Колонки устройство: Акустическая система — Википедия – типы акустического оформления колонок / Stereo.ru

Содержание

типы акустического оформления колонок / Stereo.ru

Чтобы как следует разобраться в процессах, происходящих в ящике, на стенке которого смонтирован один или несколько динамиков, нужно вдумчиво прочитать пару-тройку книжек, в каждой из которых формул больше, чем во всем школьном курсе физики. Я забираться в такие дебри не буду, так что не стоит данный материал как исчерпывающий анализ или руководство по постройке аудиофильских колонок. Однако очень надеюсь, что он поможет начинающим меломанам (да и некоторым хроническим тоже) как следует сориентироваться в разнообразии акустических решений, каждое из которых его разработчики, разумеется, называют единственно правильным.

Некоторое время после изобретения в 1924 году электродинамического излучателя с коническим диффузором (окей, просто динамика), его деревянное обрамление исполняло в первую очередь декоративные и защитные функции. Оно и понятно — после долгих лет прослушивания пластинок через слюдяные мембраны и раструбы граммофонов, саунд нового устройства и безо всякой акустической доработки казался просто апофеозом благозвучия.

Мембраны граммофонов изготавливались чаще всего из алюминия или слюды

Однако технологии записи быстро совершенствовались и стало понятно, что более-менее правдоподобно воспроизвести слышимый диапазон динамиком, просто закрепленном на некой подставке, крайне проблематично. Дело в том, что предоставленная сама себе динамическая головка находится в состоянии акустического короткого замыкания. То есть волны от фронтальной и тыловой поверхностей диффузора, излучаемые, понятное дело, в противофазе, беспрепятственно накладываются друг на друга, что самым печальным образом отражается на эффективности работы, и в первую очередь на передаче басов.

Кстати, в процессе данного рассказа я буду чаще всего рассуждать именно о низких частотах, так как их воспроизведение — ключевой момент в работе любого корпуса АС. ВЧ-драйверы в силу малой длины излучаемых волн во взаимодействии с внутренним объемом колонки вообще не нуждаются, и чаще всего полностью от него изолированы.

Душа нараспашку

Самый простой способ отделить фронтальное излучения динамика от тылового — смонтировать его на щите как можно большего размера. Из этой простой идеи и родились, собственно, первые акустические системы, представлявшие собой ящик с открытой задней стенкой, поскольку для компактности края щита просто взяли, да и загнули под прямым углом. Однако в плане воспроизведения басов успехи подобных конструкций впечатляли не слишком. Помимо несовершенства корпуса проблема была еще и в очень небольшом по современным понятиям ходе подвески диффузоров. Чтобы хоть как-то выйти из положения, использовались динамики как можно большего размера, способные развивать приемлемое звуковое давление при небольшой амплитуде колебаний.

PureAudioProject Trio 15TB с 15-дюймовыми НЧ-драйверами на трехслойных бамбуковых панелях

Несмотря на кажущуюся примитивность подобных конструкций, у них имелись и кое-какие достоинства, причем настолько специфические и интересные, что адепты открытых АС не перевелись до сих пор.

Начать с того, что отсутствие каких-либо препятствий на пути звуковых волн – лучший путь к повышению чувствительности. Момент этот особенно ценен для аудиофильских ламповых усилителей, в особенности однотактных или лишенных обратной связи. Бумажные диффузоры большого диаметра даже на мощности порядка четырех-пяти ватт способны создать довольно-таки внушительный, и при этом на удивление открытый и свободный саунд.

При высоте 1,2 м в мире открытой акустики Jamo R907 считаются практически компактами

Что же касается тылового излучения, то чтобы не вносить искажений в прямой звук, оно должно приходить к слушателю с заметной задержкой (свыше 12-15 мс) — в таком случае его влияние ощущается как легкая реверберация, лишь добавляющая в саунд воздуха и расширяющая музыкальное пространство. Тонкость в том, что для создания этой самой «заметной задержки» колонки, разумеется, должны быть расположены на изрядном расстоянии от стен. К тому же большая площадь передней панели и внушительные размеры НЧ-драйверов соответствующим образом сказываются на общих габаритах АС. Одним словом, обладателей небольших и даже средних жилых комнат просьба не беспокоиться.

Кстати, частный случай открытых систем — акустика, построенная на электростатических излучателях. Только за счет почти невесомой диафрагмы большой площади, ко всем вышеописанным преимуществам, у электростатов добавляется способность филигранно передавать даже самые резкие динамические контрасты, а благодаря отсутствию разделения сигнала в зонах СЧ и ВЧ, еще и завидная тембральная точность.

Открытое оформление

Плюсы: Высококлассные открытые колонки — отличный способ получить реальный кайф от прослушивания пуристских ламповых однотактников.

Минусы: Про жирные компрессионные басы лучше забыть сразу. Весь звуковой тракт должен быть подчинен идее открытой акустики, а сами колонки придется выбирать из крайне ограниченного числа предложений.

Запертый в ящике

С ростом мощности и улучшением параметров усилителей сверхвысокая чувствительность акустики перестала быть главным камнем преткновения, а вот проблемы неравномерности АЧХ, и в особенности правильного воспроизведения басов, стали еще более актуальными.

Гигантский шаг к прогрессу в данном направлении сделал в 1954 году американский инженер Эдгар Вильчур. Он запатентовал акустическую систему закрытого типа, и это был отнюдь не трюк в стиле нынешних патентных троллей.

Патентная заявка Эдгара Вильчура на АС в закрытом оформлении

К тому моменту уже был изобретен фазоинвертор и, понятное дело, к ящику с дном динамик тоже примеряли неоднократно, только вот ничего хорошего из этого не получалось. Из-за упругости замкнутого объема воздуха приходилось или терять существенную часть энергии диффузора, или делать корпус непомерно большим, чтобы снизить градиент давления. Вильчур же решил обратить зло во благо. Он сильно понизил упругость подвеса, переложив таким образом контроль за движением диффузора на объем воздуха — пружину куда более линейную и стабильную, чем гофр или резиновое кольцо.

В закрытом ящике движения диффузора контролируются воздухом — в отличие от бумаги или резины он не стареет и не изнашивается

Так удалось не только полностью избавиться от акустического короткого замыкания и поднять отдачу на низких частотах, но и ощутимо сгладить АЧХ на всем ее протяжении. Однако обнаружился и минорный момент. Выяснилось, что демпфирование замкнутым объемом воздуха приводит к повышению резонансной частоты подвижной системы и резкому ухудшению воспроизведения частот ниже данного порога. Для борьбы с такой неприятностью пришлось увеличивать массу диффузора, что логичным образом привело к снижению чувствительности. Плюс поглощение внутри «черного ящика» чуть ли не половины акустической энергии, не могло не внести вклада в снижение звукового давления. Одним словом, новому типу колонок потребовались усилители довольно серьезной мощности. К счастью, на тот момент они уже существовали.

Сабвуфер SVS SB13-Ultra с закрытым акустическим оформлением

Сегодня закрытое оформление применяется по большей части в сабвуферах, особенно в тех, что претендуют на серьезное музыкальное исполнительство. Дело в том, что для домашних кинотеатров энергичная отработка самых низких басов часто оказывается важнее динамической и фазовой точности на всем протяжении НЧ-диапазона. А вот объединив относительно компактный закрытый саб с приличными сателлитами, можно добиться куда более правильного звука — пускай и не наполненного сверхглубокими басами, зато крайне быстрого, собранного и четкого. Всё вышесказанное можно отнести и на счет полнодиапазонных колонок, «закрытые» модели которых изредка появляются на рынке.

Закрытый ящик

Плюсы: Образцовая скорость атаки и разрешение в низкочастотном диапазоне. Относительная компактность конструкции.

Минусы: Требуется достаточно мощный усилитель. Сверхглубоких басов на грани инфразвука добиться весьма затруднительно.

Дело — труба

Еще одним способом обуздания противофазного тылового излучения стал фазоинвертор, по-русски буквально «разворачиватель фазы». Чаще всего он представляет собой полую трубку, смонтированную на передней или задней поверхности корпуса. Принцип работы понятен из названия и незамысловат: раз избавляться от излучения обратной стороны диффузора трудно и нерационально, значит нужно синхронизировать его по фазе с фронтальными волнами и использовать на благо слушателей.

