Lcd что такое: LCD, LED и OLED: что выбрать и в чём разница дисплеев, мониторов и телевизоров

Содержание

LCD, LED и OLED: что выбрать и в чём разница дисплеев, мониторов и телевизоров

Жидкокристаллический дисплей (ЖК-дисплей, ЖКД; жидкокристаллический индикатор, ЖКИ; англ. liquid crystal display, LCD) — дисплей на основе жидких кристаллов, а также устройство (монитор, телевизор) на основе такого дисплея.

Экраны LCD-мониторов (Liquid Crystal Display, жидкокристаллические мониторы) изготовлены из вещества (цианофенил), которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически это жидкости, обладающие анизотропией свойств (в частности оптических), связанных с упорядоченностью в ориентации молекул.

Основной их особенностью является возможность изменять ориентацию в пространстве под воздействием электрического поля. А если сзади матрицы поставить источник света, то, проходя через кристалл, поток будет окрашиваться в определенный цвет.

Изменяя напряжённость электрического поля, можно изменять положение кристаллов, а значит и видимое количество одного из основных цветов. Кристаллы работают, как клапан или фильтр. Управление всей матрицей даёт возможность вывода на экран определённого изображения.

Жидкокристаллические материалы были открыты еще в 1888 году австрийским ученым Ф. Ренитцером, но только в 1930-м исследователи из британской корпорации Marconi получили патент на их промышленное применение.

В конце 1966 г. корпорация RCA продемонстрировала прототип LCD-монитора – цифровые часы. Значительную роль в развитии LCD-технологии сыграла корпорация Sharp. Она и до сих пор находится в числе технологических лидеров. Первый в мире калькулятор CS10A был произведен в 1964 г. именно этой корпорацией. В октябре 1975 г. уже по технологии TN LCD были изготовлены первые компактные цифровые часы. Во второй половине 70-х начался переход от восьмисегментных жидкокристаллических индикаторов к производству матриц с адресацией каждой точки.

Так, в 1976 г. Sharp выпустила черно-белый телевизор с диагональю экрана 5,5 дюйма, выполненного на базе LCD-матрицы разрешением 160х120 пикселов.

Одним из самых качественных типов LCD-матриц является IPS. Именно IPS технология доминирует в мобильных устройствах, так как она обладает хорошей цветопередачей и, что особенно важно для смартфонов — хорошими углами обзора.

Ресурс работы ЖК телевизора (дисплея) около 60000 часов.

Светодиодный экран (LED screen, LED display) — устройство отображения и передачи визуальной информации (дисплей, монитор, телевизор), в котором каждой точкой — пикселем — является один или несколько полупроводниковых светодиодов (LED).

LED — именно так сейчас принято сокращенно называть жидкокристаллическую (ЖК) панель со светодиодной (LED) подсветкой. Не так давно для подсветки ЖК-матрицы использовались люминисцентные лампы (CCFL), но сегодня их окончательно и бесповоротно вытеснили светодиоды.

Матрица работает на просвет. По сути, каждый RGB-пиксель представляет собой «заслонку» (а фактически фильтр) для света, излучаемого светодиодами. Кстати, очень интересный вариант, когда в телевизоре используется «локальная» подсветка, то есть множество светодиодов установлены позади матрицы и могут освещать только определенную зону. Тогда достигается высокий показатель контрастности в одном кадре, однако первые такие модели буквально «шли пятнами». Впрочем, сегодня большинство LED-телевизоров имеют торцевую подсветку, когда диоды расположены по бокам (в торце). Такая конструкция и позволяет сделать предельно плоские, энергоэффективные и легкие видеопанели.

Чаще всего срок службы LED телевизоров принадлежит диапазону от 50 до 100 тысяч часов.

Органический светодиод (англ. organic light-emitting diode, сокр. OLED) — полупроводниковый прибор, изготовленный из органических соединений, эффективно излучающих свет при прохождении через них электрического тока.

Основная технология создания дисплеев основана на том, что органическая пленка на углеродной основе помещается между двумя проводниками, пропускающими электрический ток, из-за которого пленка излучает свет.

Главное отличие этой технологии от  LED в том, что свет испускается каждым пикселем в отдельности, так что яркий белый или красочный цветной пиксель может находиться рядом с пикселем черного или совершенно другого цвета, и они не будут влиять друг на друга.

Это отличает их от традиционных ЖК-панелей, которые оснащаются специальной подсветкой, свет от которой проходит через слой пикселей.

К сожалению, между собой OLED пиксели отличаются не только цветом, но и рядом других характеристик — уровнем яркости, сроком службы, скоростью включения/выключения и прочими. Чтобы обеспечить относительно равномерные характеристики экрана в целом, производителям приходится идти на самые разные ухищрения: варьировать форму и размер светодиодов, размещать их в особом порядке, использовать программные трюки, регулировать яркость свечения с помощью ШИМ (то есть, грубо говоря, пульсацией), и так далее.

Причем технологии реализации самих матриц немного различаются. Так, в LG используется «сэндвич», а у Samsung — классическая RGB-схема. OLED можно гнуть вроде как без особых последствий. Поэтому вогнутые телевизоры также были построены на базе этой технологии.

LCD дисплей: технология, особенности, типы матриц

LCD дисплей – это самый распространенный вид экранов телевизоров и мониторов, а также дисплеев телефонов и других устройств. Такое распространение данный вид экрана получил благодаря целому ряду неоспоримых преимуществ.

0.1. Устройство жк монитора

Для того чтобы понять все положительные качества ЖК дисплеев следует понять, что это такое, а также знать принцип работы и устройства таких экранов. Именно об этом и пойдет речь в данной статье.

1. Расшифровка LCD

ЖК-дисплей означает – жидкокристаллический экран, если перевести на английский язык — Liquid crystal display. Из этого следует, что ЖК и LCD – это одно и тоже. Данная технология получила такое название благодаря применению уникального вещества, которое всегда находится в жидком состоянии и обладает оптическими свойствами, присущими кристаллам.

Современный ЖК экран отличается рядом преимуществ, которые обеспечиваются именно жидкими кристаллами. Постоянное жидкое состояние молекул жидких кристаллов позволяет управлять их оптическими свойствами, воздействуя на них  электричеством. При этом молекулы меняют свое расположение, преломляя проходящий свет под нужным углом, отсеивая определенный спектр излучения.

2. Устройство ЖК дисплея

Практически все существующие сегодня ЖК дисплеи имеют идентичное устройство. Если говорить о конструкции, то любой LCD монитор или телевизор состоит из следующих компонентов:

  • ЖК матрицы;
  • Источник света;
  • Контактного жгута;
  • Обрамление (корпус).

ЖК матрица представляет собой две стеклянные пластины, между которыми располагается тонкий слой жидких кристаллов. По сути – это массив, состоящий из огромного множества ячеек, называемых пикселями. Каждый пиксель матрицы состоит из нескольких молекул жидких кристаллов и двух поляризационных фильтров. Причем плоскости этих фильтров расположены перпендикулярно относительно друг друга.

Каждый пиксель матрицы расположен между двумя специальными прозрачными электродами, что дает возможность управлять расположением молекул в каждом пикселе отдельно. LCD технология может основываться на прохождении либо отражении света, в зависимости от устройства монитора, через молекулы жидких кристаллов. Разницы между этими типами матриц практически нет. Однако стоит отметить, что большинство ЖК дисплеев работают на прохождение света через слой жидких кристаллов.

3. Принцип работы ЖК дисплея

Принцип работы LCD дисплея заключается в том, что при условии отсутствия молекул жидких кристаллов свет пропускается первым поляризационным фильтром и полностью блокируется – вторым.

Сами жидкие кристаллы расположены между этими фильтрами таким образом, чтобы преломлять свет, проходящий через первый фильтр так, чтобы он беспрепятственно проходил через второй.

Так устроены TN матрицы. Жидкокристаллические дисплеи с другими типами матриц могут действовать наоборот, однако принцип работы при этом не меняется. То есть в спокойном состоянии излучение блокируется и не проходит через матрицу, а при возбуждении электромагнитного поля плоскость излучения меняется так, чтобы свет проходил без препятствий

Для того чтобы молекулы жидких кристаллов располагались в нужном порядке без воздействия электричеством, на контактирующую поверхность электродов нанесены специальные микроскопические бороздки, выстраивающие молекулы в нужном порядке. Таким образом, если воздействовать на определенные области матрицы получается изображение.

Каждый современный жидкокристаллический экран имеет высокое разрешение. Это означает, что матрица состоит из огромного количества пикселей, при этом управлять ими можно каждым в отдельности. Другими словами, если увеличить какую-либо область экрана можно заметить мелкие ячейки, меняя напряжение каждой из этих ячеек можно изменить угол преломления света именно в данной точке. Путем создания необходимого напряжения в каждой из ячеек и создается определенное изображение.

4. Тип подсветки ЖК матрицы

Современные LCD дисплеи могут использовать два варианта подсветки:

  • Люминесцентные лампы;
  • Светодиодная подсветка.

Конечно же, тип подсветки существенно влияет на качество изображения. Люминесцентные лампы считаются устаревшим методом подсветки. Главной проблемой данного типа подсветки является невозможность равномерного распределения света по всей плоскости экрана, что не позволяет достичь высокого качества изображения. Он использовался в первых ЖК матрицах и сегодня встречается все реже.

Светодиодная подсветка, более известная под название LED, является последней разработкой, которая позволила достичь более высокого качества изображения. Такой тип подсветки отличается рядом преимуществ.

Во-первых – это низкое потребление электроэнергии. Во-вторых, LED подсветка излучает более интенсивный свет, который позволяет более равномерно распределить излучение. Благодаря компактным размерам такая подсветка не занимает много места, что позволяет делать экраны еще более тонкими.

5. Типы ЖК матриц

В мире существует несколько типов LCD матриц, однако на отечественном рынке встречается только два вида:

Оба варианта имеют достаточно высокие характеристики. Если говорить о том, какой вариант лучше выбрать, то следует отметить, что все больше производителей отдают предпочтение IPS матрицам, так как они позволяют передать более естественные цвета.

Конечно, как и в любой другой технологии, здесь также есть свои плюсы и минусы. IPS матрицы отличаются отличным качеством изображения, высокой четкостью и прекрасной цветопередачей. Однако при этом имеют медленный отклик. Современные технологии позволили улучшить этот показатель до высокого уровня.

TN+Film матрицы уступают по качеству и четкости изображения. Однако при этом они имеют быстрый отклик, который позволяет таким мониторам отображать самые яркие спецэффекты и быстрые видео записи. Однако стоит понимать, что все эти измерения проводятся при помощи специальной техники. В домашних условиях вы вряд ли сможете заметить существенную разницу между этими матрицами. Поэтому выбор остается за вами.

6. Устройство TFT дисплея: Видео

Конечно, зная все эти нюансы, люди, которые занимаются обработкой фотографий, предпочитают IPS матрицы, так как им не требуется быстрый отклик, но при этом необходима максимально естественная цветопередача. В других случаях,  тип матрицы не играет роли.

Ну и, конечно же, все характеристики зависят и от производителя, а также от используемой технологии и материалов. Не стоит думать, что все IPS матрицы одинаковы, они также могут отличаться между собой. Стоит понимать, что чем дороже монитор (или телевизор) тем более высокое качество изображения вы сможете получить. То же самое можно сказать и о TN+Film  матрицах.

Какой бы жидкокристаллический дисплей вы не выбрали, стоит обязательно ознакомиться с его возможностями и техническими характеристиками. На сегодняшний день ЖК-дисплеи являются самыми распространенными по ряду причин. Их преимущества вы уже знаете. Благодаря этому они являются прямыми конкурентами плазменным панелям, но при этом они имеют более низкую стоимость, что делает их более доступными для пользователей. Кроме того, они имеют больший ресурс. Другими словами, ЖК-дисплей служит существенно дольше плазменной панели.

LCD против LED: в чем отличие?

Если еще вчера покупатели делали выбор только между телевизорами кинескопными и проекционными, то сегодня этот выбор уже нужно сделать между плазменными, LCD, DLP, OLED и лазерными аппаратами. Большинство из нас любой современный телевизор, у которого плоский экран, называют «плазма» и при этом делают ошибку в девяти случаях из десяти.

Газоразрядные технологии, на базе которых функционируют плазменные TV, встречаются очень редко. При всем том, что достоинств у них много, все-таки для многих это слишком дорогое решение. Вот почему в пользование чаще покупают такие модели, которые построены с использованием жидкокристаллических модулей. Их покупка обходится намного меньше. И при этом они не уступают по многим параметрам.

Именно о ЖК-мониторах мы и поговорим дальше. Есть две разновидности этих экранов: LCD и LED. Что касается технического исполнения, то разница между ними не столь существенна, как это может показаться с первого взгляда.

Теперь об этом боле подробно.

ВАЖНО! На самом деле LED и LCD, по большому счету, не поддаются сравнению, так как первая аббревиатура является лишь разновидностью группы устройств, обозначенной второй. Точно так же можно спросить, что лучше – автомобиль или TOYOTA.

Несмотря на это, именно так, и уже давно, мы разделяем ЖК-мониторы. Вот почему далее, когда мы будем говорить LED, то это будет означать саму технологию. А к LCD мы будем относить все остальные модели жидкокристаллических девайсов.

Структура ЖК-экранов

Оба типа ТВ применяют жидкокристаллическую панель (LCD) для того, чтобы можно было управлять прохождением света на экран. Обычно эти панели состоят из пары листов поляризационного материала, а между ними находится жидкокристаллический раствор.

Мы не будем до мельчайших деталей вдаваться в то, каков принцип действия жидкокристаллического оборудования. Если читатель не готов воспринимать такую техническую информацию, то вряд ли он сможет сориентироваться и понять все нюансы. И потому мы вкратце расскажем лишь о том, как устроена жидкокристаллическая панель.

Если говорить проще, то ЖК-матрица – это пара прозрачных пластин, и обе они разбиты на очень мелкие ячейки. Каждую такую капсулу наполняют особым веществом, то есть жидким кристаллом. Внутренняя часть закрыта цветовыми RGB-фильтрами. Они бывают зелеными, красными или синими. Любой пиксель экрана – это три ячейки, в которых вставки разных цветов.

У данной жидкокристаллической субстанции есть удивительные свойства. В обычном состоянии она непрозрачная. Когда через нее пропускают электрический ток, то она становится светопроницаемой. И когда сборку освещают изнутри, то появляется возможность получить комбинацию разноцветных точек. Все вместе они уже представляют изображение.

ВАЖНО! При прохождении электрического тока через жидкость кристаллы вынуждены ориентироваться так, что свет может или не может проходить через эту жидкость. Каждый кристалл, как затвор, который или предоставляет возможность свету пройти через него, или же делает блокировку светового потока.

В чем же отличие LED от LCD? Лишь в методе реализации подсветки.

Изображение на панели очень напоминает слайд, рассматриваемый на просвет. Значит, обычные ЖК-телевизоры, чтобы обеспечить подсветку, применяют люминесцентные лампы, у которых холодный катод (CCFL). А LED телевизоры применяют светодиоды (LED) для того, чтобы был освещен экран. Светодиоды меньше, однако более эффективны. Вот откуда многие преимущества.

