить максимальную отдачу от своих денег и не тратить деньги на совершенно новый компьютер.

БАЗОВЫЕ БЛОКИ ПИТАНИЯ — Электроника с длиной волны

Теория нерегулируемых источников питания

Поскольку нерегулируемые источники питания не имеют встроенных регуляторов напряжения, они обычно предназначены для выработки определенного напряжения при определенном максимальном выходном токе нагрузки. Обычно это блочные настенные зарядные устройства, которые превращают переменный ток в небольшую струйку постоянного тока и часто используются для питания таких устройств, как бытовая электроника. Они являются наиболее распространенными адаптерами питания и получили прозвище «настенная бородавка».

Выходное напряжение постоянного тока зависит от внутреннего понижающего трансформатора напряжения и должно быть максимально приближено к току, необходимому для нагрузки. Обычно выходное напряжение уменьшается по мере увеличения тока, подаваемого на нагрузку.

При нерегулируемом источнике питания постоянного тока выходное напряжение зависит от размера нагрузки. Обычно он состоит из выпрямителя и конденсатора сглаживания, но без регулятора для стабилизации напряжения. Он может иметь цепи безопасности и лучше всего подходит для приложений, не требующих точности.

Рисунок 4: Блок-схема — нерегулируемая линейная подача

Преимущества нерегулируемых источников питания в том, что они долговечны и могут быть недорогими. Однако их лучше всего использовать, когда точность не является требованием. Они имеют остаточную пульсацию, аналогичную показанной на рисунке 3.

ПРИМЕЧАНИЕ: Wavelength не рекомендует использовать нерегулируемые источники питания с какими-либо из наших продуктов.

Теория регулируемых источников питания

Стабилизированный источник питания постоянного тока — это, по сути, нерегулируемый источник питания с добавлением регулятора напряжения.Это позволяет напряжению оставаться стабильным независимо от величины тока, потребляемого нагрузкой, при условии, что предварительно определенные пределы не превышаются.

Рисунок 5: Блок-схема — Регулируемая поставка

В регулируемых источниках питания схема непрерывно производит выборку части выходного напряжения и регулирует систему, чтобы поддерживать выходное напряжение на требуемом уровне. Во многих случаях включается дополнительная схема для обеспечения ограничений по току или напряжению, фильтрации шума и регулировки выхода.

Линейный, переключаемый или аккумуляторный?

Существует три подгруппы регулируемых источников питания: линейные, переключаемые и аккумуляторные. Из трех основных конструкций регулируемых источников питания линейная — наименее сложная система, но коммутируемое и батарейное питание имеет свои преимущества.

Линейный источник питания
Линейный источник питания используется, когда наиболее важным является точное регулирование и устранение шума. Хотя они не являются наиболее эффективными источниками питания, они обеспечивают лучшую производительность.Название происходит от того факта, что они не используют переключатель для регулирования выходного напряжения.

Линейные источники питания доступны в течение многих лет, и их использование широко распространено и надежно. Они также относительно бесшумны и коммерчески доступны. Недостатком линейных источников питания является то, что они требуют более крупных компонентов, следовательно, они больше и рассеивают больше тепла, чем импульсные источники питания. По сравнению с импульсными источниками питания и батареями они также менее эффективны, иногда демонстрируя лишь 50% эффективности.

Импульсный источник питания
Импульсный источник питания (SMPS) сложнее сконструировать, но он имеет большую гибкость в полярности и, если он спроектирован правильно, может иметь КПД 80% или более. Хотя в них больше компонентов, они меньше и дешевле, чем линейные источники питания.

Рисунок 6: Блок-схема — Регулируемое импульсное питание

Одно из преимуществ коммутируемого режима — меньшие потери на коммутаторе.Поскольку SMPS работают на более высоких частотах, они могут излучать шум и создавать помехи для других цепей. Необходимо принять меры по подавлению помех, такие как экранирование и соблюдение протоколов компоновки.

Преимущества импульсных источников питания заключаются в том, что они, как правило, небольшие и легкие, имеют широкий диапазон входного напряжения и более высокий диапазон выходного напряжения и намного более эффективны, чем линейные источники питания. Однако SMPS имеет сложную схему, может загрязнять сеть переменного тока, является более шумным и работает на высоких частотах, требующих уменьшения помех.

Аккумуляторный
Аккумуляторный источник питания — это третий тип источника питания, по сути, мобильный накопитель энергии. Питание от батарей производит незначительный шум, мешающий работе электроники, но теряет емкость и не обеспечивает постоянного напряжения по мере разряда батарей. В большинстве случаев, когда используются лазерные диоды, батареи — наименее эффективный метод питания оборудования. Для большинства аккумуляторов трудно подобрать правильное напряжение для нагрузки. Использование аккумулятора, мощность которого может превышать внутреннюю рассеиваемую мощность драйвера или контроллера, может повредить ваше устройство.

Выбор источника питания
  • При выборе блока питания необходимо учитывать несколько требований.
  • Требования к мощности нагрузки или цепи, включая
  • Функции безопасности, такие как ограничения по напряжению и току для защиты нагрузки.
  • Физический размер и эффективность.
  • Помехозащищенность системы.

Как выбрать лучший блок питания для ПК

Конечно, это то, что включает ваш компьютер и помогает ему работать во всех марафонах электронных таблиц и фантастических фестивалях.Но помимо времени запуска и выключения блок питания (PSU) вашего настольного компьютера не привлекает большого внимания. Для большинства покупателей он рассматривается как общий компонент, вспомогательный игрок, по сравнению с очаровательными кремниевыми звездами ПК, такими как процессор или видеокарта.

Для обычного ПК в корпусе Tower, который не работает на пределе возможностей своего оборудования, такое восприятие вполне приемлемо. Достаточно иметь «достаточно хороший» БП. Но есть и важных отличий между блоками питания ПК. И чем больше вы привязаны к максимальной производительности своего ПК, тем больше вы должны относиться к блоку питания не как к элементу контрольного списка, а как к компоненту среди равных.

Покупки блоков питания, однако, перегружены собственным языком. Это руководство даст вам краткое изложение жаргона и основы настольных источников питания в 2021 году и поможет вам быстрее понять, что искать.


Что подходит? Основные сведения о форм-факторе источника питания

Источники питания в том виде, в котором они используются в настольных ПК, восходят к оригинальным ПК IBM. Но краткая история современных конструкций блоков питания начинается немного позже, еще до появления уже знакомого форм-фактора ATX, IBM PC AT и PS / 2 1980-х годов.Из них мы получили материнскую плату форм-фактора AT с двумя шестиконтактными разъемами питания и форм-фактор PS / 2 для корпусов блоков питания (не говоря уже о миниатюрном разъеме для клавиатуры).

(Фото: Майкл Секстон)

Исходя из этого, Intel разработала форм-фактор материнской платы AT Extended (ATX), который добавил больше места вокруг процессора и поместил за этим пространством расширенную панель портов. Вместе с последним появился новый 20-контактный разъем питания, который будет поддерживать электронное переключение.В ответ производители блоков питания поместили внутренние блоки блоков питания ATX в корпуса с форм-фактором PS / 2. Корпорация Intel взяла на себя организацию стандартов и переименовала форм-фактор в «ATX».

Это актуально и по сей день, хотя в отрасли наблюдается некоторое движение (в частности, по инициативе Intel) к более новому обновлению 12VXO для стандарта ATX, обновление 12VXO упростит внутреннюю часть блока питания и обеспечит питание только 12 В. . (Текущие основные блоки питания поставляют 12-вольтовые, а также традиционные 3,3-вольтовые и 5-вольтовые линии.) 12VXO пока не является важным фактором для покупателей, но это связано с двойственностью ATX: помимо фактических размеров корпусов блоков питания, ATX также остается определяющим стандартом power .

Сравнение размеров в стеке: блоки питания SFX (вверху) и full ATX (внизу)

Что касается этих размеров: наиболее распространенными сегодня форм-факторами являются PS / 2 (более известный как «полный ATX») и SFX, а также их производные. Full ATX — это полноразмерный настольный блок питания, который многие из нас хорошо знают по модернизации или сборке ПК на протяжении многих лет.Однако SFX — это более современная разработка, предназначенная для небольших настольных ПК.

Исходный форм-фактор PS / 2 имел монтажную пластину шириной 150 мм, высотой 86 мм и глубиной 140 мм, а также дополнительный опорный язычок с двумя гнездами, выступающий спереди (с вилкой питания сзади). Между тем исходная спецификация SFX была 125 мм на 63,5 мм на 100 мм, но многие OEM-производители использовали вариант с боковой установкой размером 100 мм на 63,5 мм на 125 мм.

Другие (менее распространенные) форм-факторы описаны на страницах 47–67 руководства Intel по проектированию блоков питания для настольных ПК.Обратите внимание, что форм-фактора блока питания MicroATX не существует, хотя некоторые продавцы обозначают SFX как таковой. В большинстве корпусов MicroATX для ПК используются схемы крепления ATX или SFX для области блока питания, а другие компактные корпуса для ПК (например, модели Mini-ITX), которые могут использовать более редкие размеры (например, TFX или нестандартные проприетарные форм-факторы), обычно поставляются с любыми такой необычный блок питания предустановлен.

Полные производные ATX и SFX мы упомянули пару абзацев назад. В то время как монтажная пластина 150 на 86 мм оригинального форм-фактора PS / 2 является обычной для полноразмерных блоков питания, большинство современных полноразмерных моделей ATX с высокой емкостью превышают установленную глубину установки 140 мм.

Простые блоки питания SFX придерживаются номинальной глубины, но могут быть и в удлиненных версиях. Производитель блоков питания и корпусов SilverStone, например, предлагает блоки питания SFX увеличенной длины под маркой «SFX-L» с дополнительными 30 мм, предоставляя разработчикам место для установки более крупного 120-мм вентилятора и большего количества компонентов внутри.

Компактный (но сверхдлинный) блок питания SilverStone SFX-L мощностью 500 Вт

Эти блоки питания увеличенной длины занимают место, обычно отведенное для кабелей, но во многих корпусах современных ПК есть свободное место.Итак, ключевым моментом номер один является соответствие типа блока питания (полный ATX, SFX или SFX-L) корпусу вашего ПК, который вы имеете или рассматриваете. Пункт второй: вы должны отметить глубину любого блока питания, который вы собираетесь купить, и посмотреть на спецификацию корпуса вашего ПК, чтобы убедиться, что мера глубины блока питания ниже предела. (Кроме того, во многих обзорах корпусов ПК будет описано, как далеко блок питания может проникнуть, прежде чем он будет заблокирован.)

Также известно, что некоторые готовые настольные системы от крупных OEM-производителей (в частности, Dell и HP), а также некоторые очень компактные настольные компьютеры , могут использовать проприетарные блоки питания, которые могут быть заменены только теми же конкретными проприетарными моделями, обычно поставляемыми самим OEM.Красный флажок — нестандартный разъем питания материнской платы, не соответствующий стандартному 24-контактному (подробнее об этом чуть позже). В случае сомнений обратитесь в службу поддержки производителя ПК или в онлайн-чат, чтобы обсудить детали того, что есть в вашей конкретной системе.


Есть хорошие потенциальные клиенты? Знакомство с кабелями блока питания

Отдельные кабели, отходящие от блока питания ПК, часто называют «выводами». Первоначальная спецификация питания Intel ATX требовала только 20-контактного разъема материнской платы, позже добавив отдельный квадратный четырехконтактный разъем «P4», чтобы обеспечить 12-вольтовый вывод для независимого питания ЦП.(Эта последняя разработка появилась в обновлении спецификации под названием «ATX12V».) Более поздний стандарт EPS12V расширил основной вывод ATX до 24 контактов, чтобы обеспечить дополнительное питание для слотов PCI Express (PCIe), и удвоил выделенный разъем питания процессора до восьми контактов.