Амплитуда и фаза движения воздуха в фазоинверторе меняются в зависимости от частоты колебаний диффузора

По сути труба с воздухом является самостоятельной колебательной системой, получающей импульс от движения воздуха внутри корпуса. Обладая совершенно определенной частотой резонанса, фазоинвертор работает тем эффективнее, чем ближе колебания диффузора к частоте его настройки. Звуковые волны более высоких частот сдвинуть с места воздух в трубе просто не успевают, а более низкие хотя и успевают, но чем они ниже, тем сильнее смещается фаза излучения фазоинвертора, и, соответственно, его эффективность. Когда поворот фазы достигает 180 градусов, тоннель начинает откровенно и весьма эффективно глушить звук басового драйвера. Именно этим объясняется очень крутое падение звукового давления АС ниже частоты настройки фазоинвертора — 24 дБ/окт.

В борьбе с турбулентными призвуками конструкторы фазоинверторов постоянно экспериментируют

У закрытого ящика, между прочим, на частотах ниже резонансной спад АЧХ куда более плавный — 12 дБ/окт. Однако в отличие от глухой коробки, коробка с трубой в боковой стенке не заставляет конструкторов идти на любые хитрости ради максимального снижения резонансной частоты самого динамика, что довольно хлопотно и дорого. Тоннель фазоинвертора настроить куда проще — достаточно подобрать ее внутренний объем. Это, правда, в теории. На практике, как всегда, начинаются непредвиденные сложности, например, на больших уровнях громкости воздух на выходе из отверстия может шуметь почти как ветер в печном дымоходе. К тому же инертность системы частенько становится причиной падения скорости атаки и ухудшения артикуляции на басах. Одним словом, простор для экспериментов и оптимизации перед конструкторами фазоинверторных систем открывается просто невероятный.

Фазоинвертор

Плюсы: Энергичная отдача на НЧ, возможность воспроизведения самых глубоких басов, относительная простота и дешевизна изготовления (при изрядной сложности расчета).

Минусы: В большинстве реализаций проигрывает закрытому ящику в скорости атаки и четкости артикуляции.

Обойдемся без катушки

Попытки избавиться от генетических проблем фазоинвертора, а заодно и сэкономить на объеме корпуса без ущерба для глубины баса, натолкнули разработчиков на идею заменить полую трубу на мембрану, приводимую в движение колебаниями все того же рабочего объема воздуха. Проще говоря, в закрытом ящике установили еще один низкочастотный драйвер, только без магнита и звуковой катушки.

Пассивный излучатель может увеличить эффективную поверхность диффузора вдвое, или даже в трое, если в одной колонке они установлены парой

Конструкция получила название «пассивный излучатель» (Passive radiator), которое сплошь и рядом не слишком грамотно переводят с английского как «пассивный радиатор». В отличие от трубы сабвуфера, пассивный диффузор занимает куда меньше пространства в корпусе, не так критичен к расположению, и к тому же он, как и воздух внутри закрытого ящика, демпфирует ведущий драйвер, сглаживая его АЧХ.

Пассивный излучатель сабвуфера REL S/5. Основной драйвер направлен в пол

Еще один плюс — с увеличением площади излучающей поверхности для достижения нужного звукового давления требуется меньшая амплитуда колебаний, а значит, снижаются последствия нелинейной работы подвеса. Колеблются оба диффузора синфазно, а резонансная частота свободной мембраны настраивается точной регулировкой массы — к ней попросту подклеивают грузик.

Пассивный излучатель

Плюсы: Компактность корпуса при впечатляющей глубине басов. Отсутствие фазоинверторных призвуков.

Минусы: Увеличение массы излучающих элементов приводит к росту переходных искажений и замедлению импульсного отклика.

Выход из лабиринта

Акустика, вооруженная фазоинверторами и пассивными излучателями, воспроизводит глубокие басы благодаря резонаторам, работающим при посредничестве воздуха внутри АС. Однако кто сказал, что объем колонки не может играть роль низкочастотного излучателя сам по себе? Конечно может, и соответствующая конструкция называется акустический лабиринт. По сути, она представляет собой волновод, протяженностью в половину или четверть длины волны, на которой планируется добиться резонанса системы. Иными словами конструкция настраивается по нижней границе частотного диапазона АС. Конечно использовать волновод полной длины волны было бы еще эффективнее, но тогда для частоты, скажем, 30 Гц, его пришлось бы делать 11-метровым.

Акустический лабиринт — любимая конструкция акустиков-самодельщиков. Но при желании корпуса самой хитрой формы можно заказать и в готовом виде

Чтобы в колонке разумных размеров уместить даже вдвое более компактную конструкцию, в корпусе устанавливают перегородки, формирующие максимально компактный изогнутый волновод, поперечным сечением примерно равным площади диффузора.

От фазоинвертора лабиринт отличается в первую очередь менее «резонансным» (то есть не акцентированным на определенной частоте) звучанием. Относительно низкая скорость и ламинарность движения воздуха в широком волноводе препятствует возникновению турбулентности, порождающей, как мы помним, нежелательные призвуки. Кроме того, в данном случае драйвер свободен от компрессии, повышающей резонансную частоту, ведь его тыловое излучение не встречает практически никаких препятствий.

Схема для расчета корпуса на dbdynamixaudio.com

Бытует мнение, что акустические лабиринты создают меньше проблем со стоячими волнами в комнате. Однако при малейших просчетах в разработке или изготовлении, стоячие волны могут возникнуть в самом волноводе, который, в отличие от фазоинвертора, имеет куда более сложную структуру резонансов.

Вообще надо сказать, что грамотный расчет и точная настройка акустического лабиринта — процессы весьма непростые и трудоемкие. Именно по этой причине данный тип корпуса встречается нечасто, и только в АС очень серьезного ценового уровня.

Акустический лабиринт

Плюсы: Не только хорошая отдача, но и высокая тональная точность басов.

Минусы: Нешуточные размеры, очень высокая сложность (читай — стоимость) создания правильно работающей конструкции.

Эй, на пароме!

Рупор — самый древний и, пожалуй, самый провокационный тип акустического оформления. Выглядит круто, если не сказать эпатажно, звучит ярко, а временами… В старых фильмах герои иногда кричат друг другу что-то в рупор, и характерная окраска такого звука давно стала мемом и в музыкальном, и в киношном мире.

Avantgarde Acoustics Trio с низкочастотным рупорным массивом Basshorn XD высотой 2,25 м

Конечно от жестяной воронки с ручкой теперешняя акустика ушла очень далеко, но принцип работы все тот же — рупор повышает сопротивление воздушной среды для лучшего согласования с относительно высоким механическим сопротивлением подвижной системы динамика. Таким образом, повышается его КПД, а заодно и формируется четкая направленность излучения. В отличие от всех описанных ранее конструкций, рупор чаще всего используется в высокочастотных звеньях АС. Причина проста — его сечение увеличивается по экспоненте, и чем ниже воспроизводимая частота, тем большим должен быть размер выходного отверстия — уже на 60 Гц потребуется раструб диаметром 1,8 м. Понятно, что такие монструозные конструкции больше подходят для стадионных концертов, где их действительно периодически можно встретить.

Главный козырь адептов рупорного воспроизведения заключается в том, что акустическое усиление позволяет при заданной звуковой отдаче уменьшить ход мембраны, а значит, поднять чувствительность и улучшить музыкальное разрешение. Да-да, снова кивок обладателям ламповых однотактников. К тому же при грамотном расчете раструбы могут играть роль акустических фильтров, круто отсекая звук за пределами своей полосы и позволяя ограничиться самыми простыми, а потому вносящими минимальные искажения электрическими кросоверами, а иногда и вообще обойтись без них.

Системы Realhorns — особая акустика для особых случаев

Скептики же не устают напоминать о характерной рупорной окраске, особенно заметной на вокале, и придающей ему характерную гнусавость. Побороть данную неприятность действительно нелегко, хотя судя по тому, как играют лучшие образцы High-End-рупоров, вполне реально.

Рупор

Плюсы: Высокий акустический КПД, а значит, отличная чувствительность и неплохое музыкальное разрешение системы.

Минусы: Характерная трудноустранимая окраска звука, недетские размеры средне- и тем более низкочастотных конструкций.

Круги на воде

Именно такой аналогией проще всего описать характер излучения контрапертурных акустических систем, впервые разработанных в Советском Союзе в 80-х годах прошлого века. Принцип работы нетривиален: пара одинаковых динамиков смонтирована так, что их диффузоры расположены друг напротив друга в горизонтальной плоскости и двигаются симметрично, то сжимая, то разжимая воздушную прослойку. В результате создаются кольцевые воздушные волны, равномерно расходящиеся во все стороны. Причем характеристики этих волн в процессе их распространения искажаются минимально, а их энергия затухает медленно — пропорционально расстоянию, а не его квадрату, как в случае обычных АС.