ВАЖНО! В любом случае LED/LCD телевизоры имеют много преимуществ. С ними трудно сравнить обычные ЖК-телевизоры, у которых ламповая подсветка.

LCD технология – особенности

Обычная подсветка LCD представляет собой простую люминесцентную лампу холодного света, которую установили в корпусе монитора перед дисплеем.

С помощью такого освещения можно получить палитру разных цветов.

Электролюминесцентная подсветка нуждается в небольшом потреблении энергии. Однако для того, чтобы она работала, необходим источник переменного тока высокой частоты. Преобразователям для того, чтобы действовал источник света, необходимо в среднем 25 Ватт в час.

Долговечность LCD (уменьшение яркости вдвое от начальной) составляет примерно 5 тысяч часов. На нее оказывает влияние установленная интенсивность свечения.

LED технология – особенности

Не надо придавать большое значение тому, что применяется другая аббревиатура. Телевизор, у которого светодиодная подсветка, – это всего лишь еще один тип ЖК-телевизора.

Правильным будет такое название, как «ЖК-телевизор с LED-подсветкой». Однако тут слишком много слов. И в обычном разговоре будет не до них. Вот почему проще сказать термин LED-телевизор, а это приводит к путанице.

Для изготовления такой подсветки используется группа ярких светодиодов. Для моделей, у которых маленький размер матрицы, устанавливают ленты, имеющие встроенные излучатели только с одной стороны. В большинстве случаев они сбоку. В девайсы широкого формата установка светодиодов производится по всей площади дисплея.

Для технического функционирования LED будет достаточно источника напряжения 5В без применения преобразователей. В этом случае будет минимальное потребление энергии. Возможно применение в компактных портативных устройствах.

ВАЖНО! Для того чтобы регулировать яркость свечения, используют широтно-импульсные модуляторы.

Какой вариант экрана выбрать?

Что лучше? LED или LCD? Однозначно, лучше светодиодное освещение ЖК-матриц. Далее мы перечислим основные критерии, из-за которых полупроводники выигрывают.

— Незначительное потребление энергии. Светодиодам для того, чтобы иметь питание, не требуются дополнительные преобразователи. Единственный компонент схемы, которому нужна энергия, – это токоограничитель. Что касается подсветки, то ее потребление даже на экранах, у которых диагональ более 46 см, составляет не более 10 Ватт. Для стандартных бытовых моделей – 3-5 Ватт.

— Долговечность. Срок эксплуатации LED – 50 тысяч часов. Если нужно будет заменить светодиодные полосы, то сделать это очень просто. Ко всему процедура не предполагает большие затраты денег и времени на ремонт.

— Габариты. Полупроводниковые приборы настолько миниатюрны, что предоставляют возможность получить монитор, у которого действительно «плоский» дисплей. Существует много девайсов, в частности, ноутбуков, в которых это незаменимое решение.

ВАЖНО! LED от LCD принципиально отличается тем, что светодиоды намного меньше, чем лампы CCFL. Это означает, что LED телевизоры можно изготовить намного более тонкими. В настоящее время львиная доля телевизоров – с толщиной менее 3 см. Такое возможно за счет того, что LED-подсветка добавляет к профилю корпуса совсем немного глубины.

— Качество цветопередачи. Отличие LED от LCD и в том, что в случае со светодиодами можно равномерно распределить подсветку по всему периметру экрана. Контрастность становится лучше. Насыщенность изображения повышается. Также за счет изменения яркости свечения некоторых участков дисплея, можно справиться с задачей локального затемнения.

Решение проблемы черного

Самое важное различие между типами экранов в том, что все-таки есть возможность создать локальное затемнение – селективную подсветку. А это предоставляет возможность сделать черный цвет более глубоким, добиться улучшения картинки в целом.

В чем проблема с CCFL-подсветкой? Дело в том, что люминесцентные лампы освещают весь экран равномерно. И разработчики не могут изменить интенсивность подсветки в тех или иных частях экрана. Даже в том случае, когда нужно показать один белый пиксель на экране, который полностью черный, то свет сзади должен излучаться на полной яркости.

В LED телевизорах эту проблему можно решить с использованием локального затемнения. Суть данного способа в том, чтобы контролировать яркость светодиодов. В результате они не будут все время излучать максимально яркий поток. Их можно приглушить или полностью отключить. В результате уровень черного и контрастность изображения становятся значительно лучше.

Подчеркнем, что не все LED телевизоры имеют локальное затемнение. Напомним, что есть два вида LED телевизоров: с подсветкой по ободу экрана и полномассивные. Лишь полный массив способен локально затемнить подсветку хорошо, В этом он достойно конкурирует с плазменными телевизорами.

ВАЖНО! Теперь некоторыми производителям разработаны телевизоры с краевой подсветкой. У них есть функционал локального затемнения (серии Samsung UND8000, LG LW5600).

Однако из-за специфики их проектирования они обычно не способны разумно «выключать» различные части экрана, то есть так, как это делают телевизоры, у которых полномассивная подсветка. Поэтому, когда покупке ЖК-телевизора нужно точно знать, какой тип подсветки будет у вашего гаджета.

ВАЖНО! Покупка мониторов и дисплеев со светодиодной подсветкой обойдется чуть дороже. Однако разница небольшая. Если выбираешь такую марку, то идешь на оправданный компромисс между ценой и характеристиками.

Технология LCD постепенно стареет. Немало производителей свернуло серийный выпуск девайсов с люминесцентными лампами. Помните, что именно у полупроводниковых излучателей есть будущее.

LCD против AMOLED.

Что лучше?

LCD-дисплеи

Начнем, пожалуй, с наиболее популярной LCD-матрицы. LCD в переводе с английского означает «жидкокристаллический дисплей» (liquid crystal display), однако в простонародье его принято называть просто «элсиди». Первый цветной LCD-дисплей был представлен компанией Sharp в 1987 году, и со временем они начали смещать ЭЛТ (электронно-лучевая трубка) – мониторы.


Насколько важным фактором для вас является дисплей при выборе устройства? Всё еще сомневаетесь? В этой статье мы рассмотрим два основных вида дисплеев, которые встречаются сегодня на рынке мобильных устройств, рассмотрим их особенности, и главное — поможем вам решить, какой дисплей вам наиболее предпочтителен.

На примере TN-матрицы рассмотрим принцип работы данного дисплея. LCD-дисплей состоит из пикселей, в свою очередь, пиксели состоят из субпикселей, которые представляют собой 3 цвета – красный, зеленый, синий, в сумме они дают белый цвет. Проведите эксперимент: возьмите цветной картон, вырежьте круг с тремя цветами (зеленый, красный, синий) и попробуйте быстро прокрутить его, вы заметите, что вместо трех цветов получится один – белый. С помощью всего трех цветов можно создавать огромное множество оттенков, оптимальным является 16 миллионов оттенков. Делать больше нет смысла, это прямо пропорционально повлияет на память, которой и так мобильным устройствам всегда не хватает. Более того, глаз человека распознает от силы 10 миллионов цветов. Каждый субпиксель состоит из: цветового фильтра, который определяет цвет субпикселя (красный, зеленый, синий), горизонтального и вертикального фильтров, прозрачных электродов, а также жидкокристаллических молекул. В зависимости от того, какая технология используются (TN, IPS), будет определяться принцип взаимодействия кристалла с электродами.

Из курса физики известно, что свет, поляризованный на поверхности тела в определенной плоскости, может пройти через другую поверхность только в случае, если она будет находиться в одной плоскости с первой. Например, свет проходит через дифракционную решетку и поляризуется по вертикальной плоскости, в случае если следующая поверхность будет находиться в плоскости, расположенной на 90 градусов относительно первой, то свет не пройдет через вторую поверхность, если же на 45 градусов, то свет пройдет лишь наполовину. Но зачем нам ЖК-молекулы? Они играют ключевую роль: кристалл определяет, с какой силой будет проходить свет через цветовой фильтр, он направляет свет в одну плоскость с поверхностью второго фильтра.

В TN-матрицах электроды расположены так же, как и фильтры, и они направляют наш кристалл в плоскость второго фильтра, что приводит к свободному прохождению света через дифракционную решетку. Если же мы подаем напряжение транзисторам, то молекулы кристалла образуются в ряд, и в зависимости от силы напряжения можно регулировать, какое количество молекул кристалла будут упорядочены перпендикулярно второму фильтру. Другими словами, чем больше напряжения даёт нам транзистор, тем меньше света будет пропускать наш субпиксель. Поэтому когда в TN-матрицах выгорают пиксели, то они бывают белого цвета, а не черного, так как выгорание подразумевает выход из строя транзистора, который больше не может подавать ток и регулировать силу пропускания света, соответственно, наш свет без проблем проходит через цветовой фильтр.

Наверняка вы задаетесь вопросом: «Почему битые пиксели бывают и черного цвета»? Всё дело в технологии: битые пиксели черного цвета встречаются в IPS-матрицах, так как в таких матрицах при подаче напряжения кристалл проводит свет в одной плоскости с фильтром. Более того, в IPS-матрицах, поскольку в спокойном состоянии кристаллы не проходят через фильтр и соответственно свет также не проходит, мы наблюдаем глубокий черный цвет.
Отдельно хочется упомянуть об искусственной подсветке. В отличие от AMOLED-дисплеев, пиксели в LCD неспособны излучать свет. Им в этом помогает подсветка, которая также влияет на яркость самого дисплея.

AMOLED-дисплеи

С каждым днем AMOLED-матрицы всё популярнее. Технологически они заметно превосходят LCD-дисплеи, и многие ожидают в будущем доминирование AMOLED-дисплеев на рынке не только мобильном, но и всей техники. Однако наибольшую популярность подобные матрицы получили лишь при изготовлении устройств с небольшой диагональю экрана, так как производственные затраты очень велики – это очень капризные и хрупкие дисплеи, – поэтому разработка экрана с большой диагональю повлечет за собой большие производственные затраты, большое количество брака и прочее.

Что касается самой технологии, то AMOLED (Active Matrix Organic Light-Emitting Diode) имеет заметные отличия в сравнении с LCD. Каждый субпиксель имеет свою собственную искусственную подсветку, будем называть их светодиодами, AMOLED-матрица имеет несколько слоёв: слой катода, слой активной органики (светодиоды), TFT-массив, другими словами, транзисторы, и затем идет подложка, которая может быть изготовлена из любых материалов (силикон, металл и другие).

Именно поэтому AMOLED-дисплеи можно использовать при изготовлении различных гаджетов с закругленным экраном, это помогло Samsung в создании Galaxy Note Edge. В будущем мы увидим полностью гибкие гаджеты, с силиконовой подложкой, например. Что касается SuperAMOLED, данная технология является усовершенствованной версией AMOLED. Наиболее главная техническая особенность – это отсутствие воздушной прослойки между экраном и дисплеем: экран приклеен к дисплею, это уменьшает место, занимаемое дисплеем, как следствие, уменьшаются габариты устройств. Сверху дисплея расположен тачскрин, затем идет проводка, которая передает ток низкого напряжения, проводка дает питание светодиодам, под светодиодами расположены транзисторы, а под ними находится подложка.

SuperAMOLED-дисплеи ярче своих предшественников, меньше отражают свет и имеют сниженное энергопотребление. Что касается энергопотребления, то в связи с тем, что светодиоды сами создают свет, энергопотребление матрицы напрямую зависит от количества работающих пикселей, от интенсивности света диодов. Именно поэтому Samsung в интерфейсе TouchWiz использует темные тона, это положительно сказывается на расходе диодами заряда батареи.

Итоги

LCD довольно скоро станет устаревшей технологией, однако рынок мобильных устройств с данными дисплеями всё еще будет занимать заметную долю. На сегодняшний день наиболее предпочтительна именно LCD-матрица, да, разрыв уже минимален, более того, дисплей Note 4 для некоторых может стать лучшим на рынке, два–три года – и AMOLED-экраны по качеству станут доминировать над LCD, однако AMOLED пока недостаточно совершенен. Напротив, LCD – это отполированная технология, которая уже достигла практически идеальных показателей. Однако решать в любом случае вам.

В чем разница и отличия LED экранов от LCD (ЖК)

Современного человека сегодня окружает множество разных экранов и мониторов. Это дисплеи телевизоров, мониторов компьютеров, экраны мобильных гаджетов. Конечно, что все они имеют разные характеристики и особенности. Чем отличается ЖК от LED? Ответ вы найдете в нашей статье.

Стоит сразу сказать, что LED — это усовершенствованная версия LCD. Из этого выплывает, что ЛЕД экраны лучше обычных жидкокристаллических панелей, они ярче, качество картинки четче и точнее.

Сравнительная характеристика представленных типов экранов

Давайте проведем сравнительный анализ технических особенностей жидкокристаллических и светодиодных дисплеев, чтобы понять их сильные и слабые стороны.

  • Качество картинки. LED имеют хорошую цветопередачу и контрастность, но это не свидетельствует о том, что ЖК чем-то хуже, просто они немного проигрывают светодиодам. У них цветопередача немножко ниже и не такая сочная яркость.
  • Потребление электроэнергии. Если для вас экономия — это принципиальный вопрос, то стоит отметить, что разница между LED и ЖК в энергопотреблении составляет 40%. Жидкокристаллические экраны больше употребляют электричества.
  • Размеры и параметры. Если учитывать показатели веса и размеров, то и здесь LED панели выигрывают. Они немного тоньше LCD мониторов, а значит и легче по весу. Как результат, напряжение на стену тоже меньше, что очень важно особенно в помещениях.
  • Срок службы мониторов. Если рассматривать, что лучше LCD или LED с точки зрения долговечности, то и здесь мы вас не удивим, светодиодные панели долговечнее. Существует статистика, что при работе 8 часов ежедневно, ЛЕД экраны прослужат до 30 лет, в то же время ЖК экраны — 20. Исходя их этих данных видно, что LED видеоэкраны долговечнее LCD примерно на 30%.
  • Влияние на окружающую среду. В наше время вопросы экологии особенно актуальны, поэтому этот аспект не стоит выпускать из виду. При утилизации обеих типов экранов, LED меньше влияют на окружающую среду, чем жидкокристаллические экраны.
  • Стоимость изделий. Ну, тут можно ответить однозначно, что с появлением на рынке светодиодных экранов, стоимость LCD панелей резко упала. Если вам нужен хороший, но бюджетный вариант, то конечно ЖК экраны тут выигрывают.

Что же выбрать?

Мы объяснили вам, чем отличается LED от LCD, а что покупать выбирать уже вам. Если вам необходим экран, например, в телевизионную студию, для декора сцены и так далее, то конечно предпочтительнее выбирать светодиодный экран.

Он лучше будет смотреться в кадре, у зрителей будет четкая картинка. Но если вы ищите экран для частного использования или, скажем, для офиса, то можно купить жидкокристаллический дисплей. Он дешевле, а из вышеперечисленного, становится понятно, что не на много хуже LED панелей. Купить LED экраны высокого качества вы можете в компании «LED Экраны».