Когда видеокартам потребовалось даже больше энергии, чем сами слоты PCIe могли обеспечить сами по себе, производители блоков питания добавили к источникам питания дополнительные шестиконтактные выводы питания PCIe. В свою очередь, некоторым топовым видеокартам в конечном итоге потребовалось на больше, чем на энергии, чем мог обеспечить один шестиконтактный разъем, что привело к разработке блоков питания с восьмиконтактными выводами PCIe, двумя шестиконтактными выводами и даже комбинированными восьми- и шестиконтактными выводами. -штырьковые выводы, которые подключаются к любому гнезду (иногда называемые выводами «6 + 2»).

Двойные стандартные делимые разъемы, обычно встречающиеся в современных блоках питания (слева направо): питание материнской платы ATX / EPS (20-контактный / 24-контактный), питание процессора ATX12V / EPS12V (четырехконтактный / восьмиконтактный) и дополнительный PCIe восемь -контактный / шестиконтактный (он же «6 + 2»)

До недавнего времени и появления твердотельных накопителей M.2 на большинстве ПК было по крайней мере несколько жестких дисков в отсеках или 2,5-дюймовых твердотельных накопителя (а до этого — внутренние оптические приводы), которые следовали стандарту Serial ATA (SATA). Помимо кабеля данных SATA, в дисках SATA используются собственные дискретные разъемы питания SATA, характерная тонкая L-образная пластина соединения, которая имеет ключ для вставки только в одном направлении.

Другие внутренние периферийные устройства, такие как водяные насосы жидкостного охлаждения и концентраторы вентиляторов, могут по-прежнему использовать классические четырехконтактные разъемы питания ATA. Их обычно называют «соединителями Molex» (но, вопреки распространенному мнению, они обычно не производятся Molex). Некоторые звуковые карты и панели контроллеров переднего отсека до недавнего времени даже использовали древний четырехконтактный разъем питания флоппи-дисковода. Но этот олдскульный разъем постепенно исчезает в современных блоках питания.

Разнообразные разъемы питания дисковода: SATA, четырехконтактный «Molex», четырехконтактный гибкий диск.

У большинства блоков питания будет достаточно физических выводов для всего оборудования, которое вы хотели бы отключить от блока питания его мощности.Но вы должны быть особенно уверены, что перепроверили, устанавливаете ли вы блок питания в систему с устаревшим оборудованием или собираете ПК с видеокартой-монстром.


Все минусы модов: общие сведения о кабелях модульных блоков питания

По мере того, как все больше и больше кабелей начинало торчать из блоков питания, для разработчиков и сборщиков ПК становилось все более очевидным, что неиспользуемые прячут в большой пачке между корпусом блока питания и корпусом не лучший вариант. Вот почему сегодня в большинстве высококачественных источников питания используются модульные кабельные разъемы: то есть кабели, которые вы можете подключать по мере необходимости, оставляя неиспользованные, чтобы уменьшить беспорядок.

Ряд модульных кабельных разъемов на блоке питания Be Quiet

Блоки питания

, у которых есть только , съемных кабелей называются «полностью модульными», а блоки с несколькими постоянно подключенными кабелями называются «полумодульными». Почему бы не сделать каждый кабель модульным в любой конструкции? Добавленные разъемы увеличивают стоимость, придают некоторое сопротивление и снижают эффективность, поэтому многие высококачественные блоки питания включают по крайней мере припаянный основной (24-контактный) вывод материнской платы.(В конце концов, каждый должен будет использовать хотя бы этот кабель в любом конкретном ПК.) Полностью модульные, на 100% съемные кабели имеют смысл только для сборщиков ПК и разработчиков модификаций, которые используют кабели нестандартной длины и могут захотеть заменить 24- закрепите главный провод чем-то более коротким.

Полумодульный блок питания EVGA на 850 Вт с фиксированным 24-контактным основным источником питания.

Имейте в виду, что даже несмотря на то, что некоторые блоки питания от разных производителей блоков питания используют один и тот же стиль модульного разъема (и кабели одной марки могут подходить к корпусу блока питания другого производителя), не все из них имеют одинаковую разводку.Пользователи должны подключать только только модульные кабели, которые предназначены для работы с их конкретной моделью или серией блоков питания. Не хватайте остатки таинственных модульных кабелей из коробки с запчастями и не подключайте их к другому модульному блоку питания в надежде, что они сработают, — если только вы не любите фейерверки и не хотите покупать новые детали для ПК!

Как отмечалось в конце предыдущего раздела, при оценке источника питания необходимо обратить внимание на установленные вами компоненты и периферийные устройства, которым требуется специальное подключение к источнику питания. Большинство современных блоков питания имеют более чем достаточно разъемов для питания любого разумного количества устройств SATA или вспомогательных периферийных устройств с питанием от Molex.

Ключевыми разъемами «вопросительного знака» будут разъемы PCIe, а именно, сколько у вас будет на данном блоке питания. Убедитесь, что у вас есть все необходимые провода для любой видеокарты или карт, которые вы устанавливаете. Разъемы «6 + 2», о которых мы мимоходом упоминали ранее, могут подключаться как к шестиконтактному, так и к восьмиконтактному разъему питания видеокарты.Однако шнура питания PCIe, имеющего только шесть контактов, недостаточно для восьмиконтактной розетки на вашей видеокарте.

Обратите внимание, что некоторые видеокарты очень высокого класса в наши дни фактически требуют трех шестиконтактных или восьмиконтактных шнуров питания PCIe, и только некоторые высокомощные блоки питания предоставят вам такое количество. (Некоторые могут дать вам только два. )

Карта MSI GeForce RTX 3090, требующая трех восьмиконтактных выводов питания PCIe. (Фото: Крис Стобинг)

Также обратите внимание, что некоторые недавние карты Nvidia GeForce RTX серии 3000 Founders Edition используют специальный 12-контактный разъем питания на конце карты, который подключается к выводам вашего блока питания через адаптер или разветвитель (предоставляется Nvidia вместе с картой).

Карта Nvidia GeForce RTX 3080 Founders Edition с 12-контактным разъемом питания вверху (Фото: Злата Ивлева)

В этом случае не обманывайтесь, ища блок питания с собственным 12-контактным разъемом PCIe графического процессора; это не вещь.


Ватт: сколько энергии вам нужно?

Когда производители материнских плат и видеокарт начали питать центральные и графические процессоры от отдельных 12-вольтных разъемов, многие старые блоки питания все еще были рассчитаны на то, чтобы выдавать значительную часть своей силы тока до 5 и даже 3 вольт. 3-вольтовые провода. Это привело к появлению множества советов и статей, в которых рекомендуются сильно завышенные номиналы блоков питания для удовлетворения ваших потребностей.

Выходная мощность данного блока питания выражается в ваттах. Конечно, покупка немного большей мощности, чем вам нужно на данный момент, для будущих обновлений или системных изменений, никогда не является плохой идеей. Действительно, эти деньги потрачены не зря, особенно если вы покупаете блок питания премиум-класса, который, как вы ожидаете, сохранится в будущих модификациях ПК, или если вы планируете в будущем перейти на гораздо более мощный процессор или графический процессор.

Но теперь, когда производители догнали способ проектирования нового оборудования, рекомендации по выходной мощности могут быть гораздо более реалистичными. На то, сколько энергии ваш компьютер будет потреблять при обычных, легких и пиковых нагрузках, влияет множество факторов. Он зависит от основных компонентов процессора, графического процессора и материнской платы, а также от дополнительных элементов, таких как приводы (механические или твердотельные), светодиоды и аксессуары для корпуса ПК. Со всеми этими возможными деталями в их почти бесконечном количестве комбинаций и разновидностей, лучший способ получить приблизительное представление о ваших потребностях в энергии — это использовать один из нескольких калькуляторов блоков питания, доступных в Интернете.

Рекомендовано нашими редакторами

Старым стандартом является широко используемый калькулятор блоков питания OuterVision, хотя некоторые производители блоков питания и торговые посредники также предлагают свои собственные версии для домашнего приготовления. См. Также калькулятор Newegg, а также версии от производителей блоков питания, которые включают следующее (неполный список):

Мы рекомендуем рассчитывать ваши потребности на основе компонентов вашего ПК на нескольких из этих сайтов и усреднять результаты. Однако они должны откликнуться на очень близкие рекомендации, если вы будете осторожны и последовательны в своих предложениях.К счастью, в случае с этим писателем, тройка лучших результатов поиска по калькулятору источников питания Google дала хорошие оценки того, что использует его система.

Калькулятор источников питания OuterVision обеспечивает больший пользовательский контроль (и более красивую графику), чем большинство других сайтов.

Источники питания

оцениваются по выходной мощности, а не по входу, поэтому не стоит слишком удивляться, если расчетная нагрузка в 415 Вт будет превышать 500 Вт от настенной розетки, если вы измеряете ее с помощью измерителя мощности. Фактически, это будет соответствовать спецификациям 80 Plus Bronze для модели мощностью 500 Вт.Но что означает , что ?


Сертификаты блоков питания: знакомство с программой 80 Plus

80 Plus — это программа сертификации блоков питания, которая гарантирует эффективность минимум 80% при широком спектре нагрузок, с различными уровнями, обеспечивающими повышенную экономию энергии за счет уменьшения отходящего тепла блока питания. (Чем эффективнее блок питания, тем меньше потребляемой им мощности от стены рассеивается в виде отработанного тепла, прежде чем достигнуть компонентов вашего ПК. ) , с сопутствующим им шумом), тем меньше необходимо включать тепловое оборудование и тем меньше термический износ компонентов блока питания.(На этом фронте тепло — всегда враг.)

Программа 80 Plus не просто тестирует каждый блок питания на рынке волей-неволей в качестве государственной услуги. Производители платят за сертификацию своих блоков питания. Они сделают это в рамках маркетинговых мероприятий, а также (возможно) для соблюдения требований потенциальных корпоративных покупателей или даже правительства в отношении энергопотребления и энергосбережения.

Имеет смысл, что любой производитель, заплативший за тестирование блока питания, наклеит соответствующую этикетку 80 Plus на свою упаковку.Но покупатели, подозревающие, что этикетка могла быть нанесена обманным путем, могут найти соответствующий список источников питания 80 Plus на веб-сайте программы.

Разбивка сертификатов 80 Plus PSU

Как видите, у вас есть сертификаты 80 Plus Standard, Bronze, Silver, Gold, Platinum и Titanium. Каждый указывает уровень эффективности при определенных фиксированных степенях нагрузки: 20%, 50% и 100%. Plain 80 Plus, как и Silver, не так распространен в продуктах на рынке.Вы будете склонны видеть лучшие значения в моделях 80 Plus Gold.

Titanium, добавленный последний уровень, более детально, чем другие, измеряет эффективность при очень низких уровнях нагрузки (добавление уровня 10%), поэтому производители блоков питания должны сохранять эффективность на всем протяжении диаграммы. Взгляд на Titanium может иметь смысл для ПК, которые проводят много времени в состояниях с низким уровнем использования, особенно для современных ПК, которые, как правило, проводят большую часть своего времени в этих состояниях из-за улучшений в дизайне ЦП. и GPU.