Duevel Sirius сочетает элементы рупорной и контрапертурной конструкций

Помимо дальнобойности и круговой направленности, контрапертурные системы интересны на удивление широкой вертикальной дисперсией (порядка 30 градусов против стандартных 4-8 гр.), а также отсутствием доплеровского эффекта. Для динамиков он проявляется в биениях сигнала, вызванных постоянным изменением расстояния от источника звука до слушателя из-за колебаний диффузора. Правда, реальная слышимость данных искажений до сих пор вызывает много споров.

Взаимное проникновение концентрических звуковых полей правой и левой колонок создают весьма обширную и равномерную зону объемного восприятия, то есть по сути вопрос точного позиционирования АС относительно слушателя становится не актуален.

Итальяно-российская контрапертурная акустика Bolzano Villetri

Обратная сторона медали — большая опасность ранних отражений этих волн от стен и мебели, о вредоносности которых я подробно рассказывал в статье «Азы акустики для чайников: как правильно расставить колонки в комнате».

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Контрапертура

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

И другие…

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта — трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы…

Nautilus от Bowers & Wilkins — одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления — нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

материалы и акустическое оформление / Pult.ru corporate blog / Habr

Это новый цикл постов посвящён акустическим системам. В связи с тем, что тема крайне обширная, мы решили создать серию статей, отражающих критерии выбора при покупке АС. Это пост посвящен акустическим свойствам материалов корпуса и акустическому оформлению. Пост будет особенно полезен для тех, кто стоит перед выбором АС, а также даст информацию для людей, которые хотят создать собственные АС в процессе своих DIY экспериментов.

Существует мнение, что одним из решающих факторов, влияющих на звук АС, является материал корпуса. Эксперты PULT считают, что значение этого фактора часто преувеличивают, однако, он является действительно важным, и списывать со счетов его нельзя. Не менее важным фактором (в ряду множества других), определяющим звучание АС, является акустическое оформление.

Предупреждаю, в материале есть ссылки на товары не в качестве откровенной джинсы, но в качестве примеров (надеюсь никого не заденет), всё строго в рамках темы.

Материал: от пластмассы до гранита и стекла


Пластик – дешево, сердито, но резонирует

Пластик зачастую используется при производстве бюджетных АС. Пластмассовый корпус лёгок, существенно расширяет возможности дизайнеров, благодаря литью можно реализовать практически любые формы. Различные типы пластмасс очень серьёзно отличаются по своим акустическим свойствам. В производстве высококачественной домашней акустики большой популярностью пластик не пользуется, при этом востребован для профессиональных образцов, где важна низкая масса и мобильность устройства.
(для большинства пластмасс коэффициент звукопоглощения составляет от 0,02 – 0,03 при 125 Гц до 0,05 – 0,06 при 4 кГц)


С 90 %-ной вероятностью, если вы столкнулись с домашней акустикой из пластика – это либо бюджетный вариант для не слишком искушенных пользователей, либо образец, сравнимый по стоимости с аналогами из МДФ и ДСП. Пластиковый корпус устройства недостаточной толщины и плотности начнёт резонировать и дребезжать при увеличении громкости до 60 – 90 %. В качественных АС, с рассчитанной толщиной и подходящими акустическими свойствами материала, «паразитные» среднечастотные резонансы сводятся к минимуму, однако, стоимость подобных АС практически равна аналогам из других материалов. Выжать из бюджетной пластиковой АС глубокий и адекватный низ не поможет даже умопомрачительная эквализация.
Типичный представитель «пластикового братства» в домашней акустике с достойными характеристиками и привлекательной ценой: Полочная акустика JBL Jembe black
Дерево – от вырубки до золотых ушей

Благодаря хорошим поглощающим свойствам дерево считается одним из лучших материалов для изготовления колонок.
(коэффициент звукопоглощения древесины в зависимости от породы составляет от 0,15 – 0,17 при 125 Гц до 0,09 при 4 кГц)

Массив и шпон для производства АС применяются сравнительно редко и, как правило, востребованы в HI-End сегменте. Постепенно деревянные АС исчезают с рынка в связи с низкой технологичностью, нестабильностью материала и запредельно высокой стоимостью.
Интересно, что для создания действительно качественных АС такого типа, отвечающих требованиям самых искушенных слушателей, технологи должны отбирать материал ещё на этапе вырубки, как при производстве акустических музыкальных инструментов. Последнее связано со свойствами древесины, где важно всё, начиная от местности, где произрастало дерево, заканчивая уровнем влажности помещения, где оно хранилось, температурой и длительностью сушки et cetera. Последнее обстоятельство затрудняет DIY разработку, при отсутствии специальных знаний любитель, создающий деревянную АС, обречен действовать методом проб и ошибок.
Как обстоит дело на самом деле, и соблюдаются ли описанные условия, производители такой акустики не сообщают, а соответственно, любая деревянная система требует внимательного прослушивания перед покупкой. С высокой степенью вероятности, две АС одной модели из одной породы будут немного отличаться в звучании, что особенно важно для некоторых притязательных слушателей с золотыми ушами с большими деньгами.
Доступны колонки из массива ценных пород единицам, стоимость их астрономическая. Всё, что вашему покорному слуге приходилось слышать, звучит превосходно. Однако, на мой субъективно-прагматичный взгляд, несоразмерно стоимости. Порой, хорошо рассчитанные корпуса из фанеры и MDF, обладают не меньшей музыкальностью, но для многих аудиофилов «не дерево»= «не true hi-end», а кому-то «не дерево» попросту статус не позволяет или дизайн интерьера портит.
Полагаю, что одна из лучших деревянных систем в нашем каталоге эта:
Напольная акустика Sonus Faber Stradivari Homage graphite(цена соответствующая)
Фанера – почти дерево, если не пролетела над Пекином

Фанера, применяющаяся для производства акустических корпусов, имеет от 10 до 14 слоёв и почти не уступает дереву по акустическим свойствам, в частности по звукопоглощению, при этом несколько дешевле древесины, более технологична при обработке, легче ДСП и MDF. Многослойная фанера хорошо гасит нежелательные вибрации, благодаря структуре материала.
(коэффициент звукопоглощения 12-ти слойной фанеры составляет от 0,1– 0,2 при 125 Гц до 0,07 при 4 кГц)

Как и древесина – фанера применяется в достаточно дорогостоящих, а иногда и в элитных штучных продуктах. Стоимость фанерных АС не на много ниже тех, что произведены из массива, и вполне сопоставимы с ними по качеству.
В ряде случаев корпуса, заявленные производителем как «фанерные», изготовлены из ДСП и MDF. Поэтому низкие цены на АС с фанерным или деревянным корпусом должны насторожить. Ряд небольших азиатских производителей, регулярно меняющих названия и торгующих в основном в сети, создают комбинированные корпуса, включая несколько небольших, но заметных фанерных (деревянных) элементов, а основную часть изготавливают из ДСП.
Среди АС, созданных из фанеры, могу особо выделить эту: полочная акустика Yamaha NS-5000
ДСП – толщина, плотность, влажность

Древесно-стружечная плита по стоимости сравнима с пластиком, при этом не обладает рядом недостатков, которые присущи пластиковым корпусам. Наиболее существенной проблемой ДСП является низкая прочность, при достаточно высокой массе материала.
Звукопоглощение в ДСП неоднородное и в ряде случаев возможно возникновение низко- и среднечастотных резонансов, хотя вероятность их появления ниже, чем у пластика. Эффективно гасить резонансы могут плиты толщиной более 16 мм, которые достигают необходимой плотности. Следует отметить, что, как и в случае с пластиком, свойства конкретной плиты ДСП имеет большое значение. Важно учитывать плотность и влажность материала, так как разные ДСП плиты отличаются по этим параметрам. Не редко толстые, плотные ДСП плиты применяются при создании студийных мониторов, что говорит о востребованности материала в производстве профессиональной техники.

На заметку, товарищам из DIY-братии для создания АС хорошо подойдёт ДСП с плотностью не менее 650 — 820 кг/м³ (при толщине плиты 16 – 18 мм) и влажностью не более 6-7%. Не соблюдение этих условий существенно отразится на качестве звука и надёжности АС.