СМОТРИТЕ ТАКЖЕ: Видеопанели для рекламы • Большие LED экраны • Виды светодиодных медиафасадов

Что такое LED, AMOLED, OLED, TFT, IPS и LCD-дисплеи. Отличия AMOLED от IPS

Если человека «встречают по одежке, а провожают по уму», то телевизор, компьютерный монитор, смартфон и планшет встречают по дисплею. И провожают зачастую тоже. При покупке такого устройства не всегда есть возможность оценить красоту и другие свойства его экрана воочию, ведь многие сделки совершаются через Интернет. Но если вы знаете, что означают 3 буквы, то легко составите представление о дисплее аппарата, даже не видя его.

Нет, это вовсе не те буквы, что пишут на заборе. И иногда их не 3, а больше. Например, LED, LCD, IPS, TFT, OLED, QLED, AMOLED. Всё это технологии изготовления экранов, которые определяют их характеристики. Поговорим, что такое LED-, AMOLED-, QLED-, OLED-дисплеи и в чем их отличия от IPS, TFT, LCD и т. д.

Сравнить несравнимое

LCD vs LED

LCD, TFT, LED, AMOLED и прочие «леды» – всего лишь сокращенные обозначения, а различий между ними –пропасть. Тем более что некоторые из этих понятий несопоставимы. Так, никто вам не скажет, какой телевизор лучше: LCD или LED, поскольку LCD (Liquid Crystal Display) – это дисплей на жидких кристаллах или просто ЖК, а LED (Light Emitting Diode) – один из видов его подсветки (светодиодный). То есть телевизор может быть LCD и LED одновременно.

Структурная схема LCD-экрана с LED-подсветкой показана на рисунке ниже:

LED-подсветка, в отличие от устаревшей люминесцентной (CCFL), обеспечивает равномерное распределение света по поверхности экрана и более высокий уровень яркости. Кроме того, она потребляет меньше энергии и дольше служит.

TFT vs LCD

«А как насчет телевизора с экраном TFT? Он лучше LCD или хуже?» Ни то, ни другое, ведь TFT (Thin Film Transistor) – это ЖК-дисплей с активной матрицей, разновидность LCD. Активная матрица – это система управления цветопередачей дисплея, где каждый пиксель регулируется собственной группой тонкопленочных микротранзисторов.

В отличие от пассивной матрицы, где оттенок пикселей регулируется линейно (по строчкам и столбцам), активная в 5-6 раз быстрее реагирует на смену картинки, имеет более высокую яркость, контрастность и углы обзора, а также потребляет меньше энергии.

Жидкокристаллические экраны всех современных TV, мониторов, смартфонов и планшетов имеют активную матрицу, поэтому сравнивать LCD и TFT в отношении этих устройств неуместно.

TFT vs IPS. Свойства и версии IPS

«Но ведь экраны IPS определенно лучше TFT, не зря об этом пишут на форумах!?» И снова те, кто так пишет, не угадали. IPS – это разновидность TFT. Такая же, как TN, PLS, VA, MVA, PVA и прочие. TFT-шками иногда ошибочно называют дисплеи TN (Twisted Nematic), которые действительно не блещут качеством картинки – из всех вариантов TFT у них наихудшая передача цвета, самые малые яркость и контраст и очень ограниченные углы обзора. Зато экраны TN отличаются низкой стоимостью, быстрым откликом и высокой частотой обновления.

Сравнение дисплеев IPS и TN.

IPS (In Plane Switching) – это следующий шаг в развитии технологии активных матриц, который устранил основные недостатки TN. Изменение положения кристаллов и точек подачи напряжения на ячейку привело к тому, что черный цвет стал действительно черным, а при взгляде на экран сбоку цвета остаются такими же, как если смотреть на него спереди. Кроме того, в экранах IPS заметно улучшилась цветопередача и увеличилась общая яркость и контрастность, но скорость отклика в сравнении с TN, наоборот, уменьшилась.

Сегодня IPS параллельно развивают 3 компании – Panasonic (принял «эстафетную палочку» от разработчика первой версии – Hitachi), NEC и LG. Каждая версия и поколение этой технологии имеют свои особенности и наименования.

  • К линейке Hitachi и Panasonic относятся: IPS (Super TFT), S-IPS (Super-IPS), AS-IPS (Advanced super-IPS), IPS-Pro (IPS-provectus, IPS alpha, IPS alpha next gen).
  • Разработки NEC носят названия: SFT (Super fine TFT), A-SFT (Advanced SFT), SA-SFT (Super-advanced SFT), UA-SFT (Ultra-advanced SFT).
  • Продукция LG называется: S-IPS (Super-IPS), AS-IPS (Advanced super-IPS), H-IPS (Horizontal IPS), E-IPS (Enhanced IPS), P-IPS (Professional IPS), AH-IPS (Advanced high performance IPS).

Собственную версию IPS, которая получила название PLS (Plane to Line Switching), развивает и компания Samsung.

Матрица светодиодов.

Все разработчики совершенствуют технологию в одних и тех же направлениях. Это уменьшение времени отклика, увеличение контрастности, глубины и естественности цвета, улучшение углов обзора, устранение цветовых искажений, снижение энергопотребления, а главное – удешевление производства матриц. Компьютерные мониторы с экранами IPS последних лет по скорости отклика уже «наступают на пятки» TN и могут использоваться не только для профессиональной графики, но и для динамичных игр.

Большинство пользователей, кроме, пожалуй, профессионалов в области графики и дизайна, не заметят различий картинки на IPS-дисплеях разных марок, но отличия между их бюджетными и топовыми версиями есть и довольно существенные. Наивысшее качество изображения воспроизводят матрицы P-IPS и AH-IPS производства LG. Они же самые дорогие.

VA/MVA/PVA

Матрицы VA, MVA и PVA занимают промежуточное положение между TN и IPS как по качеству изображения, так и по цене. По сравнению с TN они имеют более широкие углы обзора и точнее передают глубину и естественность цвета, по сравнению с IPS они дешевле. Однако экраны этих типов не получили широкого распространения. Их используют в производстве мониторов для ПК и бюджетных серий телевизоров.

Да будет свет

LED

Технология подсветки LCD-экранов LED представлена несколькими видами. Они различаются цветом, расположением светодиодов на ЖК-панели и способом регуляции свечения.

  • Тип подсветки, состоящий только из белых светодиодов, называется WLED. Он относительно прост по своей структуре, но имеет ограниченный цветовой охват.
  • Подсветка RGB LED, построенная на красных, зеленых и синих светодиодах, охватывает больший диапазон цветов, нежели WLED, но склонна к деградации (диоды разных цветов выгорают с различной скоростью), тяжеловесна и обременительна по цене.
  • GB-R LED – следующий шаг в развитии LCD, где вместо белого светодиода используется объединенный зеленый + синий, покрытый красным люминофором (самосветящимся пигментом). Такое решение позволило охватить 99% палитры RGB и избавиться от недостатков RGB LED. Технология GB-R LED используется в матрицах AH-IPS и PLS.
  • RB-G LED – вариация подсветки предыдущего типа. Вместо сине-зеленых светодиодов здесь стоят красно-синие, покрытые зеленым люминофором.

На основе WLED разработан еще один стандарт LCD-дисплеев – QDEF, где вместо белых диодов используется синие, а красный и зеленый цвета образует покрытие из квантовых точек (кристаллов, светящихся под действием электричества), нанесенное на лист пластика. QDEF-дисплеи воспроизводят до 60% оттенков, различимых человеческим глазом, что в разы выше, чем позволяет добиться WLED. А по затратам энергии и цене экраны WLED и QDEF примерно равнозначны.

QDEF также является одной из версий технологии QLED (Quantum-dot Light Emitting Diode), которая основана на квантово-точечных светодиодах.

По расположению светоизлучающих элементов на ЖК-панели различают следующие виды LED-подсветки:

  • Edge LED – светодиоды расположены линейно по периметру экрана. Это экономично, однако не позволяет добиться равномерности освещения и приемлемого уровня контрастности.
  • Direct LED – массив светодиодов распределен по всей площади дисплея. Такая технология дает более реалистичную картинку, но панели этого типа потребляют много энергии и имеют значительную толщину, что затрудняет их установку на сверхтонкие телевизоры.
  • Боковая подсветка – диоды расположены только по краям экрана, а освещение обеспечивают подключенные к ним световоды. Этот тип подсветки считается оптимальным, так как дает равномерность, сопоставимую с Direct LED, и при этом лишен его недостатков.

Каждый из трех типов подсветки делятся еще на 2 – с поддержкой локального затемнения (Local Dimming) и динамической контрастности (DCR) либо без поддержки. Изображение экранов с Local Dimming и DCR выглядит реалистичнее.

OLED и AMOLED

Понятие OLED хоть и созвучно с LED, но не имеет с ним практически ничего общего. OLED (Organic Light Emitting Diode) – это технология изготовления дисплеев, основанная на свойствах органических полупроводников – элементов, способных излучать свет под действием тока. Каждый субпиксель OLED-экрана – это отдельный органический светодиод. В отличие от ЖК, панели OLED не нуждаются в подсветке, поскольку светятся каждой своей точкой.

Другие свойства и особенности OLED-дисплеев в сравнении с LED:

  • Малая толщина и вес за счет уменьшения количества слоев.

  • Неограниченные углы обзора.
  • Равномерное освещение.
  • Минимальное время отклика.
  • Гибкость.
  • Значительно большие яркость, контрастность и насыщенность цветов.
  • Низкая чувствительность к внешним температурам, но высокая к влаге.
  • Короткий срок службы и склонность к деградации: диоды синего цвета выгорают в 3 раза быстрее, чем красного и почти в 10 раз быстрее, чем зеленого.
  • Зависимость исчерпания ресурса от яркости экрана – чем она выше, тем быстрее наступает выцветание.
  • Чувствительность к механическим повреждениям. Незначительный дефект приводит к полному выходу экрана из строя.
  • Мерцание за счет применения ШИМ (широтно-импульсной модуляции) для управления яркостью. Экраны OLED используют ШИМ опционально.
  • Высокая стоимость.

AMOLED (Active Matrix Organic Light Emitting Diode) – это активная матрица на органических светодиодах, сочетание технологий TFT и OLED, где последняя применяется в качестве подсветки. Соответственно, экраны AMOLED обладают свойствами того и другого.

Технология AMOLED нашла широкое применение в производстве сенсорных дисплеев для мобильных устройств. И не только она, но и ветви ее развития – Super AMOLED и Super AMOLED плюс.

Отличие просто AMOLED от Super – заключается в отсутствии у второго воздушной прослойки между поверхностями тачскрина и матрицы, что увеличивает четкость картинки. А от Super AMOLED плюс – в количестве и расположении субпикселей (цветных составляющих пикселя). В последнем их на 50% больше и они размещены плотнее.

AMOLED vs IPS

Закономерно возникает вопрос: какой дисплей лучше – AMOLED или IPS? Вы уже знаете, что представляет собой тот и другой, поэтому давайте для наглядности сопоставим их характеристики в таблице.

IPS

AMOLED

Общая характеристика изображенияКачество от среднего до высокого в зависимости от типа и поколения матрицы.Качество, как правило, высокое.
Достоинства изображенияЕстественная цветопередача.Высокая яркость и контраст, глубокий черный цвет, равномерное освещение.
Недостатки изображенияОтносительно небольшая глубина черного цвета, особенно при взгляде под углом, немаксимальная контрастность, неравномерная подсветка.Неестественно перенасыщенные цвета. Фиолетовый оттенок при снижении яркости либо мерцание из-за ШИМ.
Время отклика экранаОт 4 до 10 мс и выше.Мгновенный отклик.
Потребление энергииНе зависит от преобладания на экране светлых или темных тонов.Зависит от яркости свечения. Чем она выше, тем больше затраты энергии. При преобладании белого потребляет больше энергии, чем IPS.
Срок службы5-10 лет и более.После 15 000 часов эксплуатации могут появиться признаки деградации. Для увеличения ресурса синих светодиодов рекомендуется снижать яркость.
НадежностьВысокая.Средняя и низкая. Не любит неаккуратного обращения.
Другие особенностиНегибкая, относительно толстая матрица.Тонкая, гибкая матрица. Может использоваться для изготовления изогнутых экранов и сверхтонких мобильных устройств.
ЦенаОт низкой ($10) до высокой.От средней до очень высокой.

Очевидно, что обе технологии имеют как достоинства, так и недостатки. Назвать одну из них явным лидером затруднительно, тем более что перспективы развития и совершенствования есть у той и другой. Как они покажут себя в дальнейшем, поживем и увидим. А пока выбирайте то, к чему больше лежит душа – останетесь в выигрыше в любом случае.

Что такое OLED-дисплеи и правда ли это — прорыв на рынке экранов

Рассказываем, как дисплеи OLED позволяют тратить меньше электричества и какая технология будет доминировать в ближайшие годы

Из этой статьи вы узнаете:

Как устроены OLED-дисплеи

OLED — это органические светодиоды, которые самостоятельно испускают свет при прохождении через них электрического тока. На английском эта аббревиатура расшифровывается как Organic Light Emitting Diod.

Если переводить на русский язык, получатся светоизлучающие органические дисплеи. Органические — не значит «живые». Здесь под органикой подразумеваются углеродсодержащие полимеры, которые фосфоресцируют, если через них пропустить ток. Причем светятся они тем ярче, чем больше тока на них подать. Если ток не подавать вовсе, свечения не будет.

Технология OLED превзошла LCD и LED по многим показателям. До недавнего времени матрицы на основе органических светодиодов встречались только в смартфонах и телевизорах. В 2020 году выпуск ноутбуков с OLED-дисплеями начала компания ASUS.

Фото: ASUS

Чем OLED отличается от LED и LCD

  • Ключевое отличие OLED-экранов от более распространенных жидкокристаллических вариантов в том, что LCD или LED требуют внешней подсветки. Такие дисплеи состоят из множества слоев, в результате чего толщина устройств увеличивается.

Собственно, эти слои нужны в том числе для того, чтобы вместить подсветку: для минимизации объема ее принято размещать по бокам. В более простых вариантах LСD-экран светится весь: по сути, экран превращается в одну большую лампу, которая светит пользователю прямо в глаза.

OLED-экранам такая подсветка не требуется: как только на устройство подается ток, нужные диоды начинают светиться без дополнительного стимулирования. «Нужные» — определяющее слово при описании OLED-технологии.

Поскольку в LCD и LED светятся не конкретные пиксели, а подсветка под группами пикселей, даже кристально черный экран будет немного засвеченным — «сероватым». В OLED светятся исключительно те пиксели (диоды), что должны. В результате контрастность OLED-дисплеев может достигать миллиона к одному, в то время как LED-варианты предлагают тысячу к одному.

  • Масса устройства. Если LED-дисплеям нужно уместить внутрь всю «начинку», то в OLED слоев меньше. Поэтому они оказываются легче и тоньше. Этот параметр особенно важен для больших настенных телевизоров и ноутбуков: более легкие ноутбуки проще носить с собой. А легкие настенные телеэкраны проще закрепить на стене.
  • Энергопотребление. LCD и LED-экраны расходуют электричество всегда, поскольку подсветка необходима каждую секунду работы. OLED позволяет тратить меньше ватт.
  • Возможность согнуть экран. Формирование OLED-дисплея из тысяч маленьких диодов позволяет придать ему любую форму: например, полукруга в случае с большими телевизорами. Производители смартфонов помещают OLED-экран на кромки телефонов — получается, что дисплей словно «налезает» на боковые грани телефона.
  • Есть и еще одно свойство, которое отличает OLED от жидкокристаллических экранов предыдущего поколения: скорость реакции диодов. Правда, заметить отсутствие запаздываний на OLED-дисплеях можно разве что при просмотре спортивных трансляций или сцен драк в боевиках, где картинка очень быстро меняется.