Оценка качества блока питания: этап домашнего задания

Итак, эффективность — это одна вещь, за которую нужно платить больше, но более туманное «качество» производства имеет большее значение. А в источниках питания качество превосходит количество, поскольку обычный 800-ваттный блок с гораздо большей вероятностью выйдет из строя при 400-ваттной нагрузке, чем 450-ваттный блок от высококачественного поставщика.

Однако оценка качества — дело туманное с блоками питания, если вы не посмотрите на официальные профессиональные обзоры, и их интерпретация может потребовать определенного опыта или понимания принципов физики.Рецензенты также не могут реально проверить долговечность. Несмотря на это, в Интернете доступны тысячи профессиональных обзоров, некоторые из которых включают тестирование мощности под нагрузкой с использованием специализированного оборудования. (Такие сайты, как Anandtech, TechPowerUp и Tom’s Hardware, являются хорошими источниками информации о хардкорном тестировании блоков питания; давний, бывший авторитетный сайт по блокам питания, Jonny Guru, недавно отключился.)

Стоит знать, что вы увидите много Блоки питания брендов существуют, но реальных производителей блоков питания меньше.Часто бренд может пожелать продавать блоки питания и заключает договор с производителем оригинального устройства (ODM) на производство линии питания с собственной торговой маркой и в соответствии с его (или, иногда, ODM) спецификациями.

Некоторые группы пользователей даже поддерживают списки дополнительных деталей, например, какой ODM произвел и какие брендовые модели. Это постоянно меняется, хотя списки могут помочь вам соотнести модели от фирменных поставщиков с реальными ODM и, как правило, являются более точной оценкой того, что вы смотрите в данном блоке питания, чем просто полагаться на отзывы пользователей.(Погуглите название рассматриваемого блока питания и «ODM», чтобы найти потенциальных клиентов по этому поводу.)

Тем не менее, не пренебрегайте отзывами пользователей, когда речь идет об этом конкретном продукте. Они могут быть удобным измерителем после того, как модель блока питания появится на рынке некоторое время, особенно если она окажется проблемной. Множество обзоров с одной звездой могут указывать на проблему, потому что блоки питания — это не те продукты, которые вдохновляют пользователей на отзывы, если что-то не так.

В результате отзывы пользователей на сайтах электронной коммерции, таких как Amazon и Newegg, находят свое место в покупках блоков питания, учитывая непрозрачный характер блоков питания и потребность в агрегированных данных, чтобы рассказать вам что-нибудь значимое о качестве. И даже если рассматривать отзывы пользователей с некоторой долей скептицизма, отзывы пользователей, рассматриваемые критически, обычно являются более разумным советом, чем покупка вслепую, которая при небольшой осторожности (и в этом пункте нашего руководства!) Больше не подвергается риску. делать.

Нравится то, что вы читаете?

Подпишитесь на информационный бюллетень Tips & Tricks , чтобы получать советы экспертов, чтобы максимально эффективно использовать свои технологии.

Этот информационный бюллетень может содержать рекламу, предложения или партнерские ссылки. Подписка на информационный бюллетень означает ваше согласие с нашими Условиями использования и Политикой конфиденциальности.Вы можете отказаться от подписки на информационные бюллетени в любое время.

Найдите подходящий адаптер питания и кабель для ноутбука Mac

Узнайте, какой адаптер питания, кабель и вилка подходят для вашего ноутбука Mac.

Адаптеры питания

для ноутбуков Mac доступны в вариантах мощностью 29 Вт, 30 Вт, 45 Вт, 60 Вт, 61 Вт, 85 Вт, 87 Вт и 96 Вт.Вы должны использовать адаптер питания соответствующей мощности для вашего ноутбука Mac. Вы можете без проблем использовать совместимый адаптер питания большей мощности, но он не заставит ваш компьютер заряжаться быстрее или работать иначе. Если вы используете адаптер питания, мощность которого ниже, чем у адаптера, поставляемого с вашим Mac, он не сможет обеспечить достаточную мощность для вашего компьютера.

Ноутбуки Mac

, которые заряжаются через USB-C, поставляются с адаптером питания Apple USB-C со съемной вилкой переменного тока (или «утиной головкой») и зарядным кабелем USB-C.

Ноутбуки Mac

, которые заряжаются через MagSafe, поставляются с адаптером переменного тока с разъемом MagSafe и съемной вилкой переменного тока, а также кабелем переменного тока.

На изображениях ниже показан стиль адаптера, который поставляется с каждым MacBook, MacBook Pro и MacBook Air. Если вы не знаете, какая у вас модель Mac, воспользуйтесь этими статьями:

USB-C

Apple, адаптер питания USB-C мощностью 29 Вт или 30 Вт и зарядный кабель USB-C

  • Модели MacBook 2015 года выпуска или новее

Адаптер питания Apple USB-C мощностью 30 Вт и зарядный кабель USB-C

  • Модели MacBook Air, представленные в 2018 году или позже

Адаптер питания Apple USB-C мощностью 61 Вт и зарядный кабель USB-C

  • 13-дюймовые модели MacBook Pro, представленные в 2016 году или позже

Адаптер питания Apple USB-C мощностью 87 Вт и зарядный кабель USB-C

  • 15-дюймовые модели MacBook Pro, представленные в 2016 году или позже

Адаптер питания Apple USB-C мощностью 96 Вт и зарядный кабель USB-C

  • 16-дюймовые модели MacBook Pro, представленные в 2019 году

Убедитесь, что вы используете правильный зарядный кабель USB-C

Для оптимальной зарядки следует использовать зарядный кабель USB-C, который идет в комплекте с ноутбуком Mac. Если вы используете кабель USB-C большей мощности, ваш Mac по-прежнему будет заряжаться в обычном режиме. Кабели USB-C мощностью 29 Вт или 30 Вт будут работать с любым адаптером питания USB-C, но не обеспечат достаточной мощности при подключении к адаптеру питания мощностью более 61 Вт, например адаптеру питания USB-C мощностью 96 Вт.

Вы можете убедиться, что используете правильную версию зарядного кабеля Apple USB-C с ноутбуком Mac и его адаптером переменного тока USB-C. Серийный номер кабеля напечатан на его внешнем корпусе рядом со словами «Разработан Apple в Калифорнии.Собран в Китае. »

  • Если первые три символа серийного номера — C4M или FL4, кабель предназначен для использования с адаптером питания Apple USB-C мощностью до 61 Вт.
  • Если первые три символа серийного номера — DLC, CTC, FTL или G0J, кабель предназначен для использования с адаптером питания Apple USB-C мощностью до 100 Вт.
  • Если на кабеле написано «Разработано Apple в Калифорнии. Собран в Китае», но нет серийного номера, возможно, вы имеете право на замену зарядного кабеля USB-C.

MagSafe 2

Адаптер питания MagSafe мощностью 85 Вт с разъемом типа MagSafe 2

  • 15-дюймовые модели MacBook Pro, представленные с 2012 по 2015 год

Адаптер питания MagSafe мощностью 60 Вт с разъемом типа MagSafe 2

  • 13-дюймовые модели MacBook Pro, представленные в 2012–2015 годах

Адаптер питания MagSafe мощностью 45 Вт с разъемом типа MagSafe 2

  • Модели MacBook Air, выпущенные с 2012 по 2017 год


О преобразователе MagSafe в MagSafe 2

Если у вас есть более старый адаптер MagSafe, вы можете использовать его с новыми компьютерами Mac, имеющими порты MagSafe 2, с помощью преобразователя MagSafe в MagSafe 2 (показано).

Адаптеры MagSafe L- и T-образной формы

Адаптер питания MagSafe мощностью 60 Вт с Т-образным разъемом

  • 13-дюймовые модели MacBook Pro, представленные в 2009 году
  • моделей MacBook, выпущенных с 2006 по середину 2009 года

Адаптер питания MagSafe мощностью 60 Вт с L-образным разъемом

  • 13-дюймовые модели MacBook Pro, представленные с 2010 по 2012 год
  • моделей MacBook, выпущенных с конца 2009 по 2010 год

Адаптер питания MagSafe мощностью 85 Вт с Т-образным разъемом

  • 15-дюймовые модели MacBook Pro, представленные с 2006 по 2009 год
  • 17-дюймовые модели MacBook Pro, представленные в 2006–2009 годах

Адаптер питания MagSafe мощностью 85 Вт с L-образным разъемом

  • 15-дюймовые модели MacBook Pro, выпущенные с 2010 по 2012 год
  • 17-дюймовые модели MacBook Pro, представленные в 2010–2011 годах

Адаптер питания MagSafe мощностью 45 Вт с L-образным разъемом

  • 13-дюймовые модели MacBook Air, представленные с 2008 по 2011 годы *
  • 11-дюймовые модели MacBook Air, представленные в 2010–2011 годах

* Адаптеры, входящие в комплект поставки MacBook Air (оригинал), MacBook Air (конец 2008 г. ) и MacBook Air (середина 2009 г.), не рекомендуются для использования с моделями MacBook Air (конец 2010 г.).По возможности используйте оригинальный адаптер вашего компьютера или более новый адаптер.

Дата публикации:

Как работают блоки питания | ОРЕЛ

Блоки питания

составляют основу всех наших электронных устройств и обеспечивают согласованную схему работы там, где это больше всего необходимо.В современной электронике, такой как компьютеры и другие чувствительные к данным устройства, питание должно работать безупречно, а единичный отказ может означать потерю работы и данных. Но, как разработчики электроники, мы обычно оставляем наши соображения по поводу источника питания на потом, часто беря заранее подготовленный блок схемы, который, как мы знаем, уже работает. В конце концов, нам просто нужен выход 5 В, верно? Оказывается, под капотом творится еще много всего.

Источники питания от 10000 футов

Большинство источников питания получают питание от сети переменного тока и преобразуют его в постоянный ток, пригодный для использования в электронных устройствах.Во время этого процесса источник питания выполняет несколько ролей, в том числе:

  • Преобразование переменного тока из сети в устойчивый постоянный ток
  • Предотвращение воздействия переменного тока на выход источника постоянного тока
  • Поддержание выходного напряжения на постоянном уровне независимо от изменений входного напряжения

Чтобы осуществить все это преобразование, типичный источник питания будет использовать несколько общих компонентов, включая трансформатор, выпрямитель, фильтр и регулятор.

Процесс преобразования переменного тока в постоянный начинается с переменного тока, который возникает в розетке в виде синусоидальной волны.Этот сигнал переменного тока колеблется между отрицательным и положительным напряжением до шестидесяти раз в секунду.

Сигнал синусоидальной формы переменного тока. (Источник изображения)

Напряжение переменного тока сначала понижается трансформатором, чтобы удовлетворить требованиям напряжения источника питания. После понижения напряжения выпрямитель превратит синусоидальную форму волны переменного тока в набор положительных впадин и пиков.

Выпрямление удаляет отрицательную сторону сигнала переменного тока, оставляя только положительный выход.(Источник изображения)

На этом этапе все еще есть колебания в форме волны переменного тока, поэтому для сглаживания переменного напряжения в пригодный для использования источник постоянного тока используется фильтр.

Применение фильтра с резервуарным конденсатором устраняет агрессивные пики и впадины в нашей форме волны. (Источник изображения)

Теперь, когда переменный ток преобразован в пригодный для использования постоянный ток, некоторые источники питания будут дополнительно устранять любые колебания в форме волны с помощью регулятора. Этот регулятор будет обеспечивать стабильный выход постоянного тока независимо от изменений входного переменного напряжения.