Среди достойных ДСП вариантов домашних АС наши эксперты выделяют: Cerwin-Vega SL-5M
MDF: от мебели к акустике

Сегодня МДФ (Medium Density Fiberboard, древесно-волокнистая плита средней плотности) используется повсеместно, в число прочего, МДФ — один из наиболее распространённых современных материалов для производства акустики.
Причиной популярности МДФ стали физические свойства материала, а именно:
  • Плотность 700 — 800 кг/м³
  • Коэффициент звукопоглощения 0,15 при 125 Гц – 0,09 при 4 кГц
  • Влажность 1-3 %
  • Механическая прочность и износоустойчивость

Материал дешев в производстве, обладает акустическими свойствами, сравнимыми с характеристиками древесины, при этом устойчивость плит к механическим повреждениям несколько выше. У МДФ достаточная акустическая жесткость корпуса АС, а звукопоглощение соответствует параметрам, необходимым для создания HI-FI акустики.
Визуальное отличие МДФ от ДСП
Среди MDF акустики масса замечательных систем, по моему мнению, оптимальными по соотношению цена/качество являются следующие:

→ Yamaha NS-BP182 piano black — полочная
→ Focal Chorus 726 — напольная

Алюминиевые сплавы – дизайн и точные расчёты

Наиболее распространенным металлом при производстве АС является алюминий, а также сплавы на его основе. Некоторые авторы и эксперты полагают, что алюминиевый корпус позволяет снижать резонансы, а также улучшать передачу высоких частот. Коэффициент звукопоглощения алюминиевых сплавов не высок, и составляет около 0,05, что, впрочем, значительно лучше, чем у стали. Для снижения вибрации корпуса, повышения звукопоглощения и предотвращения вредных резонансов производители применяют сэндвич-панели, где между 2-мя алюминиевыми листами помещается прослойка из высокомолекулярных полиэтиленовых смол или других материалов низкой плотности, например, вискоэластика.
В случае с бюджетными АС из алюминия, производители, не редко, делают ставку на дизайн, в ущерб звучанию: в результате акустические характеристики оставляют желать лучшего. Иногда пользователи такой акустики жалуются на жесткое, искаженное звучание, вызванное недостаточным звукопоглощением корпуса. В связи с тем, что волны хорошо отражаются и плохо поглощаются, очень большое значение в металлической акустике приобретает точный расчет конструкции корпуса, подбор излучателей, используемые фильтры, а также качество соединений отдельных деталей.
Среди достойно звучащих алюминиевых колонок меня особенно впечатлил звук:

→ Canton CD 310 white high gloss (цена внушительная, но не запредельная )

Камень – гранитные плиты по цене золотых слитков

Камень один из самых дорогих материалов для производства акустических корпусов. Безупречное отражение и практическая невозможность появления вибрационных резонансов делают эти материалы востребованным в среде особо притязательных слушателей.

Большинство пород имеют стабильный коэффициент звукопоглощения, который, например для гранита, составляет 0,130 для всего спектра звуковых частот, а для известняка 0,264. Производителями особо ценятся пористые породы камня, в которых выше звукопоглощение.

Использование каменных плит для изготовления DIY- акустики почти невозможно, так как это требует не только недюжинных познаний в акустике и камнеобработке, но и крайне дорогостоящего оборудования (домашних 3-D фрезеров для камня пока никто не выпускает).


Для производства серийных АС применяются такие породы, как гранит, мрамор, сланец, известняк, базальт. Эти породы обладают схожими акустическими свойствами, а при соответствующей обработке становятся настоящими произведениями искусства. Не редко каменные корпуса применяются для создания ландшафтной акустики, в таких случаях в необработанном камне создаётся полость для размещения излучателя, в которой устанавливаются элементы крепления (как правило, производится под заказ).

У камня 2 основные проблемы: стоимость и масса. Цена каменной АС может быть выше любой другой, обладающей схожими характеристиками. Масса некоторых образцов напольных систем может достигать 40 и более кг.

Прозрачность стекла и качество звука

Оригинальным решением является создание АС из стекла. В этом деле пока серьезно преуспели только две компании Waterfall и SONY. Материал интересен с дизайнерской точки зрения, акустически стекло создаёт определённые проблемы, главным образом в виде резонансов, которые вышеназванные компании научились решать, существуют даже референсные варианты.
Цены на прозрачное чудо тоже сложно назвать демократичными, последнее связано с низкой технологичностью и высокой стоимостью производства.

Из впечатлявших звуком стеклянных образцов могу порекомендовать: Waterfall Victoria Evo

Акустическое оформление — ящики, трубки и рупоры


Не меньшую значимость для точной передачи звука в АС имеет акустическое оформление. Я расскажу о наиболее распространённых типах (закономерно, что, те или иные типы могут комбинироваться в зависимости от конкретной модели, например фазоинверторая часть колонки отвечает за низко-и среднечастотный диапазон, а для высоких сооружен рупор).
Фазоинвертор – главное длинна трубы

Фазоинвертор — один из наиболее распространённых типов акустического оформления. Такой способ позволяет, при правильном расчете длинны трубы, сечения отверстия и объема корпуса получить высокий КПД, оптимальное соотношение частот, усилить низкие. Суть фазоинвертерного принципа в том, что на тыльной части корпуса размещается отверстие с трубой, которая позволяет создать низкочастотные колебания синфазные волнам, создающимся фронтальной стороной диффузора. Чаще всего фазоинверторный тип применяется при создании 2.0 и 4.0 систем.
Для облегчения расчетов при создании собственной АС удобно использовать специальные калькуляторы, один из удобных привожу по ссылке.

В философии HI-END cуществуют крайне радикальные бескомпромиссные суждения о фазоинверторных системах, привожу одно из них без комментариев:

«Враг №1 это, конечно, нелинейные усилительные элементы в звуковом тракте (дальше уж каждый сам, в меру образования, понимает какие элемты более линейны, а какие менее). Враг №2 это фазоинвертор. фазоинвертор призван пустить пыль в глаза, должен позволить маленькой дешевой колоночке записать в паспорт 50… 40… 30, а что мелочится даже и 20 Гц по уровню -3дБ! Но к музыке нижний диапазон частот фазоинвертора перестает иметь отношение, точнее сказать сам фазоинвертор это дудочка, поющая свою собственную мелодию.»

Закрытый ящик – гроб для лишних низких

Классический вариант для многих производителей – обычный закрытый ящик, с выведенными на поверхность диффузорами динамиков. Такой тип акустики достаточно прост для расчетов, при этом КПД таких устройств не блещет. Также ящики не рекомендуют любителям характерно выраженных низких, так как в закрытой системе без дополнительных элементов, способных усилить низы (фазоинвертор, резонатор), спектр частот от 20 до 350 Гц выражен слабо.
Многие меломаны предпочитают закрытый тип, так как для него характерна относительно ровная АЧХ и реалистичная «честная» передача воспроизводимого музыкального материала. Большинство студийных мониторов создаются именно в этом акустическом оформлении.
Band-Pass (закрытый ящик-резонатор) – главное, чтобы не гудел

Band-Pass получил распространение при создании сабвуферов. В этом типе акустического оформления излучатель скрыт внутри корпуса, при этом внутренности ящика соединяются с внешней средой трубами фазоинверторов. Задача излучателя – возбуждение колебаний низкой частоты, амплитуда которых многократно возрастает благодаря трубам фазоинверторов.
При правильно рассчитанной конструкции такого типа, не должно возникать таких паразитных отзвуков как низкое гудение, гула и т.п., чем не редко грешат бюджетные системы этого типа.
Открытый корпус – без лишних стен

Сравнительно редкий сегодня тип акустического оформления, при котором задняя стенка корпуса многократно перфорирована, либо полностью отсутствует. Такой тип конструкции используется для того, чтобы снизить количество элементов корпуса, влияющих на частотную характеристику АС.
В открытом ящике наиболее существенное влияние на звук оказывает передняя стенка, что снижает вероятность искажений, вносимых остальными деталями корпуса. Вклад боковых стенок (если таковые присутствуют в конструкции), при их не большой ширине, минимален и составляет не более 1-2 Дб.
Рупорное оформление – проблемные чемпионы по громкости

Рупорное акустическое оформление чаще используется в комбинации с другими типами (в частности для оформления высокочастотных излучателей), однако, существуют и оригинальные на 100 % рупорные конструкции.
Главным достоинством рупорных АС является высокая громкость, при комбинации с чувствительными динамиками.
Большинство экспертов не без оснований скептически относятся к рупорной акустике, причин несколько:
  • Конструктивная и технологическая сложность, а соответственно, высокие требования к сборке
  • Почти невозможно создать рупорную АС с равномерной АЧХ (исключение – устройства стоимостью от 10 килобаксов и выше)
  • В связи с тем, что рупор не резонирующая система, исправить АЧХ нельзя (минус для DIY –щиков вознамерившихся скопировать Hi-end рупор)
  • В связи с особенностями формы волн рупорной акустики, объемность звучания достаточно низкая
  • В подавляющем большинстве сравнительно низкий динамический диапазон
  • Дает большое количество характерных призвуков (некоторыми аудиофилами считается достоинством).