Большинство современных гаджетов, будь то телевизоры, ноутбуки или смартфоны, оснащаются LED-экранами. Но в премиальном сегменте OLED уже победил: такие дисплеи ставят на самые продвинутые модели.

Цветопередача LCD- и OLED-экранов (Фото: ASUS)

«Процесс разработки технологии дисплеев сам по себе небыстрый. Как показывает практика, от момента создания до массового использования проходит 30–40 лет, — рассказал директор по маркетингу ASUS в России, странах СНГ и Балтии Влад Захаров. — Массовое распространение OLED-технологии происходит в данный момент: в ближайшие несколько лет все только и будут говорить про OLED».

Почему OLED показывает четче, чем плазма

В середине 2000-х годов стандартным ЖК-дисплеям уже была альтернатива — плазменные экраны. Десять лет назад они давали более четкое изображение, чем LCD, и считались прорывной технологией. В 2014-м история зашла в тупик: производители посчитали развитие плазменных экранов нерентабельным и прекратили выпуск всех таких устройств.

Сейчас телевизоры с плазменным экраном можно купить с рук, так как некоторые все же считают, что такие экраны до сих пор предлагают лучшее качество изображения. На деле жидкокристаллические дисплеи проделали большой путь, и даже современные LCD-экраны успели превзойти плазменные экраны.

Разница качества изображения ЖК- и OLED-дисплеев (Фото: ASUS)

Все дело в размере пикселя. Чем он мельче, тем большее разрешение может получить сколь угодно маленький экран. Технология плазменных дисплеев подразумевает определенный размер пикселя, который при всем желании не может уменьшиться. Это незаметно в гигантских экранах во всю стену, но становится критически важным при выборе компактного телевизора или ноутбука.

Причина в том, что каждый пиксель в плазменных экранах представляет собой сечение трубки, в которую закачан инертный газ. Этот газ находится в четвертом агрегатном состоянии — плазмы, — откуда и берется название. Такие трубки нужно компактно разместить под поверхностью дисплея. Получается, что в небольших размерах плазменные экраны не могут выдавать столь же четкое изображение, как OLED и даже LCD-дисплеи 2020-х годов, — у «плазмы» крупнее пиксель.

OLED или IPS: что выбрать

IPS — это не альтернативная технология, а тип матрицы ЖК-дисплеев. По сути все IPS-дисплеи — это те же LED-экраны, которые рассеивают приходящий свет, в то время как OLED-экраны свет излучают.

Цветопередача ЖК- и OLED-дисплеев при одинаковом уровне яркости (Фото: ASUS)

Преимущества OLED в сравнении с IPS:

  • OLED-экраны обычно тоньше и легче, чем IPS;
  • контрастность OLED может быть на несколько порядков выше, чем у IPS;
  • OLED тратит меньше электричества, чем устройства с IPS;
  • все IPS-экраны строго плоские. OLED можно сделать и плоским, и изогнутым;
  • в OLED пиксели расположены ближе к экрану, поэтому под углом изображение искажается меньше, чем на IPS-дисплеях.

Недостатки OLED в сравнении с IPS

  • Срок службы. У каждого пикселя есть определенная длительность эксплуатации, и если каждый будет светиться самостоятельно, то рано или поздно наступит выгорание. Разумеется, IPS тоже не вечен, но при сопоставимой интенсивности использования IPS должен прослужить дольше.

Отдельные производители придумали, как обойти это ограничение. «Для OLED-дисплеев не рекомендуется использовать статическое изображение элементов на продолжительный период времени — это поможет избежать проблемы выцветания, — говорит Влад Захаров. — С нашей стороны во всех OLED-ноутбуках будет предустановлен черный скринсейвер с анимацией в виде мыльных пузырей. Это будет защищать экран в моменты, когда ноутбуком не пользуются».

  • Воздействие на зрение. Люди с высокой чувствительностью зрачков могут заметить мерцание OLED. Такое мерцание вызвано большей частотой смены кадров: пиксели чаще гаснут и загораются, и глазам становится сложно это воспринимать. Усталость глаз возникает далеко не у каждого обладателя OLED-устройства, но все же об этом стоит помнить при выборе между IPS и OLED.

Фото: ASUS

OLED и AMOLED: в чем разница

AMOLED — топовая разновидность OLED-дисплеев. Если OLED — это целый класс, то AMOLED — подвид, идеально подходящий для тачскринов. Особенность AMOLED в том, что к стандартным слоям OLED-дисплея здесь добавлен дополнительный пласт: активная матрица из тонкопленочных транзисторов — почти такая же, как в IPS-дисплеях. А значит, AMOLED объединяет в себе преимущества IPS и классического OLED.

Слой транзисторов позволяет «запомнить» информацию, которая необходима для поддержания совместимости пикселей. В результате четкость изображения повышается. Побочным эффектом становится утолщение экрана, а также риск разгерметизации: если транзисторный слой AMOLED «отклеится» от основного OLED-дисплея, экран быстро растеряет все возможности по цветопередаче.

AMOLED «на максималках» — это SuperAMOLED. Здесь активную матрицу из кремниевых транзисторов соединяют с остальными пластами дисплея, и разгерметизация не страшна. Поэтому если стоит выбор между OLED и AMOLED, то второй вариант даст выигрыш в качестве картинки, зато первый позволит избежать риска внезапного выцветания. Если же нужно выбрать между OLED и SuperAMOLED, то последний вариант предпочтителен.

OLED или QLED: плюсы и минусы

QLED — это дисплеи на квантовых точках, то есть на сверхмаленьких носителях заряда размером в несколько нанометров. QLED принято считать следующей ступенью эволюции дисплеев за счет еще более заметного уменьшения размера пикселя, а вместе с этим и повышенной четкости изображения.

При этом в существующих сейчас дисплеях, которые позиционируют как QLED, квантовые точки используют исключительно для подсветки. Они не генерируют изображение самостоятельно. Это значит, что имеющиеся в продаже QLED-устройства — это просто качественное изображение без подлинного прорыва в технологиях. Хорошая альтернатива для OLED, но не более того.

Полноценного QLED-телевизора или QLED-ноутбука не существует до сих пор. Исследования в области квантовых точек ведутся с 1990-х годов, но готового к продаже товара с таким дисплеем никто пока не выпустил.

Компании-гиганты инвестируют в это направление миллиарды долларов и анонсируют появление настоящих QLED-экранов к середине 2020-х годов. В 2011-м компания Samsung показала опытный образец четырехдюймового QLED-дисплея. Смогут ли инженеры довести эту технологию до ума, пока неясно.

Тренды на рынке дисплеев в ближайшие годы

  • Замещение LED-дисплеев на более современные OLED-дисплеи. От массового обновления останавливает только цена: по состоянию на 2021 год OLED стоят дороже. Но бурное развитие этой технологии и открытие новых заводов неизбежно приведет к удешевлению — вопрос только в сроках.
  • Захват верхней ценовой категории еще более совершенными экранами — такими как TOLED. Это прозрачные экраны, позволяющие легко видеть изображение даже на очень ярком свете.
  • Дополненная реальность. Абсолютная прозрачность TOLED-дисплеев позволит крепить их прямо на окна или лобовые стекла автомобилей и при необходимости выводить всплывающие подсказки для водителя при движении по дороге. Технологию также можно будет адаптировать для шлемов: удачная находка для мотоциклистов, летчиков и профессиональных гонщиков.
  • Технология microLED. «Эта технология должна решить главный недостаток текущих OLED-панелей: выгорание органических светодиодов. В технологии microLED органический светодиод заменили на микроскопический светодиод из нитрида галлия, который способен проработать намного дольше и не подвержен выгоранию. На ближайшие десять лет у разработчиков microLED стоит главная задача — добиться качественно нового подхода в пайке микроскопических светодиодов, чтобы стало возможным увеличение количества пикселей на дюйм. Соответственно, по качеству строения дисплея microLED сможет догнать OLED. С течением времени стоимость производства microLED снизится настолько, что технология будет конкурировать с OLED-панелями», — рассказал Влад Захаров.
  • Еще одна перспективная разработка — PHOLED. В ней задействованы диоды с электрофосфоресценцией ультравысокого КПД. Если классический OLED преобразует в свет всего 25% полученной электроэнергии, то результативность PHOLED стремится к 100%. Следовательно, энергии тратится вчетверо меньше, и образуется колоссальная экономия: как в деньгах, так и в размерах батареи для смартфона или ноутбука.

Но что еще важнее — эффективность PHOLED сделает возможной давнюю мечту фантастов: превращение в дисплей целых стен. Низкое энергопотребление таких диодов позволит покрыть ими, к примеру, стену комнаты и освещать помещение диодами, а не лампочкой. Это изменит сам принцип того, как освещаются дома, и сделает здания со светящимися снаружи стенами привычным атрибутом городского пейзажа.

LCD (жидкокристаллический дисплей) Определение

Обозначает «Жидкокристаллический дисплей». LCD — это технология плоских дисплеев, обычно используемая в телевизорах и компьютерных мониторах. Он также используется в экранах мобильных устройств, таких как ноутбуки, планшеты и смартфоны.

ЖК-дисплеи

не только выглядят иначе, чем громоздкие ЭЛТ-мониторы, но и способ их работы значительно отличается. Вместо того, чтобы стрелять электронами в стеклянный экран, ЖК-экран имеет подсветку, которая обеспечивает светом отдельные пиксели, расположенные в прямоугольной сетке.Каждый пиксель имеет красный, зеленый и синий подпиксель RGB, который можно включить или выключить. Когда все субпиксели пикселя выключены, он кажется черным. Когда все субпиксели включены на 100%, он выглядит белым. Регулируя отдельные уровни красного, зеленого и синего света, можно получить миллионы цветовых комбинаций.

Как работает ЖК-дисплей

Подсветка жидкокристаллического дисплея обеспечивает ровный источник света позади экрана. Этот свет поляризован, то есть только половина света проходит через жидкокристаллический слой.Жидкие кристаллы состоят из твердого, частично жидкого вещества, которое можно «скрутить», приложив к ним электрическое напряжение. Когда они выключены, они блокируют поляризованный свет, но при активации отражают красный, зеленый или синий свет.

Каждый ЖК-экран содержит матрицу пикселей, отображающих изображение на экране. Ранние ЖК-дисплеи имели экраны с пассивной матрицей, которые управляли отдельными пикселями, отправляя заряд в их строку и столбец. Поскольку каждую секунду можно было посылать ограниченное количество электрических зарядов, экраны с пассивной матрицей были известны тем, что выглядели размытыми при быстром перемещении изображений на экране.Современные ЖК-дисплеи обычно используют технологию активной матрицы, которая содержит тонкопленочные транзисторы или TFT. Эти транзисторы содержат конденсаторы, которые позволяют отдельным пикселям «активно» сохранять свой заряд. Таким образом, ЖК-дисплеи с активной матрицей более эффективны и более отзывчивы, чем дисплеи с пассивной матрицей.

ПРИМЕЧАНИЕ: Подсветка ЖК-дисплея может быть либо традиционной лампочкой, либо светодиодной. «Светодиодный дисплей» — это просто ЖК-экран со светодиодной подсветкой. Это отличается от OLED-дисплея, на котором для каждого пикселя загораются отдельные светодиоды.Хотя жидкие кристаллы блокируют большую часть подсветки ЖК-дисплея, когда они выключены, часть света все еще может просвечивать (что может быть заметно в темной комнате). Поэтому OLED-дисплеи обычно имеют более темный уровень черного, чем ЖК-дисплеи.

Обновлено: 8 июня 2017 г.

TechTerms — Компьютерный словарь технических терминов

Эта страница содержит техническое определение ЖК-дисплея. Он объясняет в компьютерной терминологии, что означает ЖК-дисплей, и является одним из многих терминов по аппаратному обеспечению в словаре TechTerms.

Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания. Если вы найдете это определение ЖК-дисплея полезным, вы можете сослаться на него, используя приведенные выше ссылки для цитирования. Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, отправьте электронное письмо в TechTerms!

Подпишитесь на рассылку TechTerms, чтобы получать избранные термины и тесты прямо в свой почтовый ящик. Вы можете получать электронную почту ежедневно или еженедельно.

Подписаться

Конструкция, работа, типы и их применение

В настоящее время мы ищем жидкокристаллические дисплеи (ЖКД) повсюду; однако развились они не сразу.Так много времени ушло на то, чтобы перейти от разработки жидких кристаллов к большому количеству ЖК-приложений. В 1888 году первые жидкие кристаллы были изобретены Фридрихом Рейнитцером (австрийский ботаник). Когда он растворил такой материал, как холестерилбензоат, он заметил, что сначала он превращается в мутную жидкость и становится прозрачным по мере повышения температуры. После охлаждения жидкость стала синей перед окончательной кристаллизацией. Итак, первый экспериментальный жидкокристаллический дисплей был разработан корпорацией RCA в 1968 году.После этого производители ЖК-дисплеев постепенно разработали гениальные различия и разработки в области технологий, расширив возможности этого устройства отображения. Итак, наконец, количество разработок в LCD было увеличено.


Что такое ЖК-дисплей (жидкокристаллический дисплей)?

Жидкокристаллический или ЖК-дисплей определяет свое определение из самого названия. Это комбинация двух состояний вещества: твердого и жидкого. ЖК-дисплей использует жидкий кристалл для создания видимого изображения.Жидкокристаллические дисплеи — это сверхтонкие технологические дисплеи, которые обычно используются в экранах портативных компьютеров, телевизорах, сотовых телефонах и портативных видеоиграх. Технологии ЖК-дисплеев позволяют делать дисплеи намного тоньше по сравнению с технологией электронно-лучевой трубки (ЭЛТ).

Жидкокристаллический дисплей состоит из нескольких слоев, которые включают два поляризованных панельных фильтра и электроды. ЖК-технология используется для отображения изображения в ноутбуке или некоторых других электронных устройствах, например, мини-компьютерах.Свет проецируется линзой на слой жидкого кристалла. Эта комбинация цветного света с изображением кристалла в оттенках серого (формируется при протекании электрического тока через кристалл) формирует цветное изображение. Это изображение затем отображается на экране.


ЖК-дисплей

ЖК-дисплей состоит либо из сетки дисплея с активной матрицей, либо из сетки пассивного дисплея. В большинстве смартфонов с ЖК-технологией используется дисплей с активной матрицей, но в некоторых старых дисплеях по-прежнему используется конструкция с пассивной сеткой дисплея.Большинство электронных устройств в основном зависят от жидкокристаллических дисплеев. Жидкость имеет уникальное преимущество, так как она имеет более низкое энергопотребление, чем светодиод или электронно-лучевая трубка.