Это краткий обзор процесса. Независимо от того, какой блок питания вы смотрите, в нем всегда будет как минимум три основных компонента — трансформатор, выпрямитель и фильтр. Регуляторы могут использоваться или не использоваться в зависимости от того, является ли источник питания нерегулируемым или регулируемым (подробнее об этом позже).

Детали блока питания

Трансформатор

В качестве первой линии защиты трансформатор выполняет работу по понижению входящего переменного тока от сети до уровня напряжения, с которым может справиться нагрузка источника питания.Трансформаторы также могут повышать напряжение, но в этой статье мы сосредоточимся на тех, которые понижают напряжение для низковольтных электронных устройств постоянного тока.

Внутри трансформатора находятся две обмотки катушки, физически отделенные друг от друга. Первая обмотка принимает переменный ток от сети, а затем электромагнитно соединяется со второй обмоткой, чтобы провести необходимое переменное напряжение во вторичной обмотке. Сохраняя эти две обмотки физически разделенными, трансформатор может изолировать напряжение сети переменного тока от выхода цепи питания.

Две физически разделенные катушки в трансформаторе проводят через электромагнитную связь. (Источник изображения)

Выпрямитель

После того, как переменный ток понижается трансформатором, выпрямитель должен преобразовать форму волны переменного тока в необработанный формат постоянного тока. Это достигается одним или несколькими диодами в полуволновой, полноволновой или мостовой конфигурации.

Полуволновое выпрямление

В этой конфигурации один выпрямительный диод используется для извлечения постоянного напряжения из половины цикла формы сигнала переменного тока. В результате у источника питания остается половина выходного напряжения, которое он мог бы получить от полной формы волны переменного тока при Vpk x 0,318. Half Wave — это самая дешевая конфигурация для проектирования, она идеальна для не требовательного использования энергии и обычно оставляет наибольшую пульсацию выходного напряжения.

Полуволновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)

Полноволновое выпрямление

В этой конфигурации два выпрямительных диода используются для выделения двух полупериодов входящего сигнала переменного тока.Этот процесс обеспечит двойное выходное напряжение полуволнового выпрямления при Vpk x 0,637. Хотя эта конфигурация более дорогая в разработке, чем полуволновая, поскольку для нее требуется трансформатор с центральным отводом, она имеет дополнительное преимущество в виде улучшенного сглаживания пульсаций переменного тока.

Полноволновое выпрямление в цепи и форме выходного сигнала. (Источник изображения)

Мостовое выпрямление

В этой конфигурации используются четыре диода, расположенных в виде моста для достижения полноволнового выпрямления без использования трансформатора с центральным отводом.Это обеспечит то же выходное напряжение, что и Full Wave при Vpk x 0,637 с диодами, которым требуется только половина их обратного напряжения пробоя. В течение каждого полупериода два противоположных диода проводят ток, что обеспечивает полную форму волны переменного тока в конце полного цикла.

Мостовое выпрямление в цепи и форме выходного сигнала, как для полной волны. (Источник изображения)

Фильтр

Теперь, когда у нас преобразовано напряжение переменного тока, работа фильтра заключается в устранении любых пульсаций переменного тока в выходном напряжении, в результате чего напряжение постоянного тока остается плавным.Зачем устранять рябь? Если они попадут на выход источника питания, они могут повредить нагрузку и потенциально вывести из строя всю вашу схему. В фильтрах используются два основных компонента: накопительный конденсатор и фильтр нижних частот.

Резервуарный конденсатор

Электролитический конденсатор большой емкости используется для временного хранения выходного тока, подаваемого выпрямительным диодом. При зарядке этот конденсатор может обеспечивать выходной постоянный ток в промежутках времени, когда выпрямительный диод не проводит ток.Это позволяет источнику питания поддерживать стабильный выход постоянного тока во время циклов включения / выключения источника питания.

Здесь вы можете увидеть разницу в выходном сигнале с крышкой резервуара и без нее. (Источник изображения)

Фильтр низких частот

Вы можете сделать схему источника питания только с емкостным конденсатором, но добавление фильтра нижних частот дополнительно устраняет пульсации переменного тока, которые проходят через емкостной конденсатор. В большинстве базовых источников питания вы не найдете фильтров нижних частот, поскольку для них требуются дорогие индукторы с ламинированным или тороидальным сердечником. Однако в современной электронике с импульсным источником питания вы обнаружите, что фильтры нижних частот используются для устранения пульсаций переменного тока на более высоких частотах.

При добавлении в цепь питания емкостного конденсатора и фильтра нижних частот можно удалить более 95% пульсаций переменного тока. Это позволит вам поддерживать стабильное и чистое выходное напряжение, которое соответствует пику исходной входной волны переменного тока.

Регулятор

В регулируемых источниках питания будет добавлен регулятор для дальнейшего сглаживания постоянного напряжения и обеспечения стабильного выходного сигнала независимо от изменений входных уровней.Это улучшенное регулирование также увеличивает сложность и стоимость питания схемы. Вы найдете регуляторы в двух различных конфигурациях: в виде шунтирующего регулятора или последовательного регулятора.

Шунтирующий регулятор

В этой конфигурации регулятор подключен параллельно нагрузке, что обеспечивает постоянное протекание тока через регулятор до попадания в нагрузку. Если ток нагрузки увеличивается или уменьшается, шунтирующий регулятор будет либо уменьшать, либо увеличивать свой ток, чтобы поддерживать постоянное напряжение и ток питания.

Шунтовые регуляторы подключаются параллельно нагрузке. (Источник изображения)

Регулятор серии

В этой конфигурации последовательный регулятор подключен последовательно с нагрузкой, которая обеспечивает переменное сопротивление. Этот регулятор будет последовательно измерять входящее напряжение нагрузки, используя систему отрицательной обратной связи. Если напряжение на образце повышается или падает, то последовательный регулятор либо понижает, либо увеличивает свое сопротивление, позволяя большему или меньшему току проходить через нагрузку.

Регуляторы серии

добавляют переменное сопротивление к управляющему току. (Источник изображения)

Типы источников питания

В типовых источниках питания переменного и постоянного тока используются некоторые или все вышеперечисленные компоненты в своей схеме в качестве нерегулируемого или регулируемого источника питания. Тип источника питания, который вы используете в своем электронном проекте, зависит от уникальных требований вашего дизайна.

Нерегулируемые блоки питания

Эти блоки питания не имеют регулятора напряжения и выдают только заданное напряжение при максимальном выходном токе.Здесь выход постоянного напряжения связан с внутренним трансформатором напряжения, и выходное напряжение будет увеличиваться или уменьшаться в зависимости от токового выхода нагрузки. Эти блоки питания известны своей прочностью и недорого, но не обеспечивают достаточной точности для чувствительных к мощности электронных устройств.

Нерегулируемые блоки питания

содержат все стандартные компоненты, кроме регулятора.

Регулируемые блоки питания

Регулируемые источники питания включают в себя все основные компоненты нерегулируемого источника питания с добавлением регулятора напряжения.Следует отметить три конфигурации блока питания регулятора:

Линейный источник питания . В этой конфигурации используется полупроводниковый транзистор или полевой транзистор для управления выходными напряжениями в определенном диапазоне. Хотя эти блоки питания не самые эффективные и выделяют много тепла, они известны своей надежностью, минимальным электрическим шумом и широкой коммерческой доступностью.

Типовая схема линейного питания. (Источник изображения)

Импульсный источник питания .В этой конфигурации используется полупроводниковый транзистор или полевой транзистор, который включается / выключается для подачи напряжения на выходной накопительный конденсатор. Режимы переключения обычно меньше и легче, чем линейные источники питания, предлагают большой выходной диапазон и более эффективны. Однако они требуют сложной схемы, генерируют больше шума и требуют подавления помех для своих высокочастотных операций.

Здесь мы видим добавленную сложность в схеме переключения режимов. (Источник изображения)

Батарейный блок питания . Эта конфигурация действует как накопитель энергии и обеспечивает постоянный поток постоянного тока к электронному устройству. По сравнению с линейными и импульсными источниками питания, батареи являются наименее эффективным методом питания устройств, и их также трудно сопоставить с правильным напряжением в нагрузке. Тем не менее, батареи имеют то преимущество, что они служат источником питания, когда сеть переменного тока недоступна, и не создают электрических помех.

При выборе источника питания для вашего следующего проекта электроники обратите внимание на следующие преимущества и недостатки нерегулируемых и регулируемых источников питания:

Нерегулируемый Регулируемый
Преимущества:
  • Простая схема
  • Надежность и экономичность

Недостатки

  • Напряжение зависит от тока нагрузки
  • Идеально подходит для устройств, работающих с фиксированным выходным током / напряжением
Преимущества
  • Постоянное напряжение
  • Более высокое качество
  • Лучшая фильтрация шума
  • Регулируемое выходное напряжение / ток

Недостатки

  • Требуется более сложная схема
  • Дороже

При выборе между линейным, импульсным или аккумуляторным блоком питания учитывайте следующее:

Регулируемые блоки питания
Линейный Режим переключения Аккумулятор
Преимущества
  • Стабильно и надежно
  • Меньше электрических шумов
  • Хорошая регулировка линии и нагрузки

Недостатки

  • Низкий КПД <50%
  • Требуются радиаторы большего размера
  • Крупные детали и тяжелые
  • Дорого
Преимущества
  • Маленький размер и легче
  • Широкий диапазон входного напряжения
  • Высокая эффективность
  • Дешевле по сравнению с линейным

Недостатки

  • Требуется более сложная схема
  • Может загрязнять сеть переменного тока
  • Более высокий уровень шума
Преимущества
  • Не требует доступа к сети переменного тока
  • Портативный источник питания

Недостатки

  • Фиксированное входное напряжение
  • Фиксированный срок службы
  • Выходное напряжение падает из-за использования резервов энергии

Технические характеристики блока питания, о которых необходимо знать

Если вы выбираете готовую схему источника питания вместо того, чтобы разрабатывать свою собственную, необходимо знать несколько спецификаций. К ним относятся:

  • Выходной ток . Это максимальный ток, который блок питания может подавать на нагрузку.
  • Регулятор нагрузки . Это определяет, насколько хорошо регулятор может поддерживать постоянный выходной сигнал при изменении тока нагрузки, обычно измеряемого в милливольтах (мВ) или максимальном выходном напряжении.
  • Шум и пульсация . Они измеряют нежелательные электронные помехи и колебания напряжения при преобразовании переменного тока в постоянный, обычно измеряемые в размахе напряжения для импульсных источников питания.
  • Защита от перегрузки . Это функция безопасности, которая отключит источник питания в случае короткого замыкания или перегрузки по току.
  • Эффективность . Это соотношение мощности, преобразованной из сети переменного тока в постоянный. Высокоэффективные системы, такие как импульсные блоки питания, могут достичь 80% эффективности, снизить нагрев и сэкономить энергию.

Последовательное преобразование

Блоки питания

обеспечивают стабильную основу питания всех наших электронных устройств, будь то ваш компьютер, смартфон или телевизор, этот список можно продолжать. Независимо от того, какой тип источника питания вы используете или разрабатываете, все они включают в себя несколько основных компонентов для преобразования сети переменного тока в постоянный постоянный ток (DC). Трансформатор сначала понижает напряжение, которое затем выпрямляется в необработанный формат постоянного тока. Затем он фильтруется и регулируется, чтобы обеспечить плавное постоянное напряжение для стабильного выходного сигнала. При разработке собственной схемы источника питания рассчитывайте использовать эти основные компоненты вместе с уникальными характеристиками мощности для вашей конструкции, чтобы обеспечить постоянный выход постоянного тока в любое время дня.