Наиболее востребованными рупорные системы стали именно в среде аудиофилов, находящихся в поисках «божественного» звука. Тенденциозный подход позволил архаичному рупорному оформлению получить вторую жизнь, а современные производители смогли найти оригинальные решения (эффективные, но крайне дорогие) распространённых рупорных проблем.

На этом пока всё. Продолжение, как водится, следует, а «вскрытие» обязательно покажет…НА будущее анонсирую: излучатели, мощность/чувствительность/объём помещения.

16 материалов о том, как устроены динамики и колонки / Аудиомания corporate blog / Habr

Это — новый дайджест c материалами из «Мир Hi-Fi». Мы собрали статьи об устройстве акустических систем и проектировании колонок. Под катом читайте — какую роль выполняет магнит в динамике, как создают DIY-акустику, как выбрать катушку индуктивности.


Фото Audiomania / Инженерная комната в офисе на Барабанном



Что у динамиков внутри




  • Что есть что: динамические головки. Первую электродинамическую головку, которая походит на современные устройства, запатентовали еще в 1925 году. Эта статья о том, что изменилось с тех пор и чем отличается конструкция динамиков для воспроизведения низких, средних и высоких частот. Вы узнаете, из чего делают каждую деталь головки и с какой целью в динамиках используют золото и алмазы.



  • Как выбрать катушку индуктивности. Материал о том, чем отличаются разные катушки индуктивности и какую из них выбрать для решения той или иной задачи. Говорим о разных их видах: с пропиткой и без, из цельной фольги и с сердечниками. Расскажем, зачем катушки покрывают лаком и почему лучший сердечник — воздух.


  • Лига Звука: как восстановить винтажные громкоговорители. Материал посвящен «старению» громкоговорителей. Говорим о том, почему винтажные динамики сложно «воскресить» без участия производителя и какой их компонент считается самым слабым звеном (спойлер — это центрирующая шайба, которая служит для точной подгонки звуковой катушки). .



Кто и как производит акустические системы




  • Arslab: доступный Hi-End. Основатели бренда Артем Фаермарк и Юрий Фомин поведали, на какие компромиссы они идут, чтобы сохранить цену на Hi-End-системы доступной. Рассказ о том, на каких деталях аудиосистемы нельзя экономить и как вывести на рынок новый продукт.

  • О создании Hi-End-колонок — интервью с Юрием Фоминым из Arslab. В этом интервью Юрий Станиславович объяснил свой подход к разработке акустических систем. Главный конструктор Arslab рассказал, как появилась идея создания бренда, почему большое разнообразие корпусов в линейке — не всегда плюс и почему он считает, что аудиосистема не должна «приукрашать» музыку.

  • Как в Monitor Audio разрабатывают новую акустику. Главный разработчик британского бренда акустики Monitor Audio описал, как в компании с нуля создают новую линейку колонок. Вы узнаете, как дизайнеры Monitor Audio изучают потребности клиентов и как тестируют прототипы аудиосистемы. Также статья рассказывает, как разработчики создавали колонку, звучание которой почти не меняется даже в акустически «неудачных» точках квартиры.

  • Penaudio: Истинный финский звук. Это история финского производителя аудиосистем Penaudio. Создатель бренда Сами Пенттила поделился, почему колонки Penaudio воспроизводят ультразвуковые частоты и на звучание каких музыкальных инструментов он ориентируется при разработке аудиосистем. Также читайте о том, какие материалы используются в акустике бренда.

  • Заметки с фабрики, где делают акустику Arslab и Penaudio. Фотоэкскурсия по фабрике, на которой изготавливают корпуса и собирают готовые акустические системы этих двух брендов. Вы также узнаете, почему повышение затрат на производство Hi-End-акустики не всегда приводит к увеличению качества звучания систем.



Как устроены колонки




  • Азы акустики: типы акустического оформления колонок. Акустическое оформление динамика определяет корпус колонки, в который помещают громкоговоритель. Корпус может быть устроен по-разному: от простого закрытого ящика до сложной конструкции с вырезанным в дереве лабиринтом. Это статья о различиях в звучании разных видов корпусов и необычных способах акустического оформления: контрапертурных системах с горизонтальным расположением динамиков и рупорных конструкциях.


Фото Audiomania / Инженерная комната в офисе на Барабанном
  • Как устроены сабвуферы. В этом материале мы поговорим о том, как разные виды акустического оформления влияют на звучание сабвуфера. Также поделимся практическими советами о том, куда установить сабвуфер, как его настроить и как убедиться, что ваша музыка не будет мешать соседям по дому.


  • Отсекая лишнее: о видах фильтров в акустических системах. Вы узнаете о разных схемах фильтров и о том, какие из них используются для высоких, средних и низких частот. В материале приведены электрические схемы коррекции частотных характеристик акустической системы: подавитель пиков, компенсатор «провалов» и Г-образный аттенюатор.

  • Как устроен конструктор акустических систем. Транскрипт подкаста «Звук», в котором Юрий Станиславович Фомин — инженер с многолетним опытом создания акустических систем и главный технический специалист бренда Arslab — рассказывает о конструкторе акустической системы Audiocore Kit. Интервью о том, как зародилась идея создать DIY-комплект и какие в этом преимущества для покупателей. Здесь же вы найдете ссылки на руководство по сборке Audiocore Kit и обзоры конструктора.



Наш Telegram-канал — о звуке и аудиоаппаратуре в микроформате:

Честная Черная пятница Аудиомании
Музыка для продуктивной работы
​Наш гид покупателя: полочные колонки vs напольные
Гид для новичка: что важно знать про амбушюры наушников



С 22 по 25 ноября в «Аудиомании» проходит Черная пятница.

В акции участвует несколько сотен товаров со скидками до 70%. На распродаже представлена самая разная аудиоаппаратура: от наушников и портативных гаджетов до Hi-Fi-аудиосистем.

строение динамика (часть 2) / Stereo.ru

Появление динамика

С началом активного использования электричества появилась возможность передавать звуковой сигнал, преобразуя его в электрический и обратно. В разное время изобрели много способов этого преобразования. Среди них — электродинамический, электростатический, изодинамический, ленточный, излучатель Хейла, пьезо и даже плазменный излучатель.

Они работают на разных физических принципах, различаются спецификой применения. Но самым первым все-таки было устройство, реализующее электродинамический принцип. Оно и остается самым распространенным. Динамик, электродинамическая головка, динамический драйвер — все эти термины являются синонимами к одному и тому же изобретению.

Слева — Ханс Эрстед. Справа — первая коммерческая версия электродинамического излучателя (6-дюймовый динамик, стоимость — около $3000 в современном эквиваленте)

Физические принципы, на которых работает динамик, основаны на электромагнетизме, открытом Хансом Эрстедом и описанном впоследствии целой плеядой физиков 19-го века. Тот факт, что проводник с током выталкивается магнитным полем, а в проводнике, движущемся в этом поле, наоборот, возникает ток, собственно, и привел к изобретению динамика.

Первое устройство, в котором применены все основные конструктивные принципы современного динамика, было запатентовано в 1898 году Оливером Лоджем после приблизительно тридцати лет самых разных попыток нащупать эффективный способ реализации. А сам динамик, в том виде, к которому мы все привыкли, появился спустя еще приблизительно тридцать лет.

С тех пор принципы его работы и основные элементы конструкции остаются неизменными. При этом, — вот что особенно удивительно, — не проходит и года без информации об очередном революционном усовершенствовании динамика, позволяющего ему работать еще лучше.

Устройство динамика

Любой современный динамик включает в себя каркас [1], который еще называют корзиной или даже пауком. На нем держатся все остальные части конструкции.

В тыльной части корзины крепится магнитная система, которая состоит из кольцевого магнита [2] и магнитного керна [3] — вместе они образуют кольцевой зазор. Этот магнитный зазор, кольцевая щель между двумя магнитами, должна быть минимальной для создания максимально мощного магнитного поля.

В зазоре расположена так называемая голосовая (звуковая) катушка [4], которая может совершать возвратно-поступательные движения под воздействием магнитного поля, поскольку по ней протекает переменный ток, соответствующий по форме воспроизводимым звуковым колебаниям. Она, как правило, состоит из проволоки, покрытой изолирующим лаком и намотанной на тонкостенный цилиндр, который называют каркасом [5] звуковой катушки.

Он крепится к диффузору [6] — тонкостенному элементу конструкции, который, колеблясь, собственно, и воспроизводит звук. Для этой цели диффузор должен иметь возможность двигаться. Для этого установлены так называемые подвесы [7, 8]: верхний (наружный) и нижний. Это шайбы из тонкого и гибкого материала с концентрическими выпуклостями. Благодаря такой форме, подвесы позволяют диффузору двигаться вдоль оси симметрии всей конструкции вперед-назад.