Жидкокристаллический экран дисплея работает по принципу блокировки света, а не излучения света. ЖК-дисплеям требуется подсветка, поскольку они не излучают свет. Мы всегда используем устройства, состоящие из ЖК-дисплеев, которые заменяют использование электронно-лучевой трубки. Электронно-лучевая трубка потребляет больше энергии по сравнению с ЖК-дисплеями, а также тяжелее и больше.

Как устроены ЖК-дисплеи?

Простые факты, которые следует учитывать при изготовлении ЖК-дисплея:

  1. Базовая структура ЖК-дисплея должна контролироваться путем изменения приложенного тока.
  2. Мы должны использовать поляризованный свет.
  3. Жидкий кристалл должен иметь возможность управлять обеими операциями по передаче или также изменять поляризованный свет.
Конструкция ЖК-дисплея

Как упоминалось выше, при создании жидкого кристалла нам нужно использовать два фильтра с поляризованным стеклом.Стекло, на поверхности которого нет поляризованной пленки, необходимо натереть специальным полимером, который создаст микроскопические бороздки на поверхности поляризованного стеклянного фильтра. Канавки должны быть в том же направлении, что и поляризованная пленка.

Теперь нам нужно добавить покрытие из пневматического жидкофазного кристалла на один из поляризационных фильтров поляризованного стекла. Микроскопический канал заставляет молекулу первого слоя выравниваться с ориентацией фильтра. Когда у первого слоя появится прямой угол, мы должны добавить второй кусок стекла с поляризованной пленкой.Первый фильтр будет естественно поляризован, когда на него попадет свет на начальном этапе.

Таким образом, свет проходит через каждый слой и направляется к следующему с помощью молекулы. Молекула имеет тенденцию изменять плоскость колебаний света в соответствии со своим углом. Когда свет достигает дальнего конца жидкого кристалла, он колеблется под тем же углом, что и последний слой молекулы. Свету разрешается проникать в устройство только в том случае, если второй слой поляризованного стекла совпадает с последним слоем молекулы.

Как работают ЖК-дисплеи?

Принцип, лежащий в основе ЖК-дисплеев, заключается в том, что при приложении электрического тока к молекуле жидкого кристалла молекула имеет тенденцию раскручиваться. Это вызывает угол света, который проходит через молекулу поляризованного стекла, а также вызывает изменение угла верхнего поляризационного фильтра. В результате небольшое количество света проходит через поляризованное стекло через определенную область ЖК-дисплея.

Таким образом, эта конкретная область станет темной по сравнению с другими.ЖК-дисплей работает по принципу блокировки света. При изготовлении ЖК-дисплеев сзади размещается отраженное зеркало. Плоскость электрода сделана из оксида индия-олова, который удерживается сверху, а также добавлено поляризованное стекло с поляризационной пленкой снизу устройства. Вся область ЖК-дисплея должна быть окружена общим электродом, а над ним должен находиться жидкий кристалл.

Далее идет второй кусок стекла с электродом в виде прямоугольника снизу и сверху еще одной поляризационной пленкой.Следует учитывать, что обе части держатся под прямым углом. Когда нет тока, свет проходит через переднюю часть ЖК-дисплея, он отражается зеркалом и отражается обратно. Поскольку электрод подключается к батарее, ток от него заставляет жидкие кристаллы между электродом с общей плоскостью и электродом в форме прямоугольника раскручиваться. Таким образом, свет блокируется от прохождения. Эта конкретная прямоугольная область кажется пустой.

Как ЖК-дисплей использует жидкие кристаллы и поляризованный свет?

В ЖК-телевизоре используется концепция солнцезащитных очков для управления цветными пикселями.На обратной стороне ЖК-экрана есть огромный яркий свет, который светит в направлении наблюдателя. На передней стороне дисплея он включает миллионы пикселей, где каждый пиксель может состоять из меньших областей, известных как субпиксели. Они окрашены в разные цвета, такие как зеленый, синий и красный. Каждый пиксель на дисплее включает в себя поляризационный стеклянный фильтр на задней стороне, а передняя сторона включает в себя под углом 90 градусов, поэтому пиксель обычно выглядит темным.

Маленький скрученный нематический жидкий кристалл находится среди двух фильтров, которые управляются электронно.Когда он выключен, он поворачивает свет на 90 градусов, эффективно позволяя свету проходить через два поляризационных фильтра, так что пиксель кажется ярким. После активации он не включает свет, потому что он блокируется поляризатором, и пиксель кажется темным. Каждым пикселем можно управлять через отдельный транзистор, включая и выключая его несколько раз в секунду.

Как выбрать ЖК-дисплей?

Как правило, у каждого потребителя не так много информации о различных типах ЖК-дисплеев, доступных на рынке.Поэтому перед тем, как выбрать ЖК-дисплей, они собирают все данные, такие как характеристики, цена, компания, качество, спецификации, услуги, отзывы клиентов и т. Д. Правда в том, что промоутеры, как правило, извлекают выгоду из истины о том, что большинство клиентов ведут себя крайне минимально. исследование перед покупкой любого продукта.

На ЖК-дисплее размытие при движении может быть следствием того, сколько времени требуется для переключения изображения и отображения на экране. Однако оба этих инцидента очень сильно меняются для отдельной ЖК-панели, несмотря на основные ЖК-технологии.При выборе ЖК-дисплея на основе базовой технологии необходимо уделять больше внимания цене и предпочтительной разнице, углам обзора и воспроизведению цвета, чем предполагаемому размытию и другим игровым качествам. Максимальная частота обновления, а также время отклика должны быть запланированы в любых спецификациях панели. Другая игровая технология, такая как стробоскоп, быстро включает / выключает подсветку для уменьшения разрешения.

Различные типы ЖК-дисплеев

Различные типы ЖК-дисплеев обсуждаются ниже.

Дисплей с витым нематиком

Производство ЖК-дисплеев TN (скрученный нематик) может осуществляться наиболее часто, и во всех отраслях промышленности используются различные типы дисплеев.Эти дисплеи наиболее часто используются геймерами, поскольку они дешевы и имеют быстрое время отклика по сравнению с другими дисплеями. Основным недостатком этих дисплеев является то, что они имеют низкое качество, а также частичную контрастность, углы обзора и цветопередачу. Но этих устройств достаточно для повседневной работы.

Эти дисплеи обеспечивают быстрое время отклика, а также быструю частоту обновления. Итак, это единственные игровые дисплеи, доступные с частотой 240 герц (Гц).Эти дисплеи имеют плохую контрастность и цвет из-за неточного устройства поворота.

Экран с переключением в плоскости
Дисплеи

IPS считаются лучшими ЖК-дисплеями, потому что они обеспечивают хорошее качество изображения, более высокие углы обзора, яркую точность цветопередачи и разницу. Эти дисплеи в основном используются графическими дизайнерами, а в некоторых других приложениях ЖК-дисплеи требуют максимальных потенциальных стандартов для воспроизведения изображения и цвета.

Панель вертикального выравнивания

Панели вертикального выравнивания (VA) располагаются в любом месте в центре среди технологий Twisted Nematic и коммутационных панелей в плоскости.Эти панели имеют лучшие углы обзора, а также цветопередачу с более качественными характеристиками по сравнению с дисплеями типа TN. Эти панели имеют низкое время отклика. Но они гораздо более разумны и подходят для повседневного использования.

Структура этой панели обеспечивает более глубокий черный цвет, а также лучшие цвета по сравнению со скрученным нематическим дисплеем. Кроме того, несколько вариантов настройки кристаллов позволяют улучшить углы обзора по сравнению с дисплеями типа TN. Эти дисплеи имеют компромисс, потому что они дороги по сравнению с другими дисплеями.А также у них медленное время отклика и низкая частота обновления.

Advanced Fringe Field Switching (AFFS)

ЖК-дисплеи AFFS предлагают лучшую производительность и широкий диапазон цветопередачи по сравнению с дисплеями IPS. Приложения AFFS очень продвинуты, потому что они могут уменьшить искажение цвета без ущерба для широкого угла обзора. Обычно этот дисплей используется как в высокотехнологичной, так и в профессиональной среде, например, в жизнеспособных кабинах самолетов.

Пассивные и активные матричные дисплеи

ЖК-дисплеи с пассивной матрицей работают с простой сеткой, поэтому заряд может подаваться на определенный пиксель ЖК-дисплея. Сетка может быть спроектирована с помощью тихого процесса, который начинается с двух подложек, известных как слои стекла. Один стеклянный слой дает столбцы, а другой — ряды, созданные с использованием прозрачного проводящего материала, такого как оксид индия-олова.

На этом экране строки, в противном случае столбцы, связаны с микросхемами для управления передачей заряда в направлении определенной строки или столбца.Материал жидкого кристалла помещается между двумя слоями стекла, где на внешней стороне подложки может быть добавлена ​​поляризационная пленка. ИС передает заряд по точному столбцу одной подложки, и земля может быть включена в точный ряд другой, чтобы можно было активировать пиксель.

Пассивно-матричная система имеет серьезные недостатки, в частности, время отклика, медленное и неточное регулирование напряжения. Время отклика дисплея в основном относится к способности дисплея обновлять отображаемое изображение.В этом типе дисплея самый простой способ проверить медленное время отклика — быстро переместить указатель мыши с одной стороны дисплея на другую.

ЖК-дисплеи с активной матрицей в основном зависят от TFT (тонкопленочных транзисторов). Эти транзисторы представляют собой небольшие переключающие транзисторы, а также конденсаторы, помещенные в матрицу на стеклянной подложке. Когда активирована соответствующая строка, заряд может быть передан по точному столбцу, чтобы можно было адресовать конкретный пиксель, потому что все дополнительные строки, которые пересекает столбец, выключены, просто конденсатор рядом с обозначенным пикселем получает заряд .

Конденсатор удерживает питание до следующего цикла обновления, и если мы осторожно управляем суммой напряжения, подаваемого на кристалл, то мы можем просто раскрутить, чтобы пропустить немного света. В настоящее время большинство панелей предлагают яркость с 256 уровнями для каждого пикселя.

Как цветные пиксели работают в ЖК-дисплеях?

На задней стороне телевизора подключен яркий свет, а на передней стороне есть много цветных квадратов, которые будут включены / выключены. Здесь мы собираемся обсудить, как каждый цветной пиксель включается / выключается:

Как пиксели ЖК-дисплея отключены
  • В ЖК-дисплее свет перемещается от задней стороны к передней стороне
  • Горизонтальный поляризационный фильтр впереди света будет блокировать все световые сигналы, кроме тех, которые вибрируют по горизонтали.Пиксель дисплея может быть отключен с помощью транзистора, пропуская ток через его жидкие кристаллы, в результате чего кристаллы рассортировываются, и поток света через них не изменяется.
  • Световые сигналы исходят от жидких кристаллов и колеблются по горизонтали.
  • Поляризационный фильтр вертикального типа перед жидкими кристаллами будет блокировать все световые сигналы, кроме тех сигналов, которые вибрируют по вертикали. Свет, который колеблется по горизонтали, будет проходить через жидкие кристаллы, поэтому они не могут попасть во время вертикального фильтра.
  • В этом положении свет не может попасть на ЖК-экран, потому что пиксели тусклые.
Как включаются пиксели ЖК-дисплея
  • Яркий свет на задней стороне дисплея светится, как и раньше.
  • Горизонтальный поляризационный фильтр перед светом блокирует все световые сигналы, кроме тех, которые вибрируют по горизонтали.
  • Транзистор активирует пиксель, отключая электрический ток в жидких кристаллах, чтобы кристаллы могли вращаться.Эти кристаллы поворачивают световые сигналы на 90 ° при движении.
  • Световые сигналы, которые текут в горизонтально колеблющиеся жидкие кристаллы, будут исходить от них, чтобы колебаться вертикально.
  • Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые сигналы, кроме вертикально вибрирующих. Свет, который колеблется в вертикальном направлении, будет исходить от жидких кристаллов и теперь может проникать через вертикальный фильтр.
  • Как только пиксель активирован, он придает ему цвет.
Разница между плазменным экраном и ЖК-дисплеем

Оба дисплея, такие как плазменный и ЖК-дисплей, похожи, однако они работают совершенно по-разному. Каждый пиксель представляет собой микроскопическую люминесцентную лампу, которая светится сквозь плазму, в то время как плазма — это чрезвычайно горячий тип газа, в котором атомы выдуваются отдельно, чтобы образовались электроны (отрицательно заряженные) и ионы (положительно заряженные). Эти атомы текут очень свободно и при столкновении генерируют свечение света. Конструкция плазменного экрана может быть намного больше по сравнению с обычными телевизорами с электронно-лучевой трубкой, но они очень дороги.

Преимущества

К преимуществам жидкокристаллического дисплея относятся следующие.

    ЖК-дисплеи
  • потребляют меньше энергии по сравнению с ЭЛТ и светодиодами.
  • ЖК-дисплеи
  • состоят из нескольких микроватт для отображения по сравнению с несколькими мВт для светодиодов.
  • ЖК-дисплеи
  • имеют низкую стоимость
  • Обеспечивает превосходную контрастность. легче по сравнению с электронно-лучевой трубкой и светодиодом

Недостатки

К недостаткам жидкокристаллического дисплея относятся следующие.

  • Требуются дополнительные источники света
  • Диапазон температур ограничен для работы
  • Низкая надежность
  • Скорость очень низкая
  • ЖК-дисплеям требуется привод переменного тока

Приложения

Применение жидкокристаллических дисплеев включает следующее .

Жидкокристаллическая технология находит широкое применение в области науки и техники, а также в электронных устройствах.

  • Жидкокристаллический термометр
  • Оптическое отображение
  • Технология жидкокристаллического дисплея также применима для визуализации радиочастотных волн в волноводе
  • Используется в медицинских приложениях

Немного ЖК-дисплеев

Таким образом , это все об обзоре ЖК-дисплея, и его структура от задней до передней стороны может быть выполнена с использованием подсветки, листа1, жидких кристаллов, листа2 с цветными фильтрами и экрана.Стандартные жидкокристаллические дисплеи используют подсветку, такую ​​как CRFL (люминесцентные лампы с холодным катодом). Эти источники света последовательно расположены на задней стороне дисплея, чтобы обеспечить надежное освещение всей панели. Таким образом, уровень яркости всех пикселей изображения будет одинаковым.

Надеюсь, вы хорошо разбираетесь в жидкокристаллических дисплеях. Здесь я оставляю вам задачу. Как ЖК-дисплей связан с микроконтроллером? Кроме того, любые вопросы по этой концепции или электрическому и электронному проекту. Оставьте свой ответ в разделе комментариев ниже.

Авторы фотографий

Различия между светодиодным дисплеем и ЖК-монитором

Кажется, что современные дисплеи имеют самые разные ярлыки: высокое разрешение, 3D, умный, 4K, 4K Ultra, список можно продолжать. Двумя наиболее распространенными этикетками являются ЖК-дисплей и светодиод. В чем разница между ними? Есть разница? И делает ли эта разница предпочтительным тот или иной вариант для определенных видов деятельности, таких как игры или графический дизайн?

Светодиод и ЖК-дисплей — это одно и то же?