Нужен разъем питания для вашего будущего проекта по разработке электроники? У нас есть масса бесплатных библиотек! Попробуйте Autodesk EAGLE бесплатно сегодня!

Руководство по источникам питания

— B&K Precision

Введение

Источники питания — одни из самых популярных устройств электронного тестирования. Это неудивительно, поскольку контролируемая электрическая энергия используется множеством способов. В этом руководстве мы рассмотрим различные типы источников питания, их элементы управления, способы их работы и некоторые примеры их применения.

Источником питания в широком смысле можно назвать все, что снабжает энергией, например плотину гидроэлектростанции, двигатель внутреннего сгорания или гидравлический насос. Однако мы ограничимся обсуждением типов источников питания, которые преимущественно используются для испытаний и измерений, технического обслуживания и разработки продуктов.

Этот документ предназначен для пользователей или потенциальных пользователей источников питания. Его цель — дать определение используемых терминов, познакомить с различными типами источников питания и лежащими в их основе технологиями, объяснить элементы управления типичными источниками питания и рассмотреть некоторые примеры их использования.

Вот таблица некоторых различных типов источников питания. Мы сосредоточимся на выделенных типах.

Выход = DC Выход = AC
Ввод = AC
  • «Бородавка стенка»
  • Блок питания настольный
  • Зарядное устройство
  • Разделительный трансформатор
  • Источник переменного тока
  • Преобразователь частоты
Ввод = DC

Термин «настольный источник питания» здесь используется несколько мягко, поскольку некоторые из обсуждаемых нами источников питания могут быть слишком тяжелыми, чтобы их можно было поставить на скамейку.Тем не менее, номенклатура полезна, поскольку даже тяжелые источники питания с высокой выходной мощностью имеют много общего со своими меньшими собратьями. Но термин «стенд» является описательным для многих людей, поскольку он вызывает в воображении образ источника питания постоянного тока, который используется на скамейке инженера или техника для множества задач, связанных с питанием.

В оставшейся части этого документа стендовый источник питания будет рассмотрен более подробно после краткого обзора источников питания переменного тока.

Источник переменного тока

При тестировании электрического оборудования, которое питается от сети переменного тока, часто важно оценить оборудование, когда оно подвергается воздействию повышенного или пониженного напряжения.Нормальные колебания напряжения в сети переменного тока составляют порядка ± 10%, но могут быть больше, когда линия одновременно используется множеством тяжелых нагрузок. Разработчик может также захотеть провести испытания, выходящие за рамки нормальных колебаний напряжения сети переменного тока, для целей нагрузочного тестирования (чтобы выяснить, в чем заключаются недостатки конструкции). Для этого типа тестирования требуется переменный источник переменного тока. Регулируемый источник переменного тока также может быть полезен во время «пониженного напряжения» (условия низкого напряжения в сети), чтобы поднять напряжение в сети до нормального уровня. Другое использование — повышение напряжения, когда нагрузка подключена через длинный удлинитель и падение напряжения на шнуре является значительным.

Различные напряжения переменного тока генерируются с помощью трансформатора (или автотрансформатора). Трансформатор может иметь несколько обмоток или ответвлений, и в этом случае прибор использует переключатели для выбора различных напряжений. В качестве альтернативы можно использовать регулируемый трансформатор (регулируемый автотрансформатор) для (почти) непрерывного изменения напряжения 1 . Некоторые источники переменного тока включают измерители для контроля напряжения, тока и / или мощности.

Некоторые продукты, такие как блок питания переменного тока с регулируемой изоляцией B & K Precision модели 1655A, показанный ниже, объединяют в себе изолирующий трансформатор и регулируемый трансформатор. Этот продукт также включает в себя возможность выполнять испытания на утечку переменного тока и имеет удобный регулируемый источник питания для паяльников. Это практичный и полезный инструмент для стенда устранения неполадок.

Типы источников питания постоянного тока

Разъединитель батарей

Эти типы расходных материалов, как правило, самые дешевые. Название описывает их основное предназначение — действовать вместо батареи. Эти устройства недороги и удобны при работе с оборудованием с батарейным питанием, поскольку позволяют работать с оборудованием без необходимости искать необходимые батареи.

Один из популярных типов выдает 13,8 В постоянного тока и предназначен для подачи постоянного тока на устройства, обычно питаемые от автомобильного аккумулятора. Типичное использование — обслуживание радиоприемников CB и автомобильного стереооборудования. Их характеристики линейного регулирования обычно шире, чем у лабораторных расходных материалов, но это нормально, поскольку напряжения в автомобилях существенно различаются.

Другой популярный тип (показан справа) заменяет различные схемы батарей на 1,5 В и батарей на 9 и 12 В. Единственными элементами управления являются двухпозиционный переключатель и поворотный переключатель, позволяющие выбрать желаемое выходное напряжение.

Поскольку это настоящие источники питания, они разработаны для безопасной непрерывной работы в условиях короткого замыкания.

Расстояние между банановыми разъемами составляет 0,75 дюйма (19 мм), чтобы можно было использовать переходники с двумя банановыми вилками, используемые с коаксиальными кабелями.

Источник постоянного напряжения

Чуть более сложный источник питания, чем разрядник батарей, обеспечивает постоянное регулируемое напряжение. Поскольку они регулируются, они обычно поставляются с измерителем, чтобы показать вам напряжение, на которое установлено напряжение.В некоторых также есть измерители, позволяющие контролировать ток. Типичная модель — B&K 1686A, показанная справа.

Основное поведение источника питания — поддержание установленного вами напряжения независимо от сопротивления нагрузки.

Эти модели имеют ручку для регулировки выходного напряжения. Некоторые модели не могут быть полностью настроены до нуля вольт, и их максимальный выходной ток может быть пропорционален выходному напряжению, а не обеспечивать номинальный ток при любом выходном напряжении.

В модели справа предусмотрены «связующие» точки, позволяющие контролировать выходное напряжение с помощью более точного цифрового измерителя или позволяющие подключаться к другим цепям (обратите внимание, что связующие точки имеют предел 2 А).

Эти типы источников питания хорошо работают в качестве разрядников батарей, а также покажут вам ток, потребляемый нагрузкой.

Источник постоянного напряжения / постоянного тока

Вероятно, самый популярный тип лабораторных источников питания — это источники постоянного напряжения / постоянного тока. В дополнение к подаче постоянного напряжения эти источники также могут подавать постоянный ток. В режиме постоянного тока источник питания будет поддерживать установленный ток независимо от изменений сопротивления нагрузки. Типичным примером этого типа источника питания является B&K 1621A, показанный:

Этот источник питания выдает одно регулируемое напряжение, на которое указывает один набор клемм типа «банановый» разъем. Вышеупомянутое расположение выходных клемм с клеммой заземления между клеммами + и — является наиболее распространенным и делает подключение любой клеммы к земле с помощью металлической перемычки очень удобно.Это полезно, если вы хотите, чтобы одна из клемм была заземлена. Конечно, то же самое можно сделать с помощью куска проволоки или перемычки со штабелируемыми банановыми вилками.

Указанный выше источник питания имеет грубую и точную регулировку как тока, так и напряжения. В некоторых источниках питания вместо этого для регулировки используются 10-оборотные потенциометры. В других используются дисковые переключатели или кнопочные переключатели. Дисковые и кнопочные переключатели полезны (если их настройки точны), потому что они могут устранить необходимость в измерителе.

У этих типов источников питания часто есть другие полезные функции:

  • Дистанционное измерение: вход с высоким сопротивлением, позволяющий измерять напряжение на нагрузке. Затем источник питания корректирует падение напряжения на выводах, соединяющих источник питания с нагрузкой.
  • Соединения ведущий / ведомый: существуют различные методы, позволяющие подключать источники питания одного семейства параллельно или последовательно для получения более высоких напряжений или более высоких токов.
  • Терминал дистанционного программирования: некоторые источники питания имеют входные терминалы для напряжения или сопротивления, которые можно использовать для управления выходным напряжением или током.Примечание: это называется аналоговым программированием, а не цифровым программированием с помощью компьютера.

Источник питания с несколькими выходами

Источники питания с несколькими выходами имеют более одного выхода постоянного тока, часто два или три. Они полезны и экономичны для систем, требующих нескольких напряжений. Часто используемый источник питания для разработки схем — это источник с тройным выходом. Один выход подает от 0 до 6 вольт, предназначенный для цифровой логики. Два других питают (обычно) от 0 до 20 вольт, которые могут использоваться с биполярной аналоговой схемой.Иногда для двух источников питания на 20 вольт предоставляется регулировка слежения, так что источники + и — 20 вольт можно регулировать вместе, поворачивая одну ручку.

Популярной моделью является модель 9130:

.

Три выхода можно настроить независимо с помощью ручки или клавиатуры. Выходы каналов 1 и 2 — 31 вольт при 3,1 ампера, а третий канал выдает 6 вольт при 3,1 ампера. Таким образом, источник питания может непрерывно выдавать более 200 Вт. Выходы можно включать и выключать независимо или все сразу (полезно для питания всей печатной платы).

Блок питания имеет ряд полезных функций. Выходы можно настроить на работу по таймеру: по прошествии определенного временного интервала выход отключается. Пределы напряжения устанавливаются для всех каналов, поэтому ваш прототип электрической конструкции может быть защищен от случайного перенапряжения. Два канала на 30 В могут быть подключены последовательно или параллельно для получения более высокого напряжения или тока соответственно. Существуют также регистры хранения для сохранения до 50 состояний прибора для последующего вызова (полезно для повторяющихся испытаний).

Приятной особенностью для автоматической работы является то, что источник питания можно настроить так, чтобы его выход был включен при последних настройках включения. Таким образом, если он работает в цепи и отсутствует питание переменного тока, источник питания снова начнет подавать питание при возобновлении подачи питания переменного тока.

Этот конкретный блок питания также программируется с помощью компьютера, что подводит нас к следующему типу блока питания.

Программируемое питание

Программируемые блоки питания иногда называют «системными» блоками питания, поскольку они часто используются как часть компьютерной системы для тестирования или производства.Мы исключим из этого обсуждения «программирование» с помощью внешних напряжений или сопротивлений, которое использовалось в основном до того, как цифровое управление стало популярным.

На протяжении многих лет существовало множество типов компьютерных интерфейсов с контрольно-измерительными приборами. Двумя наиболее популярными из них были IEEE-488, также известный как GPIB (интерфейсная шина общего назначения), и последовательная связь RS-232. Также использовались сетевые интерфейсы (например, Ethernet) и USB-интерфейсы. Мы не будем здесь обсуждать достоинства различных типов интерфейсов, поскольку они выходят за рамки этого документа.

Командный язык для источника питания находится на несколько более высоком уровне, чем тип интерфейса. Это означает набор инструкций, отправляемых прибору по цифровому интерфейсу, и информацию, полученную компьютером от прибора. Вы увидите три категории:

Собственный

Собственные языки команд обычно специфичны для одного производителя, а иногда даже специфичны для определенного набора инструментов.Недостатком проприетарных командных языков является то, что пользователю необходимо написать программное обеспечение, специально предназначенное для этого инструмента. Переход на другой блок питания от другого производителя означает переписывание программного обеспечения.

SCPI

означает «Стандартные команды для программируемых инструментов», часто произносится как «скиппи» или «скуппи». Поскольку необходимость переписывать программное обеспечение при смене поставщика является болезненным, индустрия тестирования / измерения разработала SCPI для стандартизации команд для контрольно-измерительных приборов, чтобы упростить смену поставщиков приборов без необходимости переписывать большое количество программного обеспечения.