Он делает это потому, что его толкает голосовая катушка, на которую действует электромагнитная сила, пропорциональная силе переменного тока, который подается на катушку по гибким безмоментным проводникам [9]. С другой стороны эти провода заканчиваются клеммами [10], к которым подсоединяется акустический кабель, идущий от усилителя.

Завершает картину пылезащитный колпачок [11], который крепится к диффузору спереди и, что понятно из названия, защищает магнитный зазор от проникновения в него частичек пыли.

Разнообразие динамиков огромно. Они различаются по мощности, рабочему диапазону воспроизводимых частот, сфере применения и по множеству других параметров. Естественно, от этого зависят технологии и материалы, применяемые в производстве каждой из частей. Их мы и рассмотрим по отдельности.

Диффузор

Изначально диффузор делался из целлюлозы — бумаги или картона. Из того же материала выполнялся и пылезащитный колпачок (если он был предусмотрен). Целлюлозные диффузоры очень часто применяются до сих пор. Бумага хороша своим сочетанием легкости и жесткости. Влагоустойчивости, прочности и долговечности ей добавляют с помощью пропитки синтетическими материалами.

В этом смысле хорош пластик, но чисто пластиковый некомпозитный диффузор имеет ряд недостатков. Для их исправления применяются композитные материалы с разнообразными компонентами: от древесных или стеклянных волокон до кевлара или даже графена. Повышенную жесткость имеют металлические диффузоры. Чаще всего они делаются из алюминиевых сплавов.

Одними из лучших параметров обладает бериллий, но, ввиду повышенной стоимости материала и технологий его обработки, такой вариант достаточно дорог. В так называемых купольных высокочастотных динамиках чаще всего применяется ткань с пропиткой, иногда армирующая слой максимально жесткого композита, с жестким наполнителем, вплоть до алмазного порошка.

Важнейшие требования к диффузору — минимум собственных резонансов и максимальная жесткость, при которой становится возможным «поршневой» режим движения диффузора по всей его площади. Эти параметры должны сочетаться с важнейшими требованиями к весу подвижной системы динамика — он должен быть минимальным. Таким образом, качественный диффузор всегда является компромиссом взаимоконфликтующих условий.

Подвес динамика

Внутренний (ближний к магниту) подвес динамика еще называют центрирующей шайбой. Чаще всего эту деталь формуют на прессе с нагреванием из легкой, крепкой на разрыв ткани с эластичной синтетической пропиткой — прочно и подвижно. В некоторых мощных низкочастотных динамиках применяются две центрирующие шайбы, расположенные одна за другой.

С внешним подвесом все немного сложнее. Изначально он делался в виде концентрических волн (гофров) по внешнему краю бумажного диффузора. Так в некоторых случаях поступают и сейчас, добавляя синтетическую пропитку зоны гофров. Для больших амплитуд колебаний внешний подвес делают из резины, чаще всего это — искусственный бутадиеновый каучук. Резиновый подвес в сечении, в большинстве случаев, представляет собой выпуклую дугу. Есть варианты и «многоволновых» резиновых подвесов, либо применения других профилей, в том числе и переменных по углу.

Оба подвеса должны обеспечить строго плоско-параллельное возвратно-поступательное движение всей подвижной системы динамика с минимальными отклонениями в сторону от его оси.

Звуковая (голосовая) катушка

Эта катушка, работающая в магнитном зазоре динамика, намотана на каркас — цилиндр, который часто делается из плотной бумаги. Для каркаса также применяется устойчивый к нагреву пластик: каптон, текстолит, либо другие композитные материалы. Для большей плотности и температурной устойчивости (при серьезной нагрузке, т. е. громкости, катушка нагревается) используют сплавы на основе алюминия и даже титан.

Проволока, которой наматывается голосовая катушка, чаще всего, медная. Алюминиевая проволока легче, и это в данном случае — плюс, но она имеет свои недостатки (большее электрическое сопротивление при меньшей температурной устойчивости) и применяется реже. Есть вариант с биметаллической алюминиевой проволокой с медным покрытием, что улучшает проводимость.

Для более плотного расположения витков проволоку иногда делают в сечении прямоугольной либо шестиугольной. Для получения нескольких вариантов сопротивления катушки при параллельном или последовательном соединении ее частей или использования раздельных усилителей, звуковая катушка, чаще всего в низкочастотных динамиках, может разделяться на отдельные секции, намотанные на общем каркасе.

Для лучшего охлаждения голосовой катушки магнитный зазор в некоторых высокочастотных динамиках заполняется специальной жидкостью с наполнителем из мелкодисперсного магнитного порошка. Это повышает эффективность системы и улучшает отвод тепла.

Магнитная система

Эффективность магнитной системы динамика определяется, в первую очередь, материалом магнита. Самый распространенный — феррит. В середине прошлого века были распространены магниты из сплава AlNiCo (железо-алюминий-никель-кобальт), в отдельных случаях этот вариант до сих пор применяется. В новейший исторический период все большее распространение получают неодимовые магниты, создающие гораздо более сильное магнитное поле. Проблемой здесь стало получение неодимовой заготовки нужных размеров: неодим — материал труднообрабатываемый. Кроме того, стоимость неодимовых магнитов в последнее время растет.

Корзина динамика

Самый распространенный и максимально технологичный вариант корзины, или каркаса динамика — штампованная деталь из мягкой стали. Каркасы небольшого размера могут быть выполнены из пластика. Более совершенное, прочное и, что самое главное, точное в своей геометрии изделие получают методом литья, чаще всего из алюминия, с последующей обработкой на металлорежущих станках.

Важно понимать: чтобы добиться минимального магнитного зазора, звуковую катушку, расположенную в этом зазоре, нужно заставить двигаться, не задевая его краев. Для этого ее движение должно быть идеально соосным магнитному зазору вдоль всей возможной амплитуды колебаний. Расположение катушки в магнитном зазоре должно быть идеально симметричным. Это накладывает высокие требования на точность изготовления и сборки всех частей.

Все компоненты динамика соединяются с помощью клея на специальном оборудовании.

Каждый динамик, согласно примененным в нем материалам и технологиям, размерам, весу, электрическим и механическим параметрам, имеет свое в точности определенное назначение. О этом предназначении и обо всем, что с ним связано — в следующей части.

Продолжение следует…

Другие материалы цикла «Акустические системы»:

Акустические системы: поговорим о звуке (часть 1)

Устройство динамика (громкоговорителя).

Устройство, обозначение и основные параметры электродинамического громкоговорителя

Для начала расставим все точки над «i» и разберёмся в терминологии.

Электродинамический громкоговоритель, динамический громкоговоритель, динамик, динамическая головка прямого излучения – это разнообразные названия одного и того же прибора служащего для преобразования электрических колебаний звуковой частоты в колебания воздуха, которые и воспринимаются нами как звук.

Звуковые динамики или по-другому динамические головки прямого излучения вы не раз видели. Они активно применяются в бытовой электронике. Именно громкоговоритель преобразует электрический сигнал на выходе усилителя звуковой частоты в слышимый звук.

Динамическая головка прямого излучения

Стоит отметить, что КПД (коэффициент полезного действия) звукового динамика очень низкий и составляет около 2 – 3%. Это, конечно, огромный минус, но до сих пор ничего лучше не придумали. Хотя стоит отметить, что кроме электродинамического громкоговорителя существуют и другие приборы для преобразования электрических колебаний звуковой частоты в акустические колебания. Это, например, громкоговорители электростатического, пьезоэлектрического, электромагнитного типа, но широкое распространение и применение в электронике получили громкоговорители электродинамического типа.

Как устроен динамик?

Чтобы понять, как работает электродинамический громкоговоритель, обратимся к рисунку.

Устройство динамика (громкоговорителя)

Динамик состоит из магнитной системы – она расположена с тыльной стороны. В её состав входит кольцевой магнит. Он изготавливается из специальных магнитных сплавов или же магнитной керамики. Магнитная керамика – это особым образом спрессованные и «спечённые» порошки, в составе которых присутствуют ферромагнитные вещества – ферриты. Также в магнитную систему входят стальные фланцы и стальной цилиндр, который называют керном. Фланцы, керн и кольцевой магнит формируют магнитную цепь.

Между керном и стальным фланцем имеется зазор, в котором образуется магнитное поле. В зазор, который очень мал, помещается катушка. Катушка представляет собой жёсткий цилиндрический каркас, на который намотан тонкий медный провод. Эту катушку ещё называют звуковой катушкой. Каркас звуковой катушки соединяется с диффузором – он то и «толкает» воздух, создавая сжатия и разряжения окружающего воздуха – акустические волны.