Все светодиодные мониторы представляют собой ЖК-мониторы.Но не все ЖК-мониторы светодиоды. Вроде как все орлы птицы, но не все птицы орлы. Хотя названия могут сбивать с толку тех, кто разбирается в спецификациях в поисках лучшего монитора, разобрав его, понять будет легче, чем вы думаете.

Мы объясним технологию и условные обозначения, а затем выделим некоторые мониторы HP, которые могут идеально подойти для ваших нужд. Давайте разберемся, что такое ЖК-мониторы и светодиодные мониторы и как выбрать подходящий для вас.

Описание жидкокристаллических дисплеев

Оба типа дисплеев используют жидкие кристаллы для создания изображения.Разница в подсветке. В то время как в стандартном ЖК-мониторе используется флуоресцентная подсветка, в светодиодном мониторе для подсветки используются светодиоды. Светодиодные мониторы обычно имеют превосходное качество изображения, но они бывают разных конфигураций подсветки. И некоторые конфигурации подсветки создают лучшие изображения, чем другие.

ЖК-монитор и светодиодный монитор — краткая история

До 2014 года плазменные дисплеи были наиболее распространенными дисплеями. Но затем ЖК-экран взял верх. ЖК-дисплей означает жидкокристаллический дисплей.Мы обсудим, что это значит, через минуту. Но сначала важно отметить, что в светодиодах также используются жидкие кристаллы, поэтому название несколько вводит в заблуждение. Технически, «светодиодный монитор» действительно должен называться «светодиодный ЖК-монитор».

Как работает ЖК-технология

Во-первых, давайте рассмотрим, как ЖК-мониторы и светодиодные мониторы используют жидкие кристаллы. Наука, стоящая за этим материалом, представляет собой невероятно сложное сочетание оптики, электротехники и химии. Но мы объясним это простым языком.

Жидкие кристаллы

Ключевым термином здесь является «жидкий кристалл». В старшей школе вас, возможно, учили, что существует три состояния материи: твердые тела, жидкости и газы. Но есть вещества, которые на самом деле представляют собой странную смесь разных состояний. Жидкий кристалл — это вещество, обладающее свойствами как твердого тела, так и жидкости. Когда вы попадаете на высшие уровни науки, вы начинаете обнаруживать, что все, что вы когда-то знали, неверно.

  • Свойства твердого вещества: Молекулы в жидком кристалле могут образовывать простую высокогеометрическую форму
  • Свойства жидкости: Молекулы в жидком кристалле также могут иметь жидкую неструктурированную форму

Обычно молекулы в жидком кристалле сгруппированы в очень плотную и неструктурированную структуру.Но когда жидкий кристалл подвергается воздействию электричества, молекулы внезапно расширяются в очень структурированную, взаимосвязанную форму [1].

пикселей

Пиксели — это основные строительные блоки цифрового изображения. Пиксель — это маленькая точка, которая может излучать цветной свет. Ваш дисплей состоит из тысяч пикселей, и они имеют множество разных цветов, чтобы дать вам интерфейс вашего компьютера и веб-страницу, которую вы в данный момент читаете. Он работает как мозаика, но каждый отдельный фрагмент гораздо менее заметен.

Каждый пиксель состоит из трех цветовых фильтров, которые называются «субпикселями». Для каждого пикселя есть красный, синий и зеленый субпиксель [1].

Как работают ЖК-дисплеи

Каждый пиксель состоит из двух стеклянных листов, а крайний лист имеет субпиксели. Жидкие кристаллы зажаты между двумя листами. ЖК-мониторы

имеют подсветку позади экрана, которая излучает белый свет, и свет не может проходить через жидкие кристаллы, пока они находятся в жидком состоянии.Но когда пиксель используется, монитор подает электрический ток на жидкие кристаллы, которые затем выпрямляются и позволяют свету проходить через них [2].

Каждый пиксель имеет три отдельные подсветки, которые могут светить через красный, синий или зеленый цветовой фильтр — так пиксель может излучать определенный цвет.

Структура ЖК-экрана

Вот как ЖК-экран устроен от задней части (дальше от вас) до передней (ближайшей к вам):

  • Подсветка
  • Лист № 1
  • Жидкий кристалл
  • Лист № 2 , с цветными фильтрами
  • Экран

Типы задней подсветки

Хотя и ЖК-мониторы, и светодиодные мониторы используют жидкие кристаллы, именно подсветка действительно отличает их друг от друга [2].

Подсветка ЖК-дисплея

В стандартных ЖК-мониторах используются «люминесцентные лампы с холодным катодом», также известные как CCFL для подсветки. Эти люминесцентные лампы равномерно расположены за экраном, поэтому они обеспечивают равномерное освещение по всему дисплею. Все области изображения будут иметь одинаковые уровни яркости.

Светодиодная подсветка

В светодиодных мониторах

не используются люминесцентные лампы. Вместо этого они используют «светодиоды», которые представляют собой очень маленькие огни. Есть два метода светодиодной подсветки: полноразмерная подсветка и боковая подсветка.

Полнодиапазонная подсветка

При полноразмерной задней подсветке светодиоды размещаются равномерно по всему экрану, аналогично установке ЖК-дисплея. Но что другое, светодиоды расположены зонами. Каждую зону светодиодного освещения можно затемнить (также известное как локальное затемнение).

Локальное затемнение — очень важная функция, которая может значительно улучшить качество изображения. Лучшие изображения — это изображения с высокой контрастностью; Другими словами, изображения, в которых есть как очень яркие, так и очень темные пиксели одновременно.

Когда есть область изображения, которая должна быть темнее (например, ночное небо), светодиоды в этой области изображения могут быть затемнены, чтобы создать более естественный черный цвет. Это невозможно на стандартных ЖК-мониторах, где все изображение равномерно освещено.

Благодаря локальному затемнению монитор может создавать более точное освещение, что приводит к более качественному изображению.

Боковое освещение

Некоторые светодиодные мониторы имеют краевое освещение. Здесь светодиоды размещаются по краю экрана, а не за ним.Светодиоды могут быть размещены:

  • Вдоль нижней части экрана
  • Вдоль верхней и нижней части экрана
  • Вдоль левой и боковой сторон экрана
  • Вдоль всех четырех сторон экрана

Есть в дисплеях с боковой подсветкой отсутствуют возможности локального затемнения, поэтому они не могут создавать изображения такого же высокого качества, как изображения, создаваемые полноразмерными светодиодами. Однако краевое освещение позволяет производителям создавать очень тонкие дисплеи, производство которых не требует таких больших затрат и которые лучше при ограниченном бюджете.

Сравнение ЖК-дисплея и светодиода

Когда дело доходит до качества изображения, полноразмерные светодиодные мониторы почти всегда превосходят ЖК-мониторы. Но имейте в виду, что лучше только светодиоды с полным массивом. Светодиоды с боковой подсветкой могут фактически уступать ЖК-мониторам.

Что лучше для игр: ЖК или светодиод?

Полноразмерный светодиодный монитор должен стать вашим выбором номер один для игр. Держитесь подальше, если его краевое освещение. Проблема с краевым освещением заключается в том, что у вас меньше оптимальных углов обзора для игр.Это не проблема, если вы предпочитаете сидеть прямо перед экраном во время игры. Но если вам нравится откинуться в кресле или смотреть под разными углами, вы обнаружите, что светодиод с боковой подсветкой теряет видимость, когда вы уходите от центрального угла обзора.

Но даже если вы играете прямо перед монитором, у светодиодов с боковой подсветкой больше проблем с бликами, чем у полноразмерных светодиодов. Это из-за неравномерного освещения (очень яркое по краям, темнее по мере приближения к центру экрана).Поскольку пиксели освещены равномерно, ЖК-мониторы, как правило, имеют лучшие углы обзора и антибликовое покрытие, чем светодиоды с боковой подсветкой.

Светодиоды с боковой подсветкой лучше подходят для ограниченного пространства и бюджета

Светодиоды с боковой подсветкой действительно имеют два больших преимущества. Если у вас очень мало места для монитора, вам понравятся светодиоды с боковой подсветкой, потому что они обычно тоньше, чем другие типы. Они также дешевле в производстве, что облегчает их использование в бумажнике.

Не забывайте о технических характеристиках

Когда вы покупаете новый дисплей, не забудьте ознакомиться со всеми его характеристиками.Хотя тип подсветки важен, вы также должны учитывать разрешение и частоту обновления.

Разрешение означает, сколько пикселей отображается на мониторе. Помните, что чем больше у вас пикселей, тем более динамичной может быть ваша цветовая композиция. Мониторы самого высокого качества имеют разрешение не менее 1920 x 1080. Частота обновления означает, насколько быстро ваш монитор обновляет дисплей новой информацией с графического процессора вашего компьютера. Если вы геймер, важно, чтобы у вас был монитор с очень высокой частотой обновления (от 30 Гц до 60 Гц), чтобы вы не страдали от разрывов экрана — неприятного визуального эффекта, который возникает, когда ваш монитор не может удерживать ускорить темп с графическим процессором.

Светодиодные мониторы HP: IPA против AHVA

Поскольку светодиодные мониторы создают лучшее изображение, чем ЖК-мониторы, почти все дисплеи HP имеют светодиодную подсветку. Просматривая светодиодные мониторы HP, вы можете заметить, что некоторые из них оснащены технологией IPS или AHVA. Они относятся к типам используемых жидкокристаллических панелей. Оба они великолепны, хотя имеют некоторые незначительные различия:

  • IPS: Лучшая цветопередача и углы обзора
  • AHVA: Лучшая частота обновления и коэффициент контрастности

Тем не менее, многие потребители считают, что практически нет заметная разница между ними [3].

Вы также увидите, что некоторые мониторы имеют светодиодную подсветку TN. Это старейшая форма жидкокристаллической технологии. Он по-прежнему очень эффективен, но панели TN обычно используются в небольших рабочих мониторах, которые предназначены для установки или использования в полевых условиях.

Светодиодные мониторы, которые вам стоит проверить

Эти первоклассные светодиодные мониторы HP являются одними из лучших из лучших. Бегло взгляните на них, если вам нужен новый дисплей.

Для геймера
Для цифрового художника
Если вы являетесь цифровым иллюстратором, видеоредактором, фоторедактором или мастером спецэффектов, вам стоит обратить внимание на 27-дюймовый монитор 4K Micro Edge HP EliteDisplay S270n.Когда вы создаете цифровое искусство, вам необходимо максимально широкое разрешение и высочайшее качество цветной печати, и это то, что вы получите с этим монитором с IPS. Экран с мелкими краями упрощает использование двух мониторов, но только 27-дюймовый экран дает вам широкий интерфейс для работы.
Для работающих профессионалов
Если вы деловой человек, попробуйте один из наших мониторов HP EliteDisplay, например 23,8-дюймовый монитор HP EliteDisplay E243. Великолепный светодиодный IPS-дисплей обеспечит четкое и ясное изображение независимо от того, какое программное обеспечение вы используете.Миниатюрные края делают его идеальным для установки с двумя мониторами, а размер 23,8 дюйма является широким, но не слишком большим, чтобы разместить второй монитор или разместить на более тесных рабочих станциях.

Будущее: OLED и QLED

Есть несколько перспективных технологий, которые делают светодиодные дисплеи еще лучше. OLED и QLED-дисплеи обязательно станут более обычным явлением в будущем.

OLED-мониторы

«OLED» означает «органический светодиод». Что делает OLED уникальным, так это то, что каждый пиксель имеет источник света, который можно отключать индивидуально.На светодиодном мониторе единственный способ уберечь пиксель от излучения света — это держать жидкий кристалл закрытым. Это эффективно, но не идеально — небольшая часть света всегда будет просачиваться. На OLED-мониторе свет каждого пикселя может быть полностью выключен, поэтому свет вообще не будет проходить через жидкий кристалл. Это означает, что вы можете получить более точный черный цвет, что означает более глубокий коэффициент контрастности и лучшее качество изображения.

Есть два дополнительных преимущества. Во-первых, OLED-мониторы можно сделать даже тоньше, чем светодиодные, потому что за пикселями нет отдельного слоя светодиодов.Во-вторых, эти мониторы более энергоэффективны, потому что пиксели потребляют энергию только тогда, когда их свет включен. Однако одним из недостатков является то, что выгорание пикселей будет более заметным, поскольку некоторые пиксели неизбежно будут использоваться больше, чем другие [4].

QLED-мониторы

«QLED» означает «квантовый светодиод». В мониторе QLED каждый пиксель имеет «квантовую точку». Квантовые точки — это крошечные частицы люминофора, которые светятся, когда вы освещаете их светом [5].

Зачем вам нужна светящаяся частица над каждым пикселем? Потому что светодиоды не очень хорошо излучают яркий свет.Самый яркий цвет — белый. Но светодиод не излучает белый свет — он излучает синий свет. Каждый светодиод покрыт желтым люминофором, чтобы он казался менее синим и более белым, но это все равно не настоящий белый цвет. «Голубизна» светодиодов отрицательно влияет на красный, синий и зеленый цвета светодиодных дисплеев. Светодиодные мониторы имеют автоматические функции, которые регулируют цвета RGB для компенсации синего света, но они не могут компенсировать более слабую интенсивность света.

Вот где вступают в силу квантовые точки.Пиксели перекрываются листом красных и зеленых квантовых точек (синего нет, потому что светодиод уже излучает синий свет). Когда свет проходит через жидкие кристаллы, светятся квантовые точки, и вы получаете яркий, яркий и красивый спектр цветов RGB.

QLED-мониторы способны создавать динамические и яркие изображения с великолепной контрастностью.

Дисплеи — сложная наука, верно? Но в следующий раз, когда вы будете покупать мониторы в магазине или на нашем сайте HP Store, вы станете настоящим экспертом и сможете выбрать именно тот дисплей, который вам нужен.

Об авторе

Зак Кабадинг (Zach Cabading) — автор статей в HP® Tech Takes. Зак — специалист по созданию контента из Южной Калифорнии, он создает разнообразный контент для индустрии высоких технологий.

Описание светодиодных и ЖК-телевизоров

| Какая разница?

Думаете собрать или модернизировать домашний кинотеатр? Необходимо учитывать множество факторов, но процесс часто начинается с одного важного вопроса: какой телевизор выбрать? Современные передовые телевизионные технологии, такие как популярные OLED-дисплеи от LG или QLED-панели от Samsung, могут привлечь много внимания, но они все равно могут стоить немалые деньги.Пока в целом OLED и QLED-панели не станут более доступными, светодиодные и ЖК-телевизоры по-прежнему будут оставаться жизнеспособным и качественным вариантом для людей с ограниченным бюджетом.

Но в чем разница? Это вопрос, который мы часто слышим от покупателей домашнего кинотеатра, которых сбивает с толку весь жаргон и аббревиатуры. Вот быстрый ответ: LED TV — это LCD TV, но то, как определение каждого термина стало настолько запутанным, может стать сюрпризом.

Подробнее

LED и LCD: вместе навсегда

Несмотря на то, что у LED TV другой акроним, это просто особый тип ЖК-телевизоров, в которых используется жидкокристаллический дисплей (LCD) для управления отображением света на экране.Эти панели обычно состоят из двух листов поляризующего материала с жидкокристаллическим раствором между ними. Когда электрический ток проходит через жидкость, он заставляет кристаллы выравниваться, так что свет может (или не может) проходить. Думайте об этом как о ставне, которая либо пропускает свет, либо блокирует его.