SCPI-подобный

SCPI очень помог, но не является полным решением, потому что добавляются новые функции, требующие новых команд. Несмотря на это, многие производители пытаются сделать свои языки командных инструментов SCPI-подобными, что означает, что они используют как можно больше стандартов. Синтаксис также выглядит знакомым разработчикам программного обеспечения, поэтому время разработки сокращается.

Здесь перечислены некоторые типичные команды SCPI, общие для источников питания:

[SOURce:]
MODE {}
MODE?
НАПРЯЖЕНИЕ
[: LEVel] {}
[: LEVel]?
: ЗАЩИТА
: СОСТОЯНИЕ {}
: СОСТОЯНИЕ?
[: LEVel] {}
[: LEVel]?
ТОК
[: LEVel] {}
[: LEVel]?

Отправляя любую из приведенного выше списка команд через интерфейс, поддерживаемый прибором, можно управлять подачей с помощью компьютера, а не нажимать клавиши на передней панели. Это очень полезно, особенно при выполнении более сложных настроек, таких как создание динамических шагов напряжения с использованием режима списка.

Многодиапазонная поставка

Большинство обычных источников питания работают с фиксированными номинальными значениями напряжения и тока, например 30В / 3А. В этом примере максимальная выходная мощность 90 Вт может быть реализована только при напряжении питания 30 В / 3 А. Для всех других комбинаций напряжения / тока выходная мощность будет меньше. Многодиапазонные источники питания отличаются тем, что они пересчитывают пределы напряжения / тока для каждой настройки, образуя границу гиперболической формы с постоянной мощностью, как показано на диаграмме ниже.Модель B & K 9110, рассчитанная на 100 Вт / 60 В / 5 А, является примером этого типа источника питания. Возможны любые комбинации напряжения / тока, которые лежат на гиперболической кривой, например 20В / 5А или 60В / 1,66А, и в каждом случае источник питания работает на максимальной мощности. Преимущества этой архитектуры очевидны: источник питания с несколькими диапазонами обеспечивает большую гибкость в выборе выходных параметров и позволяет пользователям заменять несколько фиксированных номиналов одним источником с несколькими диапазонами, что позволяет сэкономить средства и место на столе.

Технические характеристики источника питания

Режим постоянного тока и постоянного напряжения

Категория источников питания постоянного тока, обсуждаемая в этом разделе, изменяет напряжение сети переменного тока на напряжение постоянного тока.Наиболее распространенным и универсальным регулируемым источником питания постоянного тока является источник постоянного тока (CC) или постоянного напряжения (CV), который, как следует из названия, может обеспечивать либо постоянный ток, либо постоянное напряжение в определенном диапазоне, см. Изображение ниже.

Рабочая характеристика этого источника питания называется автоматическим кроссовером постоянного напряжения / постоянного тока. Это позволяет непрерывно переходить от режима постоянного тока к режиму постоянного напряжения в ответ на изменение нагрузки.Пересечение режимов постоянного напряжения и постоянного тока называется точкой кроссовера. На рисунке ниже показано соотношение между этой точкой кроссовера и нагрузкой.

Например, если нагрузка такова, что подключенный к ней источник питания работает в режиме постоянного напряжения, обеспечивается регулируемое выходное напряжение. Выходное напряжение остается постоянным по мере увеличения нагрузки до момента, когда будет достигнут заданный предел тока. В этот момент выходной ток становится постоянным, а выходное напряжение падает пропорционально дальнейшему увеличению нагрузки.На некоторых моделях блоков питания точка кроссовера обозначается светодиодными индикаторами на передней панели. Точка пересечения достигается, когда индикатор CV гаснет, а индикатор CC загорается.

Аналогично, переход из режима постоянного тока в режим постоянного напряжения автоматически происходит при уменьшении нагрузки. Хороший пример этого можно увидеть при зарядке 12-вольтовой батареи. Первоначально напряжение холостого хода источника питания может быть установлено равным 13,8 вольт. Низкий заряд батареи приведет к большой нагрузке на источник питания, и он будет работать в режиме постоянного тока, который можно отрегулировать для скорости зарядки 1 ампер.Когда аккумулятор заряжается, и его напряжение приближается к 13,8 вольт, его нагрузка уменьшается до точки, при которой она больше не требует полной зарядки в 1 ампер. Это точка кроссовера, когда источник питания переходит в режим постоянного напряжения.

В следующем списке спецификаций мы перечислим советы и вопросы, которые вы, возможно, захотите учесть при изучении характеристик источника питания. Внимательно читайте спецификации и всегда смотрите на мелкий шрифт.

Выход

Выходное напряжение и ток (или напряжения и токи для нескольких выходов), конечно, имеют фундаментальное значение.Если вы ищете источник питания для конкретного приложения, подумайте о том, чтобы быть консервативным и покупать больше возможностей, чем вам нужно — в проекты часто добавляются новые функции на поздних этапах цикла проектирования.

Советы и вопросы:

  • Убедитесь, что выход установлен в допустимом диапазоне входного линейного напряжения (пример: некоторые импульсные источники питания должны быть снижены, например, до 90 В переменного тока).
  • Некоторые блоки питания (обычно импульсные блоки питания) не рассчитаны на выходное напряжение до 0 В.
  • Насколько вода может плавать над или под землей?
  • Насколько выходной дрейф с течением времени? Типичное значение может составлять от 5 до 10 мВ в течение 10 часов при постоянной нагрузке и входном напряжении.
  • Если на выходе фиксированное напряжение, можно ли его немного отрегулировать до желаемого значения?
  • Проверьте, есть ли в источнике питания дистанционное зондирование. Дистанционное измерение использует две входные клеммы с высоким импедансом для измерения выходного напряжения источника питания. При подключении к нагрузке эта функция может корректировать падение напряжения в соединительных проводах питания и нагрузки.
  • Некоторые блоки питания имеют защиту на выходе. Иногда это называют «лом», «защитой от перенапряжения» или «защитой от предельного напряжения». Эта функция либо ограничивает выходное напряжение до значения, установленного пользователем, либо отключает выход, если выходное напряжение достигает установленного предела. Цель состоит в том, чтобы обеспечить защиту цепей, чувствительных к напряжению. Пример: вы запитываете логическую схему на 5 В с источником питания, способным обеспечить выходное напряжение 40 В. Вы устанавливаете защиту источника питания от перенапряжения на 5.5 вольт. Тогда выходное напряжение никогда не будет превышать 5,5 вольт, независимо от того, на сколько вы поворачиваете ручку регулировки напряжения. Примечание: «лом» обозначает устройство (обычно SCR), которое закорачивает выход при превышении установленного предела напряжения. Поведение лома может быть нежелательным — хотя отключение цепи защитит ее, это также может вызвать проблему из-за отсутствия питания цепи!

Постановление

Регулировка нагрузки — это степень изменения выходного напряжения при изменении нагрузки, обычно от 0 до 100% номинального значения.Это можно легко и удобно измерить с помощью современных нагрузок постоянного тока. Типичные характеристики составляют от 0,1% до 0,01%. Если подумать, это отличное поведение — изменение до 1 части из 10 000 (это делается с помощью схем управления с отрицательной обратной связью).

Линейное регулирование — это степень изменения выхода при изменении входного переменного напряжения. Обычно он указывается как мВ на данное изменение входного сигнала или как процентное изменение во всем допустимом диапазоне входного сигнала. Типичные значения снова находятся в диапазоне 0.От 1% до 0,01%.

Для очень требовательных проектов можно узнать, как изменяется выход при изменении трех основных факторов: входного напряжения, нагрузки и температуры. Это редко указывается и, вероятно, придется измерить.

Вышеуказанные нормативные характеристики относятся к установившемуся режиму работы. Переходное поведение важно для некоторых приложений. Можно указать переходное время отклика, оно связано с тем, сколько времени требуется источнику питания для восстановления до заданного значения после внезапного изменения нагрузки или выхода.Это может быть важной спецификацией, когда источник питания используется с цифровой схемой, которая потребляет энергию импульсами. Например, радиопередатчик быстро перейдет из состояния бездействия в состояние полной мощности, что приведет к скачкообразным изменениям спроса на источник питания. Источник питания с плохой переходной характеристикой (или нестабильной реакцией, вызывающей колебания) будет вредным для приложения, потому что он может быть не в состоянии обеспечить достаточную мощность, а его выходные переходные процессы могут быть связаны с цепью, которую он поставляет, что приведет к аномальное поведение.

Пульсация и шум

Не существует общепринятого метода измерения пульсаций и шума. Некоторые поставщики включают внешние схемы при проведении измерений, поэтому, чтобы дублировать их результаты, вам нужно будет связаться с ними, как они проводят свои измерения. Самый простой способ измерения — подключить осциллограф со связью по переменному току к выходу источника питания. Измерение может быть выполнено на основе синфазного шума (шум на обоих выходах + и — источника питания по отношению к заземлению источника питания переменного тока) или нормального (также называемого дифференциальным режимом) шума, который представляет собой шум, наблюдаемый между + и — клеммы источника питания.Примечание: поскольку внешняя часть разъема BNC на многих прицелах подключена к заземлению, вам придется использовать изолирующий трансформатор для питания осциллографа или использовать дифференциальный усилитель для измерения шума в нормальном режиме.

Пульсации для линейных источников питания обычно измеряются при удвоенной частоте сети. Что касается импульсных источников питания, вам нужно проверить более высокие частоты, и вы можете увидеть скачки напряжения. Пульсация может быть определена как часть нефильтрованного переменного напряжения и шума, присутствующих на выходе фильтрованного источника питания при работе с полной нагрузкой, и обычно указывается в вольтах (среднеквадратичное значение).С другой стороны, шум обычно определяется как размах переменного напряжения и может быть определен как часть нефильтрованного и неэкранированного шума электромагнитных помех, присутствующего на выходе отфильтрованного источника питания при работе с полной нагрузкой.

Может быть важно знать, в какой полосе частот указан шум. Часто это 20 МГц, так как для ее измерения используется осциллограф. Примечание: иногда рябь и шум обозначаются как PARD, что является аббревиатурой от «периодических и случайных отклонений».

Большинство линейных источников питания должны иметь пульсации менее 3 мВ RMS и менее 50 мВ пиковых значений для импульсных источников

* Практический пример : Вот несколько примеров измерений пульсации и шума.Выход блока питания B&K Precision 9130, установленного на 9 В, был подключен через коаксиальный кабель 50 Ом (с использованием переходника с двумя банановыми вилками) к цифровому запоминающему осциллографу B&K Precision 2534 (полоса пропускания 60 МГц). Вход осциллографа был связан по переменному току (канал был проверен, чтобы убедиться, что связь по переменному току не оказывала заметного влияния на амплитуду входного сигнала вплоть до 30 Гц). Прицел питался от изоляционного трансформатора медицинского назначения, поэтому измерение шума было дифференциальным, а не синфазным.Не было измеримых пульсаций в линии электропередач, и шум был в основном широкополосным с некоторыми всплесками с основной частотой 40 МГц. Эти шипы не от этого источника питания, потому что i) они присутствовали при выключенном источнике питания и ii) они присутствовали на других приборах на скамейке автора, также выключенных. Вероятно, это цифровые помехи от компьютера автора, проходящие через линию электропередачи. 9130 должен иметь уровень шума менее 3 мВ (среднеквадратичное значение); эта конкретная поставка соответствовала спецификации.Обратите внимание, что это примерные измерения и не предназначены для определения каких-либо конкретных характеристик источников питания 9130 в целом. Тем не менее, мы надеемся, что это показывает, что такая «простая» вещь, как подключение одного кабеля к источнику питания и выполнение измерения, включает в себя ряд вещей, о которых следует подумать. Если бы автор использовал на входе фильтр нижних частот 20 МГц, он бы не тратил время на отслеживание этого паразитного шума.