Диффузор может выполняться из разных материалов, но чаще его делают из спрессованной или отлитой бумажной массы. Технологии не стоят на месте и в ходу можно встретить диффузоры из пластмассы, бумаги с металлизированным покрытием и других материалов.

Чтобы звуковая катушка не задевала за стенки керна и фланец постоянного магнита её устанавливают точно в середине магнитного зазора с помощью центрирующей шайбы. Центрирующая шайба гофрирована. Именно благодаря этому звуковая катушка может свободно двигаться в зазоре и при этом не касаться стенок керна.

Диффузор укреплён на металлическом корпусе – корзине. Края диффузора гофрированы, что позволяет ему свободно колебаться. Гофрированные края диффузора формируют так называемый верхний подвес, а нижний подвес – это центрирующая шайба.

Тонкие провода от звуковой катушки выводятся на внешнюю сторону диффузора и крепятся заклёпками. А с внутренней стороны диффузора к заклёпкам крепится многожильный медный провод. Далее эти многожильные проводники припаиваются к лепесткам, которые закреплены на изолированной от металлического корпуса пластинке. За счёт контактных лепестков, к которым припаяны многожильные выводы звуковой катушки, динамик подключается к схеме.

Как работает динамик?

Если пропустить через звуковую катушку динамика переменный электрический ток, то магнитное поле катушки будет взаимодействовать с постоянным магнитным полем магнитной системы динамика. Это заставит звуковую катушку либо втягиваться внутрь зазора при одном направлении тока в катушке, либо выталкиваться из него при другом. Механические колебания звуковой катушки передаются диффузору, который начинает колебаться в такт с частотой переменного тока, создавая при этом акустические волны.

Обозначение динамика на схеме.

Условное графическое обозначение динамика имеет следующий вид.

Условное обозначение динамика на схеме

Рядом с обозначением пишутся буквы B или BA, а далее порядковый номер динамика в принципиальной схеме (1, 2, 3 и т.д.). Условное изображение динамика на схеме очень точно передаёт реальную конструкцию электродинамического громкоговорителя.

Основные параметры звукового динамика.

Основные параметры звукового динамика, на которые следует обращать внимание:

  • Номинальное электрическое сопротивление (Ом). Медный провод звуковой катушки обладает активным сопротивлением. Активное сопротивление – это сопротивление провода при постоянном токе. Его можно легко измерить с помощью цифрового мультиметра в режиме омметра. Читайте измерение сопротивления цифровым мультиметром.

    Но кроме активного сопротивления звуковая катушка обладает ещё и реактивным сопротивлением. Реактивное сопротивление образуется потому, что звуковая катушка, это, по сути, обычная катушка индуктивности и её индуктивность оказывает сопротивление переменному току. Реактивное сопротивление зависит от частоты переменного тока.

    Активное и реактивное сопротивление звуковой катушки образует полное сопротивление звуковой катушки. Оно обозначается буквой Z (так называемый, импеданс). Получается, что активное сопротивление катушки не меняется, а реактивное сопротивление меняется в зависимости от частоты тока. Чтобы внести порядок реактивное сопротивление звуковой катушки динамика измеряют на фиксированной частоте 1000 Гц и прибавляют к этой величине активное сопротивление катушки.

    В итоге получается параметр, который и называется номинальное (или полное) электрическое сопротивление звуковой катушки. Для большинства динамических головок эта величина составляет 2, 4, 6, 8 Ом. Также встречаются динамики с полным сопротивлением 16 Ом. На корпусе импортных динамиков, как правило, указывается эта величина, например, вот так – или 8 Ohm.

    Стоит отметить тот факт, что полное сопротивление катушки где-то на 10 – 20% больше активного. Поэтому определить его можно достаточно просто. Нужно всего лишь измерить активное сопротивление звуковой катушки омметром и увеличить полученную величину на 10 – 20%. В большинстве случаев можно вообще учитывать только чисто активное сопротивление.

    Номинальное электрическое сопротивление звуковой катушки является одним из важных параметров, так как его необходимо учитывать при согласовании усилителя и нагрузки (динамика).

  • Диапазон частот – это полоса звуковых частот, которые способен воспроизвести динамик. Измеряется в герцах (Гц). Напомним, что человеческое ухо воспринимает частоты в диапазоне 20 Гц – 20 кГц. И, это только очень хорошее ухо :).

    Никакой динамик не способен точно воспроизвести весь слышимый частотный диапазон. Качество звуковоспроизведения будет всё-равно отличаться от того, что требуется.

    Поэтому слышимый диапазон звуковых частот условно разделили на 3 части: низкочастотную (НЧ), среднечастотную (СЧ) и высокочастотную (ВЧ). Так, например, НЧ-динамики лучше всего воспроизводят низкие частоты – басы, а высокочастотные – «писк» и «звон» – их поэтому и называют пищалками. Также, есть и широкополосные динамики. Они воспроизводят практически весь звуковой диапазон, но качество воспроизведения у них среднее. Выигрываем в одном – перекрываем весь диапазон частот, проигрываем в другом – в качестве. Поэтому широкополосные динамики встраивают в радиоприёмники, телевизоры и прочие устройства, где порой не требуется получить высококачественный звук, а нужна лишь чёткая передача голоса и речи.

    Широкополосный динамик

    Для качественного воспроизведения звука НЧ, СЧ и ВЧ-динамики объединяются в едином корпусе, снабжаются частотными фильтрами. Это акустические системы. Так как каждый из динамиков воспроизводит только свою часть звукового диапазона, то суммарная работа всех динамиков значительно увеличивает качество звука.

    Как правило, низкочастотные динамики рассчитаны на воспроизведение частот от 25 Гц до 5000 Гц. НЧ-динамики обычно имеют диффузор большого диаметра и массивную магнитную систему.

    Динамики СЧ рассчитаны на воспроизведение полосы частот от 200 Гц до 7000 Гц. Габариты их чуть меньше НЧ-динамиков (зависит от мощности).

    Высокочастотные динамики прекрасно воспроизводят частоты от 2000 Гц до 20000 Гц и выше, вплоть до 25 кГц. Диаметр диффузора у таких динамиков, как правило, небольшой, хотя магнитная система может быть достаточно габаритная.

  • Номинальная мощность (Вт) – это электрическая мощность тока звуковой частоты, которую можно подвести к динамику без угрозы его порчи или повреждения. Измеряется в ваттах (Вт) и милливаттах (мВт). Напомним, что 1 Вт = 1000 мВт. Подробнее о сокращённой записи числовых величин можно прочесть здесь.

    Величина мощности, на которую рассчитан конкретный динамик, может быть указана на его корпусе. Например, вот так – 1W (1 Вт).

    Обозначение мощности на корпусе динамика

    Это значит, что такой динамик можно легко использовать совместно с усилителем, выходная мощность которого не превышает 0,5 – 1 Вт. Конечно, лучше выбирать динамик с некоторым запасом по мощности. На фото также видно, что указано номинальное электрическое сопротивление – (4 Ом).

    Если подать на динамик мощность большую той, на которую он рассчитан, то он будет работать с перегрузкой, начнёт «хрипеть», искажать звук и вскоре выйдет из строя.

    Вспомним, что КПД динамика составляет около 2 – 3%. А это значит, что если к динамику подвести электрическую мощность в 10 Вт, то в звуковые волны он преобразует лишь 0,2 – 0,3 Вт. Довольно немного, правда? Но, человеческое ухо устроено весьма изощрённо, и способно услышать звук, если излучатель воспроизводит акустическую мощность около 1 – 3 мВт на расстоянии от него в несколько метров. При этом к излучателю – в данном случае динамику – нужно подвести электрическую мощность в 50 – 100 мВт. Поэтому, не всё так плохо и для комфортного озвучивания небольшой комнаты вполне достаточно подвести к динамику 1 – 3 Вт электрической мощности.

Это всего лишь три основных параметра динамика. Кроме них ещё есть такие, как уровень чувствительности, частота резонанса, амплитудно-частотная характеристика (АЧХ), добротность и др.

Порой на практике приходится соединять несколько динамиков или акустических систем. А что нужно знать при этом? Подробности в статье – Как соединять динамики?

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

как устроена и ее схема.

Опубликовано 25.05.2019 автор — 0 комментариев

Всем привет! Если вы хоть немного разбираетесь в электронике, схема компьютерных колонок не будет для вас чем-то сложным. При наличии прямых рук, паяльника и необходимых компонентов, собрать такой девайс можно и самостоятельно, было бы желание.