Поскольку и светодиодные, и ЖК-телевизоры основаны на ЖК-технологии, остается вопрос: в чем разница между и ? Собственно, дело в том, какая разница была .В более старых ЖК-телевизорах для освещения использовались люминесцентные лампы с холодным катодом (CCFL), тогда как в светодиодных ЖК-телевизорах для освещения экрана использовался ряд более эффективных светодиодов меньшего размера.

Поскольку технология стала лучше, все ЖК-телевизоры теперь используют светодиодную подсветку и в просторечии считаются светодиодными телевизорами. Для тех, кто заинтересован, мы подробнее рассмотрим подсветку ниже, или вы можете перейти к разделу «Локальное затемнение».

Подсветка

В ЖК-телевизорах используются три основных формы подсветки: CCFL-подсветка, полноразмерная светодиодная подсветка и светодиодная боковая подсветка.Каждая из этих технологий освещения во многом отличается друг от друга. Давайте разберемся с каждым.

CCFL Подсветка

Подсветка

CCFL — это более старая, ныне заброшенная форма технологии отображения, в которой серия ламп с холодным катодом расположена внутри телевизора за ЖК-дисплеем. Свет освещает кристаллы довольно равномерно, что означает, что все области изображения будут иметь одинаковый уровень яркости. Это влияет на некоторые аспекты качества изображения, которые мы обсудим более подробно ниже.Поскольку CCFL больше, чем массивы светодиодов, ЖК-телевизоры на основе CCFL толще ЖК-телевизоров со светодиодной подсветкой.

Подсветка полного массива

Подсветка с полным массивом заменяет устаревшие CCFL на массив светодиодов, охватывающий заднюю часть экрана, состоящий из зон светодиодов, которые могут быть зажжены или затемнены в процессе, называемом локальным затемнением. Телевизоры с полноразмерной светодиодной подсветкой составляют здоровую часть рынка высококачественных светодиодных телевизоров, и не без оснований — с более точным и равномерным освещением они могут создавать лучшее качество изображения, чем когда-либо могли достичь ЖК-телевизоры CCFL, с лучшей энергоэффективностью.

Боковое освещение

Другой формой подсветки ЖК-экрана является светодиодная подсветка края. Как следует из названия, телевизоры с боковой подсветкой имеют светодиоды по краям экрана. Существует несколько различных конфигураций, включая светодиоды только внизу, светодиоды вверху и внизу, светодиоды слева и справа и светодиоды по всем четырем краям. Эти разные конфигурации приводят к различиям в качестве изображения, но общая яркость по-прежнему превышает возможности ЖК-телевизоров CCFL. Хотя есть некоторые недостатки у краевого освещения по сравнению с дисплеями с полной или прямой подсветкой, результатом является краевое освещение, которое позволяет производителям изготавливать более тонкие телевизоры с меньшими затратами в производстве.

Чтобы лучше сократить разрыв в качестве локального затемнения между телевизорами с боковой подсветкой и полноразмерными телевизорами с задней подсветкой, такие производители, как Sony и Samsung, разработали собственные усовершенствованные формы боковой подсветки. Технология Sony известна как Slim Backlight Master Drive, а Samsung использует Infinite Array в своей линейке телевизоров QLED. Они обеспечивают компактный форм-фактор, достижимый благодаря дизайну с боковой подсветкой и качеству локального затемнения, в большей степени наравне с полноразмерной подсветкой.

Что такое локальное затемнение?

Локальное затемнение — это функция ЖК-телевизоров со светодиодной подсветкой, в которой светодиодный источник света за ЖК-дисплеем затемняется и освещается в соответствии с требованиями изображения.ЖК-дисплеи не могут полностью предотвратить прохождение света даже во время темных сцен, поэтому затемнение самого источника света помогает создать более глубокий черный цвет и более впечатляющий контраст изображения. Это достигается путем выборочного затемнения светодиодов, когда эта конкретная часть изображения — или область — должна быть темной.

Локальное затемнение помогает светодиодным / ЖК-телевизорам более точно соответствовать качеству современных OLED-дисплеев, которые по своей природе обладают более высокими уровнями контрастности, чего не могли сделать ЖК-телевизоры CCFL.Качество местного затемнения варьируется в зависимости от того, какой тип подсветки используется на вашем ЖК-дисплее, сколько отдельных зон подсветки задействовано, а также от качества обработки. Вот обзор того, насколько эффективно локальное затемнение на ЖК-телевизорах каждого типа.

Полнодиапазонная и прямая локальная подсветка

Телевизоры

с полноразмерной задней подсветкой имеют наиболее точное локальное затемнение и, следовательно, обеспечивают наилучшую контрастность. Поскольку массив светодиодов охватывает всю заднюю часть ЖК-экрана, области обычно можно затемнить с большей точностью, чем на телевизорах с боковой подсветкой, а яркость имеет тенденцию быть равномерной по всему экрану.Впечатляющая серия P от Vizio — отличный пример относительно доступных моделей, в которых используется многозонная полноразмерная подсветка с локальным затемнением.

«Прямое локальное затемнение» — это, по сути, то же самое, что и затемнение всего массива, только с меньшим количеством светодиодов, расположенных дальше друг от друга в матрице. Однако стоит отметить, что многие производители не различают «прямое локальное затемнение» и полное затемнение как две отдельные формы местного затемнения. Мы по-прежнему считаем важным отметить разницу, поскольку меньшее количество светодиодов, расположенных дальше друг от друга, не будет иметь такой же точности и согласованности, как полноразмерные дисплеи.

Боковое освещение

Поскольку при боковом освещении используются светодиоды, расположенные на краю или краях экрана для проецирования света на заднюю часть ЖК-экрана, а не непосредственно за ним, это может привести к появлению очень тонких блоков или полос более светлых пикселей внутри или вокруг области, которые должны быть темными. Локальное затемнение телевизоров с боковой подсветкой иногда может приводить к некоторой затемненности в темных областях по сравнению с полноразмерными светодиодными телевизорами. Следует также отметить, что не все телевизоры с боковой светодиодной подсветкой предлагают локальное затемнение, поэтому нередко можно увидеть светящиеся полосы по краям телевизора и меньшую яркость по направлению к центру экрана.

CCFL Подсветка

Поскольку в телевизорах с подсветкой CCFL не используются светодиоды, модели с этим стилем освещения не имеют возможности затемнения. Вместо этого ЖК-панель ЖК-дисплеев CCFL постоянно и равномерно освещается, что дает заметную разницу в качестве изображения по сравнению с ЖК-дисплеями со светодиодной подсветкой. Это особенно заметно в сценах с высокой контрастностью, поскольку темные участки изображения могут казаться слишком яркими или размытыми. При просмотре в хорошо освещенной комнате легче не заметить или пропустить разницу, но в темной комнате это будет, ну, в общем, явным.

OLED против QLED

Как будто это уже не достаточно сбивает с толку, как только вы начнете исследовать мир современных дисплейных технологий, у вас возникнут новые акронимы. Чаще всего встречаются OLED и QLED.

Несмотря на похожее название, телевизоры OLED (на органических светодиодах) относятся к отдельной категории. У нас есть подробное руководство о различиях между дисплеями OLED и QLED, но вот краткий обзор.

В OLED-дисплее используется панель из органических соединений размером с пиксель, которые реагируют на электричество.Поскольку каждый крошечный пиксель (миллионы которых присутствуют в современных дисплеях) можно включать или выключать индивидуально, OLED-дисплеи называются «излучающими» дисплеями (то есть им не требуется подсветка). Они предлагают невероятно высокий коэффициент контрастности и лучшую точность на пиксель, чем любой другой тип дисплея на рынке.

Поскольку они не требуют отдельного источника света, OLED-дисплеи также удивительно тонкие — часто всего несколько миллиметров. OLED-панели часто используются в высококачественных телевизорах вместо светодиодных / ЖК-технологий, но это не значит, что светодиодные / ЖК-дисплеи не лишены собственной премиальной технологии.

QLED — это светодиодные / ЖК-телевизоры премиум-класса от Samsung. В отличие от OLED-дисплеев, QLED не является так называемой технологией эмиссионного дисплея (огни по-прежнему освещают пиксели QLED сзади). Тем не менее, телевизоры QLED оснащены обновленной технологией освещения по сравнению с обычными светодиодными ЖК-дисплеями в виде материала с квантовыми точками (отсюда и буква «Q» в QLED), что повышает общую эффективность и яркость. Это обеспечивает более яркие оттенки серого и цвет, а также расширяет возможности HDR (расширенного динамического диапазона).

Ситуация может стать еще более запутанной в ближайшем будущем; Samsung разрабатывает технологию, сочетающую QLED и OLED, чтобы дать пользователям лучшее от обоих.

Дополнительное описание QLED и его функций можно найти в нашем списке лучших телевизоров, которые вы можете купить. Далее в статье сравниваются качества QLED и OLED-телевизоров; тем не менее, мы также рекомендуем проверить наши OLED и QLED, чтобы бок о бок взглянуть на эти две первоклассные технологии.

Есть и другие дисплеи, с которыми стоит познакомиться, включая microLED и Mini-LED, которые представляют собой новейшие телевизионные технологии.Подумайте о том, чтобы сравнить эти две функции с текущими техническими лидерами в руководстве OLED против MicroLED и в нашем руководстве Mini-LED против QLED.

В мире телевизионных технологий никогда не бывает скучно. Тем не менее, благодаря этому подробному исследованию, мы надеемся, что вы почувствуете себя в силах принять осознанное решение о покупке и держать в напряжении своего продавца Best Buy.

Рекомендации редакции

Как работают ЖК-дисплеи (жидкокристаллические дисплеи)?

Как работают ЖК-дисплеи (жидкокристаллические дисплеи)? Рекламное объявление

Криса Вудфорда.Последнее изменение: 8 июля 2020 г.

Телевизоры раньше были горячими, тяжелыми, властолюбивые звери, которые сидели в углу вашей гостиной. Уже нет! Теперь они достаточно тонкие, чтобы их можно было повесить на стену, и они потребляют меньше энергии, чем раньше. Как и портативные компьютеры, большинство новые телевизоры имеют плоские экраны с ЖК-дисплеями (жидкокристаллические дисплеи) — та же технология мы много лет использовали в таких вещах, как калькуляторы, мобильные телефоны и цифровые часы. Какие они и как работают? Давайте посмотрим поближе!

Фото: Маленькие ЖК-дисплеи, подобные этому, широко использовались в калькуляторы и цифровые часы с 1970-х годов, но в то время они были относительно дорогими и выдавал только черно-белые (на самом деле, синеватые и белые) изображения.В 1980-х и 1990-х годах производители придумали, как делать цветные экраны большего размера по относительно доступным ценам. Это было тогда, когда рынок ЖК-телевизоров и цветных портативных компьютеров действительно начал развиваться.

Чем отличаются ЖК-дисплеи?

Фото: этот экран iPod — еще один пример ЖК-технология. Его пиксели окрашены в черный цвет, и они либо включены, либо выключены, поэтому дисплей черно-белый. На ЖК-экране телевизора гораздо меньшие пиксели окрашены в красный, синий или зеленый цвет. сделайте яркую движущуюся картинку.

Для многих наиболее привлекательным в ЖК-телевизорах является не то, как они создают изображение, а их плоский компактный экран. В отличие от телевизора старого образца, ЖК-экран достаточно плоский, чтобы его можно было повесить на стене. Это потому, что он формирует свою картину совершенно по-другому.

Вы, наверное, знаете, что телевизор с электронно-лучевой трубкой (ЭЛТ) старого образца делает снимок с помощью трех электронных пушек. Думайте о них как о трех очень быстрых, очень точные кисти, которые танцуют взад и вперед, рисуют движущиеся изображение на обратной стороне экрана, которое вы можете смотреть, сидя на перед ним.

Плоский ЖК-экран и плазменный экран работают совершенно по-другому. Если вы сядете рядом с телевизором с плоским экраном, вы заметите, что изображение создается из миллионы крошечных блоков, называемых пикселями (элементы изображения). Каждый из них фактически представляет собой отдельный красный цвет, синий или зеленый свет, который можно очень быстро включить или выключить, чтобы сделать движущуюся цветную картинку. Пиксели контролируются совершенно по-разному. способы в плазменных и жидкокристаллических экранах. В плазменном экране каждый пиксель представляет собой крошечную люминесцентную лампу, которая включается или выключается. в электронном виде.В ЖК-телевизоре пиксели включаются или выключаются электронным способом с помощью жидкие кристаллы вращаются поляризованные свет. Это не так сложно, как кажется! Чтобы понять, что происходит, нам сначала нужно понять, что такое жидкие кристаллы; тогда нам нужно более внимательно посмотреть на свет и как он путешествует.

Что такое жидкие кристаллы?

Фото: высушенные жидкие кристаллы и просмотр в поляризованном свете. Вы можете видеть, что у них много более правильная структура, чем обычная жидкость.Фото из исследования Дэвида Вайца любезно предоставлено Центр космических полетов НАСА имени Маршалла (NASA-MSFC).

Мы привыкли к мысли, что данное вещество может находиться в одном из трех состояний: твердое тело, жидкость или газ — мы называем их состояниями материи — и вплоть до конца 19 века ученые думали, что это конец истории. Затем в 1888 г. австрийский химик Фридрих Рейнитцер (1857–1927) открыл жидкость. кристаллы, которые представляют собой совершенно другое состояние, где-то посередине жидкости и твердые тела.Жидкие кристаллы могли остаться в безвестности но за то, что они оказались очень полезными характеристики.

Твердые вещества — это замороженные комки материи, которые остаются на месте сами по себе, часто с их атомы упакованы в аккуратную регулярную структуру, называемую кристаллом (или кристаллическая решетка). Жидкости не имеют порядка твердых тел и, хотя они остаются на месте, если вы держите их в контейнере, они текут относительно легко, когда вы их разливаете. А теперь представьте себе вещество с некоторой частью порядка твердого тела и некоторой текучестью жидкость.У вас есть жидкий кристалл — что-то наполовину дом между ними. В любой момент жидкие кристаллы могут находиться в одно из нескольких возможных «подсостояний» (фаз) где-то в неопределенность между твердым телом и жидкостью. Две самые важные жидкости кристаллические фазы называются нематическими и смектическими:

  • Когда они находятся в нематической фазе, жидкие кристаллы немного похожи на жидкость: их молекулы могут перемещаться и перемещаться друг мимо друга, но все они указывают примерно в том же направлении.Они немного похожи на спички в спичечный коробок: вы можете встряхнуть их и переместить, но все они держатся указывая в ту же сторону.
  • Если охладить жидкие кристаллы, они смещаются в смектическую фазу. Теперь молекулы образуют слои, которые могут сравнительно легко скользить мимо друг друга. Молекулы в данный слой может перемещаться внутри него, но они не могут и не перемещаются в другие слои (немного похоже на людей, работающих на разные компании на отдельных этажах офисного блока). На самом деле существует несколько разных смектиков. «подфазы», ​​но мы не будем здесь вдаваться в подробности.