Рисунок 2: (A) Типичный тепловой шум (B) Более медленный захват (A), показывающий всплеск (~ 15 мВ) (C&D) Детали всплеска

Температура

Поскольку компоненты, из которых состоят блоки питания, чувствительны к температуре, неудивительно, что блоки питания в целом также могут быть чувствительными к температуре.Это верно даже тогда, когда дизайнеры стараются минимизировать влияние температуры. Современные источники питания лабораторного качества должны иметь температурный коэффициент ниже 0,05% на C. Обычно это указывается в диапазоне рабочих температур, который часто составляет от 0 до 40 ˚C. Обычно подразумевается или предполагается, что источник питания испытывается при постоянной нагрузке без колебаний линии переменного тока.

Вход переменного тока

Источники питания большего размера могут использовать трехфазное питание. Они могут быть более экономичными и немного более эффективными, чем однофазные источники питания, хотя частота пульсаций будет выше.

Изоляция: определяется как напряжение постоянного или переменного тока, которое может подаваться между входом и выходом без нарушения питания. Типичные числа от 500 до 1500 В. Изоляция источника питания между входом и выходом или шасси обеспечивается изоляцией, обеспечиваемой трансформатором источника питания.

Некоторые источники питания содержат фильтрующие конденсаторы большой емкости, которые, по сути, вызывают короткое замыкание на выпрямитель при первом включении источника питания. В некоторых источниках питания есть схемы, позволяющие минимизировать пусковой ток или распределить его по времени («плавный пуск»).

Спецификация удержания определяет, как долго вход переменного тока может отключиться, а источник питания все еще будет оставаться в режиме регулирования. Заряд, накопленный на конденсаторах фильтра, используется для подачи питания при отключенном входе переменного тока.

По мере увеличения стоимости энергии эффективность энергоснабжения становится все более важной. Эффективность — это выходная мощность, деленная на входную, и, конечно же, всегда будет меньше 100% (обычно она преобразуется в проценты). Лучшие расходные материалы могут быть эффективными на 90% или лучше.Линейные источники питания обычно намного менее эффективны, чем импульсные источники питания.

Точность слежения

Некоторые блоки питания с двумя или более выходами могут иметь функцию отслеживания. Здесь один выход будет отслеживать выходное напряжение другого выхода. Это полезно при подаче питания на цепи, которым нужна положительная и отрицательная шина. Спецификация точности отслеживания определяет, насколько точно второй вывод отслеживает вывод первого вывода.

Изоляция постоянного тока

Изоляция означает, насколько клеммы + или — могут быть «плавающими» над или под землей линии питания.Эта спецификация часто включает выходное напряжение источника питания. Важно не превышать спецификации, так как это может вызвать пробой диэлектрика внутреннего компонента и / или воздействие опасного напряжения. Довольно часто два блока питания подключаются последовательно, чтобы получить более высокое напряжение, чем может обеспечить любой из них. Например, рассмотрим следующую схему:

V out будет суммой напряжений, установленных на источнике питания 1 и источнике питания 2. Обратите внимание, что эта последовательная работа должна быть такой, чтобы ток не превышал ток источника питания с минимальным номинальным током.

Чтобы быть уверенным, что вы соблюдаете технические требования производителя по изоляции постоянного тока, убедитесь, что ни одно из напряжений на любом из внешних проводов относительно земли не превышает спецификации изоляции постоянного тока.

Теория работы

Есть два основных способа работы источников питания: линейное регулирование и режим переключения.

Линейное регулирование

Принцип действия источника питания с линейным регулированием показан на следующей схеме:

Входное напряжение обычно поступает от трансформатора, двухполупериодного выпрямителя и конденсаторного каскада фильтра.Выходное напряжение сравнивается с опорным напряжением (полученным, например, из настроек передней панели источника питания), и разница подается на транзистор, чтобы пропускать через него больший или меньший ток. Транзистор обычно биполярный или MOSFET (иногда как часть управляющей ИС для небольших источников питания) и работает в своей линейной области (отсюда и название «линейное» регулирование). Стратегия линейного регулирования имеет преимущества простоты, низкого уровня шума, быстрого времени отклика и отличного регулирования.Недостатком является то, что они неэффективны, так как всегда рассеивают мощность. В приведенной выше схеме вы можете видеть, что транзистор имеет V на — V на выходе . Умножьте эту разницу на ток, чтобы получить рассеиваемую мощность. При большой разнице напряжений (т. Е. При низком выходном напряжении источника питания) и большом токе общий КПД может упасть почти до 10%. Максимальный КПД для линейного источника питания обычно составляет около 60%. Типичный средний КПД находится в диапазоне 30-40%.

Режим переключения

Примечание. В этом разделе мы будем называть импульсный источник питания сокращенно SMPS.

Проблемой типичного линейного источника питания является размер и вес трансформатора. Размер нужен из-за низкой частоты (от 50 до 60 Гц). При той же выходной мощности размер трансформатора уменьшается (сильно) с увеличением частоты (до определенного значения). SMPS использует это преимущество, разделяя форму волны переменного тока на множество мелких частей и изменяя их до желаемого уровня напряжения с помощью трансформатора гораздо меньшего размера.Ключевым фактом является то, что переключающий элемент (транзистор) либо выключен, либо полностью включен (насыщен). Падение напряжения на транзисторе невелико (как для биполярного транзистора, так и для полевого МОП-транзистора), что означает, что в нем тратится мало энергии. Когда он выключен, мощность не рассеивается. Это одно из преимуществ эффективности ИИП.

Конденсаторы фильтра также могут быть меньше на этих более высоких частотах, и дроссели более эффективны. Нижний предел частоты составляет 25 кГц (чтобы оставаться выше диапазона человеческого слуха), а современный верхний предел в настоящее время составляет около 3 МГц.Большинство импульсных источников питания используют частоты в диапазоне от 50 кГц до 1 МГц.

Паразитное поведение и скин-эффект в проводимости становятся важными на более высоких частотах переключения, особенно потому, что формы волны представляют собой прямоугольные волны и богаты гармониками. В пассивных элементах, таких как конденсаторы и катушки индуктивности, ESR (эквивалентное последовательное сопротивление) становится важным и приводит к неэффективности. Резисторы должны быть неиндуктивными. Тщательно продуманные, оптимизированные схемы переключения режимов могут обеспечить эффективность 95%, но типичный SMPS имеет КПД около 75%, что все же намного лучше, чем у типичного линейного источника питания.Это одна из причин, по которой они повсеместно используются в персональных компьютерах.

Еще одним преимуществом SMPS является то, что переключение можно модулировать различными способами в зависимости от условий нагрузки. Выход источника питания регулируется с помощью цепи обратной связи, которая регулирует время (рабочий цикл), с которым MOSFETs включаются или выключаются.

Преимущества импульсных источников питания не связаны с некоторыми затратами. Более высокие частоты и переключение означают более высокие уровни электромагнитных помех (EMI), как излучаемых, так и кондуктивных.Это может вернуть коммутационный шум в линию электропередачи. Управляющая электроника также стала более сложной (особенно в последнее время из-за желания иметь более высокие коэффициенты мощности).

Импульсные источники питания могут с трудом вырабатывать низкое напряжение. Это связано с тем, что транзистор должен переключать ток, то есть SMPS не может работать, пока не будет протекать достаточный ток. Из-за этого импульсные источники питания часто имеют минимальное выходное напряжение.

Применение источника питания

http: // www.amtex.com.au/ApplicationNotesPower.htm

Использование источника питания для создания смещения постоянного тока с помощью функционального генератора

Если источник сигнала, такой как функциональный генератор, не имеет возможности смещения постоянного тока, вы можете эффективно добавить эту функцию, используя источник питания постоянного тока. Как и в спецификации на изоляцию постоянного тока источника постоянного тока, важно, чтобы такой режим работы источника сигнала был разрешен производителем и чтобы вы не превышали спецификации. Вам также понадобится источник сигнала, выходные клеммы которого (обычно разъем BNC) изолированы от земли.Если разъем не изолирован от земли, прибор можно изолировать от земли линии питания с помощью изолирующего трансформатора. Однако металлическое шасси инструмента может быть выше или ниже потенциала земли при смещении постоянного тока, поэтому примите соответствующие меры против поражения электрическим током. Способ подключения показан на следующей схеме.

Причина, по которой это может быть полезно, заключается в том, что сигнал функционального генератора затем может быть вставлен в схему, которая смещена выше или ниже земли (или источник питания постоянного тока может подавать смещение, например, для транзистора).Вы должны быть осторожны, чтобы не превысить текущие возможности функционального генератора.

Вопросы и советы по источникам питания

Как измерить эффективность источника питания?

Если для вас важна эффективность, вы должны тщательно ее измерить. Для типичного источника питания постоянного тока, работающего от сети переменного тока, вам необходимо измерить входную мощность переменного тока и мощность постоянного тока, выдаваемую источником, как показано на следующей диаграмме:

Наверное, лучший инструмент для измерения мощности переменного тока, используемой источником постоянного тока, — это осциллограф.Вам нужно будет измерить переменное напряжение и переменный ток, поступающие в блок питания. Лучшим подходом, вероятно, является использование неиндуктивного токового шунта для измерения тока и двух независимых дифференциальных усилителей для измерения входного переменного напряжения источника питания и переменного напряжения на шунте. Форма волны мощности может быть получена путем умножения формы волны тока и напряжения с помощью осциллографа. При подходящей полосе пропускания осциллографа и усилителей это будет точное измерение, покажет вам коэффициент мощности и расскажет о любых гармониках / переходных процессах линии питания, связанных с работой источника питания постоянного тока.Если ваш осциллограф не может выполнить умножение, вы все равно можете измерить среднеквадратичные значения напряжения и тока, измерить коэффициент мощности и умножить эти три вместе.

Для измерения мощности, потребляемой нагрузкой, вы можете использовать измерители напряжения и тока источника постоянного тока, если вы знаете, что они точны. Для подтверждения вы можете вместо этого использовать нагрузку постоянного тока с такими же характеристиками нагрузки.

Тогда измеренный КПД в процентах будет

.

, где P в — это измеренная мощность переменного тока на входе, а P на выходе, — это измеренная мощность на выходе постоянного тока, оба в одних и тех же блоках питания.

Почему существует такая большая разница в ценах между блоками питания?

Аналогичный вопрос можно задать об автомобилях. Оба вопроса имеют один и тот же ответ: существует множество факторов, и простой ответ, вероятно, невозможен. Некоторые из факторов —

  • Имя и репутация продавца

  • Насколько консервативен дизайн

  • Количество и тип конкурирующих единиц

  • Сертификаты (e.г., безопасность, электромагнитные помехи и т. д.)

  • Надежность конструкции (и усилия, затраченные на ее проверку)

  • Качество используемых компонентов и конструкции

  • Количество функций

При оценке источника питания (или любого другого оборудования) следует учитывать общую стоимость владения. Включите стоимость ежегодных калибровок и любые предполагаемые потери из-за недоступности или необходимости ремонта или замены устройства в случае его выхода из строя.Через десять или более лет эти затраты могут легко превысить первоначальную стоимость источника питания.