В этом посте мы рассмотрим принципиальную схему простейшей колонки для ПК – из чего состоят такие устройства и какие функции выполняет каждый узел. О том, как работают звуковые колонки и про их функции, читайте здесь.

Блок питания

Как любому электронному устройству, компьютерной колонке для работы требуется электрическая энергия. Встроенный блок питания преобразует переменный ток в постоянный, который необходим для работы девайса. От мощности самих колонок зависит мощность блока питания.

Существуют компактные колонки с питанием от USB. Разъем, который подключается к соответствующему порту, подает на устройство постоянный ток, поэтому выпрямитель здесь отсутствует.Стерео колонки маленького формата с питанием от USBТакие колонки можно использовать не только в связке с компом или ноутбуком, но и смартфоном или планшетом. Для питания используется разборная зарядка от гаджета со встроенным USB портом.

Аудиовход

Все компьютерные колонки подключаются к источнику сигнала посредством джека 3,5 мм – именно такой порт встроен в звуковую плату на материнке и в большинство внешних звуковых плат.

Конечно, существуют звуковухи со специфическими портами, поэтому и оборудование требуется подключать соответствующее. Самый распространенный тип интерфейса у профессиональных акустических систем – джек 6,3 мм.

Передающий сигнал кабель может быть припаян «наглухо» к усилителю звукового сигнала или подключаться отдельно – как правило, с помощью штекеров RCA.

Между собой колонки соединяются или с помощью таких же разъемов, или обычным проводом с оголенными концами, который фиксируется с помощью специальных защелок. Кроме того, соединяющие кабеля могут быть также «намертво» приделаны к корпусу и быть неразъемными.

Усилитель сигнала

Этот узел присутствует только у активных акустических экземплярах – пассивные подключаются к внешнему усилителю. Подавляющее большинство современных компьютерных вариантов, в том числе формата 7.1 с сабвуфером и шестью сателлитами, тоже активные.

Задача усилителя – сделать слабый сигнал, который подается со звуковой платы, достаточно мощным для используемых в акустической системе динамиков. Кроме того, для усилителя сигнала характерна еще одна роль – он фильтрует входящий сигнал, удаляя лишние шумы, и выравнивает его по частотному диапазону.

Как правило, на фронтальной панели усилителя сигнала присутствуют элементы управления – как минимум, кнопка включения питания, регуляторы громкости и низких частот.

Схема простейшего усилителя для акустической системы:Схема простейшего усилителя для акустической системы

Кроссовер

Этот элемент используется в многополосных вариантах, состоящих из нескольких динамиков. Он разделяет усиленный входящий сигнал на частоты, соответственно рабочему диапазону каждого излучателя. В бюджетных колонках, оборудованных одним динамиком, такого элемента нет.

Процессор

Элемент используется только в качественных аудиосистемах. Он декодирует многоканальный звук, согласно используемому колонками формату – например, Dolby Digital для систем 5,1 или Dolby Surroundдля акустики 7,1.

Динамики

Динамические излучатели – сердцевина и основной компонент любой аудио системы. Современная стандартная колонка средней ценовой категории оборудована внутри как минимум двумя динамиками – для низких и высоких частот соответственно.

Связано это с тем, что разные динамики не одинаково воспроизводят звук разной частоты – чем она ниже, тем больше должен быть диаметр динамика. В системах с сабвуфером НЧ излучатель вынесен в отдельный корпус, чтобы он не мешал звучанию остальных.

Сегодня на рынке присутствуют акустические системы с двумя типами динамиков. В первом типе используется конусный излучатель, так называемый диффузор, принцип действия которого базируется на взаимодействии магнитного поля электрической катушки с полем постоянного магнита.Динамик с диффузоромНа выходе получается мощный звук и сочные басы.

Второй тип динамиков вместо диффузора использует плоскую мембрану. Такие излучатели существенно проигрывают в мощности, но зато обладают весьма компактными габаритами. Это делает их весьма эффективными при создании портативных акустических систем.

Также они используются в бюджетной акустике в связке с сабвуфером.

Корпус

Большинство современных компьютерных колонок спроектировано по принципу «пустого ящика» (читайте детальнее об истории создания колонки). Вопреки распространенному заблуждению, корпус – не просто коробка, в которой покоятся динамики. Он выполняет такие задачи:

  • Изолирует динамики, не давая им влиять на работу друг друга;
  • Предотвращает акустическое короткое замыкание, улучшая звук на низких частотах;
  • Создает условия для акустической усадки излучателей;
  • Придает внешнему виду устройства определенный стиль.

Конечно, речь идет о качественных колонках, спроектированных согласно законам акустики. У бюджетных «пищалок» единственное назначение корпуса – удерживать динамики.

У более же качественных колонок, конструкторы проводят эксперименты со строением и формой корпуса, добавляют диффузоры, лабиринты и прочие элементы, которые улучшают качество звука.

У самых дешевых колонок, корпус изготовлен из самого дешевого пластика. В более качественных моделях используются качественные виды полимерных материалов. Ну, а у самых дорогих колонок, корпус, как правило, из ДСП, ДВП, фанеры или натурального дерева.

И на «закуску» – электрическая схема простейшей колонки:Электрическая схема простейшей колонкиВот, собственно, и все на тему того, как устроена и работает колонка. Также для вас могут оказаться полезными публикации о том, какие бывают акустические системы. Буду благодарен всем, кто расшарит эту статью в социальных сетях.

И не забывайте, что, подписавшись на новостную рассылку, вы сможете получать уведомления о новых постах в моем блоге. До завтра!

С уважением, автор блога Андрей Андреев.

Устройство акустических колонок | Основы электроакустики

Итак, мы выяснили, что сами по себе акустические излучатели (громкоговорители) не способны обеспечить хорошее качество звучания в широком диапазоне частот — прежде всего в области низких частот. На первых порах роль акустического оформления играл ящик, или корпус, электроакустических устройств — например, проигрывате­лей, радиоприемников или магнитофонов. Однако такое акустическое оформление редко было удачным — помимо динамиков корпус был забит шасси устройства, многочис­ленными печатными платами, проводниками и т. д. Неред­ко они имели свои частоты резонанса, что вело ко всяким призвукам (например, дребезжанию) и снижению эффек­тивного объема ящика, ухудшающему воспроизведение нижних частот. К тому же акустическая вибрация элект­ронных компонентов ухудшала их работу и нередко (осо­бенно у проигрывателей грампластинок) вела к акустичес­кому самовозбуждению.

В современных электроакустических устройствах (кро­ме телевизоров и миниатюрных проигрывателей и прием­ников) используются отдельные акустические системы — колонки. Они поставляются вместе с магнитолами и музыкальными центрами или продаются отдельно. От качества звуковых колонок, прежде всего, зависит качество звучания вашей аппаратуры. Поэтому полезно знать осо­бенности колонок разного типа, особенно если вы имеете возможность приобрести их отдельно.

Роль звуковых колонок так же уникальна, как и микрофонов. Они являются конечным элементом элект­роакустического тракта и обеспечивают преобразование электрических сигналов вновь в звуковые волны. Вопреки эмоциональным возгласам о звучании усилителей, тюне­ров, проигрывателей всех мастей и т. д. на самом деле звучат лишь звуковые колонки да головные телефоны. Естественно, если подаваемый на них сигнал искажается другими устройствами, это сказывается на общей оценке качества звучания.

Но и этого мало — две (или несколько) звуковых колонок должны создавать звуковое поле, которое реаль­но создается множеством (подчас десятками) источников звука, реально расположенных в пространстве. А это, в отличие от приема звуков двумя микрофонами — «уша­ми», куда более сложная задача. К тому же излучатели колонок работают с сигналами высокого уровня (напря­жения — вольты и десятки вольт, токи — амперы и десятки ампер). Поэтому проблема обеспечения линейности зву­кового тракта стоит очень остро.

Никакой усилитель с множеством наворотов или CD-проигрыватель с его мощью цифровых преобразований не может дать мало-мальски качественное звуковоспроизведе­ние, если совместно с ними используются низкокачествен­ные звуковые колонки. Впрочем, чтобы получить действи­тельно натуральный звук, нужно применять качественные элементы во всем тракте звуковоспроизведения — как изве­стно, даже обычная цепочка рвется в том месте, где у нее слабое звено.

Акустическая, или звуковая, колонка представляет собой один или несколько излучателей звука (чаще всего динамиков), размещенных в общем корпусе — ящике. Основное назначение корпуса — устранение акустическо­го короткого замыкания для звуков в области низких частот, разделение в пространстве отдельных излучателей и устранение влияния их друг на друга, акустическое демпфирование излучателей и, наконец, придание колон­ке соответствующего эстетического вида.

Leave a comment