Что лучше: режим переключения или линейный?

Это зависит от того, что вы подразумеваете под словом «лучший». Вы можете получить некоторые рекомендации из следующей таблицы:

Тип

Сильные стороны

Слабые стороны

Линейная

  • Низкий уровень шума и электромагнитных помех
  • Хорошая регулировка линии и нагрузки
  • Быстрая переходная характеристика
  • Может производить очень низкий выходной ток
  • Низкий КПД (в среднем 30-40%)
  • Масса (трансформатор)
  • Радиаторы большего размера
  • Дороже для большей мощности

Режим переключения

  • Высокий КПД (в среднем 75%, в некоторых случаях около 95%)
  • Более доступный для большей мощности
  • Более легкий
  • Невозможно подавать низкое напряжение, требуется минимальный ток
  • Больше шума (включая импульсный шум и нарушения ЭМС)
  • Намного более медленный переходной отклик по сравнению с линейным

Дополнительные комментарии по этим двум типам см. В разделе «Теория работы».

Все большую популярность приобретают гибридные технологии, использующие как линейные, так и переключающие схемы. Целью этого подхода является создание источников питания, характеристики которых сочетают в себе преимущества технологий линейного и импульсного режимов.

Что такое лом?

Это защитное устройство, используемое на выходе источников питания (обычно SCR) для короткого замыкания выхода, если выходное напряжение превышает установленный уровень. См. Раздел «Выход» в разделе «Характеристики источника питания».

Как лучше всего проверить блок питания под нагрузкой?

Безусловно, отличный способ — протестировать его с реальной нагрузкой, которую он предназначен, если это возможно. Однако это может не повлиять на поставку настолько, чтобы много рассказать о ее пригодности и надежности для вашего приложения. Отличным инструментом для проверки блоков питания является нагрузка постоянного тока. Их можно запрограммировать на применение самых разных нагрузок к источнику питания, и они могут делать это безостановочно. После того, как определенная поставка квалифицирована, они становятся хорошими инструментами для текущей или входящей проверки.

Как измерить пульсацию и шум?

Это можно сделать с помощью осциллографа или широкополосного среднеквадратичного вольтметра переменного тока. Но есть нюансы, о которых следует знать — см. Раздел «Пульсация и шум» в разделе «Характеристики источника питания».

Сопротивление провода и контакта

Контактное сопротивление в плохих соединениях или плохо выполненных механических соединениях может добавить значительные нагрузки, особенно в сильноточных устройствах. Плохое или корродированное гофрированное соединение может иметь сопротивление в сотни миллиомов или даже выше ома.Это снижает эффективность и создает горячие точки. Если вам когда-либо приходилось чистить клеммы аккумулятора на вашем автомобиле, чтобы он завелся, вы видели проблему.

Медный провод 10 калибра имеет сопротивление немногим более 3 Ом / м. Для цепи с проводом длиной 10 м это 30 мОм. Таким образом, соединение 100 мОм обеспечит 75% сопротивления проводки (а также потеряет 75% мощности, потерянной в проводке).

Плохие соединения относительно легко найти, если вы можете получить доступ к проводу под нагрузкой. Цифровой мультиметр можно использовать для измерения падения напряжения на соединениях (будьте осторожны, когда по проводам передаются значительные напряжения).Зная ток (измерьте его с помощью накладного амперметра постоянного тока, если измеритель источника питания не подходит), вы можете рассчитать сопротивление соединения. Если провод изолирован, доступны специальные пробивающие изоляцию щупы, такие как CalTest Electronics CT3044 или Pomona 5913. Если вы используете пробивные щупы, сначала отключите питание — случайная дуга может повредить острые наконечники (кроме потенциальная угроза безопасности).

Могу ли я подключиться параллельно?

Нагрузке для работы требуется n источников питания, поэтому используется n + 1 источник питания, что позволяет одному из них выйти из строя.Диоды должны изолировать источники питания друг от друга (они могут понадобиться, а могут и не понадобиться; опять же, спросите своего поставщика). Для источников питания может потребоваться соединение линий управления, чтобы они могли разумно распределять нагрузку. Требование состоит в том, чтобы на выходе каждого источника было одинаковое напряжение, чтобы они поровну распределяли нагрузку. Проводка должна быть короткой, и каждая ветвь должна быть одинаковой для каждого источника питания.

М. Шварц, Передача информации, модуляция и шум, 2-е изд., McGraw-Hill, 1970, ISBN 07-055761-6.

http://www.abbottelectronics.com/engineer/glossary.htm

http://www.currentsolutions.com/knowledge/glossary.htm

Регулировка линии
Насколько изменяется напряжение или ток нагрузки, когда источник питания работает при различных линейных напряжениях в заданном диапазоне. Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
Регулировка нагрузки
Насколько изменяется напряжение или ток нагрузки между работой источника питания на холостом ходу и при полной нагрузке.Обычно указывается в процентах от общего напряжения или тока, доступного от источника питания. Рейтинг «0%» означал бы идеальное регулирование.
КПД
Измеренный в процентах, он указывает количество выходной мощности по сравнению с мощностью, потребляемой в системе.
EMI
Электромагнитные помехи
Пусковой ток
Начальная величина тока, потребляемого источником питания при запуске.Иногда его называют пусковым током, и обычно он на несколько значений превышает установившееся значение источника питания.
Инвертор
Электрическое устройство, используемое для преобразования постоянного тока в переменный ток.
Дистанционное считывание
Предоставляется в некоторых приборах, которые могут использоваться для измерения напряжения тестируемого устройства на его клеммах, чтобы обеспечить точные показания для компенсации падений напряжения на выводах, подключенных к прибору и тестируемому устройству.
Постоянное напряжение
Стабилизированный источник питания, который подает постоянное напряжение на нагрузку, даже когда сопротивление нагрузки изменяется до значения, не превышающего предельный ток источника питания.
Постоянный ток
Регулируемый источник питания, который подает постоянный ток на нагрузку даже при изменении сопротивления нагрузки. Обратите внимание, что источник питания должен соответствовать закону Ома.
Предел тока
Значение, установленное как предел тока, который может выдавать блок питания.Когда ток достигает предела, типичный источник питания CV / CC переключается из режима CV в режим CC. Это также известно как точка пересечения.
Защита от перегрузки
Функция защиты в большинстве источников питания постоянного тока, предотвращающая потребление каким-либо устройством большей мощности, чем предназначены для выработки.
Защита от перенапряжения
Защита, присутствующая во многих источниках питания, ограничивает величину выходного напряжения.
Параллельная работа
Этот режим работы, применяемый во многих источниках питания с двойным и тройным выходом, позволяет подключать два или более независимых выхода параллельно для увеличения токового выхода.
Последовательная работа
Режим работы многих источников питания с двойным и тройным выходом, в котором два или более независимых выхода последовательно подключаются для увеличения выходного напряжения.
PARD
Периодические (пульсации) и случайные (шум) отклонения выходного напряжения от заданного значения.
ШИМ
Широтно-импульсная модуляция
Разрешение
Наименьшее изменение напряжения или тока, которое может быть выполнено с помощью регуляторов.
Тепловая защита
Защита от повреждения источника питания из-за чрезмерной температуры.
Переходное время восстановления
Время, необходимое источнику питания для восстановления своей выходной мощности после ступенчатого изменения.
AC
Переменный ток. Описывает напряжение и ток, которые изменяются по амплитуде, обычно синусоидальной формы волны по времени. Электропитание переменного тока почти повсеместно используется для распределения электроэнергии.
Блэкаут
Потеря электропитания переменного тока.
Пониженное напряжение
Запланированное снижение напряжения переменного тока энергокомпанией для противодействия чрезмерному спросу.
Емкостная связь
Два отдельных проводника всегда образуют конденсатор. Чем они ближе, тем больше вероятность того, что колебания напряжения на одном проводе будут электростатически индуцированы на другом проводе (в отличие от индуктивной связи).
Индуктивная связь
Когда в одном проводе протекает изменяющийся ток, в соседнем проводе индуцируется напряжение из-за магнитного поля, вызванного током (в отличие от емкостной связи).
Пик-фактор
В сигнале переменного тока пик-фактор — это отношение пикового значения к среднеквадратичному значению.
DC
Постоянный ток. Используется для описания неизменного напряжения, тока или электрической мощности.
Drift
Изменение во времени выходного напряжения или тока.
Электронная нагрузка
Тип прибора, который служит нагрузкой, обычно динамической, и может использоваться для тестирования источников питания и источников питания.
ESR
Эквивалентное последовательное сопротивление. Простая «последовательная» модель конденсатора или катушки индуктивности помещает чистое реактивное сопротивление последовательно с чистым резистором, величина которого обычно называется ESR. Часто измеряется на электролитических конденсаторах большего размера, и высокое значение ESR обычно указывает на неисправный конденсатор.
Заземление
Электрическое заземление в системе переменного тока — это провод, который соединен с землей, отсюда и название «земля». Причина такого подключения кроется в необходимости защиты пользователей электрического оборудования от поражения электрическим током.Электроэнергия доставляется к месту использования с помощью трансформатора, установленного на опоре или другого типа. Выход такого трансформатора состоит, по существу, из двух выводных проводов, между которыми имеется напряжение использования. По ряду сложных причин, связанных с безопасностью, один из этих выводных проводов трансформатора подключается к земле с помощью медной шины, вбитой в землю.
Минимальная нагрузка
Если указан для источника питания, это минимальный ток нагрузки, который должен быть получен от источника питания, чтобы он соответствовал его рабочим характеристикам.
Скачок
Кратковременное повышение напряжения сети переменного тока.
Выходное сопротивление
Отношение изменения выходного напряжения к изменению тока нагрузки.
Коэффициент мощности
Отношение активной и полной мощности. Это определяет, сколько тока требуется для выработки определенного количества энергии. Всегда желательно, чтобы отношение было как можно ближе к 1. Система с более низким коэффициентом мощности означала бы большую потерю мощности для выполнения того же объема работы по сравнению с системой с более высоким коэффициентом мощности.
Пульсации напряжения
Часть нефильтрованного переменного напряжения и шума, присутствующие на выходе фильтрованного источника питания, работающего при полной нагрузке. Обычно указывается в среднеквадратичных значениях напряжения переменного тока (с нулевыми пульсациями напряжения, представляющими идеально отфильтрованный источник питания).
Пульсирующий ток
Часть нефильтрованного переменного тока на выходе фильтрованного источника питания.
RMS
Среднеквадратичное значение. Для любой формы сигнала среднеквадратичное значение представляет собой квадратный корень из среднего значения суммы квадратов выбранных значений.Для непрерывной функции применима аналогичная интегральная формула.
Защитное заземление
Цепь, предназначенная для отвода опасного напряжения (из-за дефекта или аварии), тем самым защищая людей от случайных ударов. Металлические крышки инструментов и приборов заземлены (и, следовательно, называются защитным заземлением). Таким образом, если электрически «горячий» провод внутри устройства случайно касается металлического корпуса, подключение к защитному заземлению означает, что металл будет оставаться рядом с потенциалом земли.Обычно в таком состоянии срабатывает автоматический выключатель.
Диапазон температур
Диапазон, в котором рассчитан источник питания. Он также может обозначать диапазон температур, в котором может храниться источник питания.
Истинная мощность
Также называемая реальной мощностью, обычно измеряется в ваттах.
Полная мощность
Произведение среднеквадратичного значения тока и среднеквадратичного напряжения, обычно измеряемое в единицах ВА (вольт-амперы).

Leave a comment