Узнать больше

Хотите узнать больше о жидких кристаллах? Есть отличная страница под названием История и свойства жидких кристаллов, архив с веб-сайта Нобелевской премии.

Рекламные ссылки

Что такое поляризованный свет?

У нематических жидких кристаллов есть действительно изящный трюк. Они могут иметь скрученную структуру, и когда вы подаете на них электричество, они снова выпрямляются. Может показаться, что это не уловка, но это ключ к тому, как ЖК-дисплеи поворачиваются. включение и выключение пикселей.Чтобы понять, как жидкие кристаллы могут управлять пикселями, нам нужно знать о поляризованный свет.

Свет — вещь загадочная. Иногда ведет себя как поток частицы — как постоянный шквал микроскопических ядер, несущих энергия, которую мы можем видеть сквозь воздух на чрезвычайно высокой скорости. Другой раз, свет больше похож на морские волны. Вместо воды, поднимающейся вверх и вниз, свет представляет собой волновой узор из электрических и магнитная энергия вибрирует в пространстве.

Фотография: Уловка поляризованного света: поверните одну пару поляризационных солнцезащитных очков мимо другой, и вы сможете заблокировать практически весь свет, который обычно проходит.

Когда солнечный свет струится с неба, все световые волны перепутались и вибрировали во всех возможных направлениях. Но если поставить фильтр в пути, с сеткой линий, расположенных вертикально, как отверстия в тюремных решетках (только намного ближе друг к другу), мы можем заблокировать все световые волны, кроме тех, которые колеблются вертикально (единственный световые волны, которые могут проходить через вертикальные полосы). Поскольку мы блокируем Наш фильтр эффективно затемняет большую часть исходного солнечного света. Вот как работают поляризационные солнцезащитные очки: они вырезают все, кроме солнечный свет колеблется в одном направлении или плоскости.Свет просочился в этот путь называется поляризованным или плоскополяризованным светом (потому что он может распространяться в только один самолет).

Фото: Менее известный прием поляризованного света: он заставляет кристаллы сиять удивительными спектральными цветами из-за явления, называемого плеохроизмом. Фотография кристаллов белков и вирусов, многие из которых были выращены в космосе. Предоставлено: д-р Алекс Макферсон, Калифорнийский университет, Ирвин. Фото любезно предоставлено Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Если у вас есть две пары поляризационных солнцезащитных очков (и они не подойдут с обычными солнцезащитными очками) можно сделать хитрый обманывать.Если вы поставите одну пару прямо перед другой, вы должны все еще можно видеть насквозь. Но если медленно вращать одну пару, и оставьте другую пару на том же месте, вы увидите приближающийся свет через постепенно темнеет. Когда две пары солнцезащитных очков под углом 90 градусов друг к другу, вы не сможете увидеть сквозь них все. Первая пара солнцезащитных очков блокирует все световые волны, кроме вибрирующие вертикально. Вторая пара солнцезащитных очков работает точно так же, как и первая пара.Если обе пары очков направлены в одном направлении, это нормально — световые волны, колеблющиеся вертикально, все еще могут проходить оба. Но если повернуть вторую пару очков на 90 градусов, световые волны, прошедшие через первую пару очков, не могут дольше продержаться через вторую пару. Никакой свет не может пройти два поляризационных фильтра, расположенных под углом 90 градусов друг к другу.

Как ЖК-дисплеи используют жидкие кристаллы и поляризованный свет

Фото: убедитесь, что ЖК-дисплей использует поляризованный свет.Просто наденьте поляризационные солнцезащитные очки и поверните голову (или дисплей). Вы увидите дисплей с максимальной яркостью под одним углом и с самым темным ровно под 90 градусами от этого угла.

ЖК-экран телевизора использует уловку солнцезащитных очков для переключения цвета пиксели включены или выключены. Сзади экрана большой яркий свет, который направлен на зрителя. Перед этим есть миллионы пикселей, каждый из которых состоит из меньших областей, называемых субпиксели красного, синего или зеленого цвета.Каждый пиксель имеет поляризационный стеклянный фильтр за ним и еще один перед это на 90 градусов. Это означает, что пиксель обычно выглядит темным. Между два поляризационных фильтра — это крошечный скрученный нематический жидкий кристалл, который может включаться или выключаться (закручиваться или раскручиваться) электронным способом. Когда он выключен, он поворачивает проходящий через него свет на 90 градусов, эффективно позволяя свету проходить через два поляризационных фильтра и делая пиксель выглядит ярким. Когда он включен, он не вращается свет, который блокируется одним из поляризаторов, и пиксель выглядит темным.Каждый пиксель управляется отдельным транзистором (крошечный электронный компонент), который может включать и выключать его много раз в секунду.

Фото: как жидкие кристаллы включают и выключают свет. В одной ориентации поляризованный свет не может проходить через кристаллы, поэтому они кажутся темными (фото слева). В другой ориентации поляризованный свет проходит нормально, поэтому кристаллы кажутся яркими (фото справа). Мы можем заставить кристаллы менять ориентацию — а также включать и выключать их пиксели — просто прикладывая электрическое поле.Фотография из исследования жидких кристаллов, сделанная Дэвидом Вайцем, любезно предоставлена ​​Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Как работают цветные пиксели в ЖК-дисплеях

На задней панели вашего телевизора есть яркий свет; Есть много мигающие цветные квадраты спереди. Что происходит между ними? Вот как включается или выключается каждый цветной пиксель:

Как выключаются пиксели

  1. Свет идет от задней панели телевизора к передней от большого яркого источника света.
  2. Горизонтальный поляризационный фильтр перед источником света блокирует все световые волны, кроме тех, которые колеблются горизонтально.
  3. Проходить могут только световые волны, колеблющиеся горизонтально.
  4. Транзистор отключает этот пиксель, включая электричество, протекающее через его жидкие кристаллы. Это заставляет кристаллы выпрямляться (так что они полностью раскручиваются), и свет проходит сквозь них без изменений.
  5. Световые волны исходят из жидких кристаллов, которые все еще колеблются горизонтально.
  6. Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые волны, кроме тех, которые колеблются вертикально. Горизонтально колеблющийся свет, проходящий через жидкие кристаллы, не может пройти через вертикальный фильтр.
  7. В этот момент на экран не попадает свет. Другими словами, этот пиксель темный.

Как пиксели включаются

  1. Яркий свет сзади экрана светится по-прежнему.
  2. Горизонтальный поляризационный фильтр перед светом блокирует все световые волны, кроме тех, которые колеблются горизонтально.
  3. Проходить могут только световые волны, колеблющиеся горизонтально.
  4. Транзистор включает этот пиксель, отключая электричество. протекает через его жидкие кристаллы. Это заставляет кристаллы закручиваться. В закрученные кристаллы вращают световые волны на 90 °, проходя сквозь них.
  5. Световые волны, проникшие в колеблющиеся жидкие кристаллы. горизонтально выходят из них, вибрируя вертикально.
  6. Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые волны, кроме тех, которые колеблются вертикально.Вертикально колеблющийся свет, исходящий из жидких кристаллов, может теперь пройти через вертикальный фильтр.
  7. Пиксель светится. Красный, синий или зеленый фильтр дает пиксель его цвет.

В чем разница между ЖК-экраном и плазмой?

Плазменный экран выглядит аналогично ЖК-дисплею, но работает совершенно по-другому: каждый пиксель представляет собой микроскопический флуоресцентный лампа светится плазмой. Плазма — это очень горячая форма газа в атомы разлетелись на части и образовали отрицательно заряженные электроны. и положительно заряженные ионы (атомы минус их электроны).Эти движения свободно, создавая нечеткое свечение света всякий раз, когда они сталкиваются. Плазменные экраны могут быть намного больше обычных телевизоров с электронно-лучевой трубкой, но они также намного дороже.

Краткая история ЖК-дисплеев

Художественное произведение: Ричард Уильямс изложил принцип ЖК-дисплеев в патенте США 3 322 485. Слой жидких кристаллов (желтый) между двумя прозрачными пластинами (красный) включает и выключает дисплей при подаче напряжения (синий). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

  • 1888: Фридрих Рейнитцер, австрийский ученый-растениевод, обнаруживает жидкие кристаллы, изучая химическое вещество, называемое холестерилбензоатом. Кажется, что он имеет две различные кристаллические формы, твердую и жидкую, каждая со своей температурой плавления.
  • 1889: Основываясь на работе Рейнитцера, немецкий химик и физик Отто Леманн вводит термин «жидкие кристаллы» (первоначально «текучие кристаллы» или «fliessende Krystalle» на немецком языке) и проводит более подробные исследования с использованием поляризованного света.Хотя его работа номинирована на Нобелевскую премию, на самом деле он никогда ее не получает.
  • 1962: Ричард Уильямс из RCA начинает исследование оптических свойств нематических жидких кристаллов. Он подает новаторский патент на ЖК-дисплей. (Патент США 3 322 485) 9 ноября 1962 г., и, наконец, он был выдан спустя почти пять лет, 30 мая 1967 г.
  • 1960-е: инженеры RCA, такие как Джордж Хейлмайер, опираются на это теоретическое исследование для создания самых первых практических электронных дисплеев, надеясь создать ЖК-телевизоры.
  • 1968: RCA публично представляет ЖК-технологию на пресс-конференции, побуждая New York Times предвкушает появление таких продуктов, как «Тонкий телеэкран, который можно повесить на стене гостиной, как картину».
  • 1968: французский ученый Пьер-Жиль де Женн проводит новаторские исследования фазовых переходов с участием жидких кристаллов, за что он получил Нобелевскую премию по физике в 1991 году.
  • 1969: Вольфганг Хельфрих из RCA разрабатывает нематические ЖК-дисплеи на основе поляризованного света, но компания настроена скептически и уклоняется от их разработки.В Кентском государственном университете Джеймс Фергасон разрабатывает и запатентовал альтернативную версию той же идеи. Сегодня Хелфриху, его сотруднику Мартину Шадту и Фергасону приписывают совместное изобретение современного ЖК-дисплея.
  • 1970: Не имея возможности коммерциализировать ЖК-дисплей, RCA продает свою технологию компании Timex, которая популяризирует ЖК-дисплеи в первых цифровых наручных часах.
  • 1973: Sharp представляет первый в мире карманный калькулятор с ЖК-экраном (EL-805).
  • 1980: Появляются дисплеи STN (super twisted nematic) с гораздо большим количеством пикселей, предлагающих изображения с более высоким разрешением.
  • 1988: 100 лет спустя после открытия жидких кристаллов, Sharp стала похоронным звоном для электронно-лучевых трубок, выпустив первый 14-дюймовый цветной телевизор с ЖК-дисплеем TFT (тонкопленочный транзистор).
  • 2010-е годы: ученые-оптики экспериментируют с более эффективными ЖК-дисплеями с более яркими цветами на основе квантовых точек.
Рекламные ссылки

Узнать больше

На сайте

Книги

  • Жидкое золото: история жидкокристаллических дисплеев и создание индустрии Джозеф А.Кастеллано. World Scientific, 2005. Научный хронологический отчет о развитии ЖК-дисплеев, который переносит нас от раннего периода RCA к революции ПК и телевидению высокой четкости.
  • Кристаллы, которые текут: классические статьи из истории жидких кристаллов Тимоти Дж. Слукин, Дэвид А. Данмур, Хорст Стегемейер. Taylor & Francis, 2004. Сборник важных статей по исследованию жидких кристаллов с 1888 по 1970-е годы с краткими комментариями к каждой.
  • Жидкие кристаллы: Введение в жидкие кристаллы: химия и физика Питера Дж.Коллингс и Майкл Хирд. CRC Press, 1997/2017. Междисциплинарная книга, исследующая историю, науку и технологию жидких кристаллов и ЖК-дисплеев.
  • Жидкие кристаллы Шиварамакришны Чандрасекар. Cambridge University Press, 1992. Классический учебник о трех типах жидких кристаллов, их свойствах и различных применениях.

Статьи

  • Умный козырек Bosch отслеживает солнце во время движения Лоуренса Ульриха. IEEE Spectrum, 29 января 2020 г.Старомодные солнцезащитные козырьки могут оказаться устаревшими благодаря электронной версии, которая автоматически подстраивается под силу и положение солнца.
  • Что такое квантовые точки и почему они нужны мне в телевизоре? пользователя Tim Moynihan. Wired, 19 января 2015 г. Как квантовые точки могут сделать ЖК-дисплеи ярче и лучше, но затмят ли они OLED?
  • Наноразмерные столбы и отверстия могут привести к более яркому изображению, меньше бликов, Декстер Джонсон. IEEE Spectrum, 24 ноября 2014 г. Новый поляризационный фильтр, поглощающий меньше света, может сделать ЖК-дисплеи ярче и снизить энергопотребление.
  • Как RCA потерял ЖК-дисплей Бенджамина Гросса. IEEE Spectrum, ноябрь 2012 г. Хотя RCA владела оригинальными патентами на ЖК-дисплеи, ей не удалось превратить их в выигрышную коммерческую технологию.
  • Яркое будущее
  • ЖК-дисплеев Альфреда Поора. IEEE Spectrum, 29 сентября 2011 г. Взгляд на последние тенденции в дизайне ЖК-дисплеев.
  • Карманные цветные ЖК-телевизоры
  • от Герберта Шульдинера, Popular Science, сентябрь 1984 г. Именно так Popular Science объявила о появлении компактных ЖК-экранов более четверти века назад.Включает довольно красивую трехмерную диаграмму того, как жидкие кристаллы скручивают поляризованный свет.

Технические документы

  • [PDF] Основы жидких кристаллов: как они работают и что они делают от Fujitsu. Эта полезная справочная информация начинается с того места, где заканчивается моя статья, просто и ясно объясняя детальную работу ЖК-дисплеев и различные их типы.
  • Патент США 3 322 485: Электрооптические элементы, использующие органическое нематическое соединение, Ричард Уильямс, RCA Corporation, 30 мая 1967 г.Оригинальный патент RCA на нематические ЖК-дисплеи.
  • Патент США 3,731,986: Устройства отображения, использующие жидкокристаллическую модуляцию света. Автор Джеймс Л. Фергасон, RCA Corporation, 8 мая 1973 года. Один из первых дисплеев, в которых использовались ЖК-дисплеи из скрученных нематиков.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2007/2020) LCD (жидкокристаллические дисплеи). Получено с https://www.explainthatstuff.com/lcdtv.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают ЖК-дисплеи (жидкокристаллические дисплеи)?

Как работают ЖК-дисплеи (жидкокристаллические дисплеи)? Рекламное объявление

Криса Вудфорда. Последнее изменение: 8 июля 2020 г.

Телевизоры раньше были горячими, тяжелыми, властолюбивые звери, которые сидели в углу вашей гостиной. Уже нет! Теперь они достаточно тонкие, чтобы их можно было повесить на стену, и они потребляют меньше энергии, чем раньше.Как и портативные компьютеры, большинство новые телевизоры имеют плоские экраны с ЖК-дисплеями (жидкокристаллические дисплеи) — та же технология мы много лет использовали в таких вещах, как калькуляторы, мобильные телефоны и цифровые часы. Какие они и как работают? Давайте посмотрим поближе!

Фото: Маленькие ЖК-дисплеи, подобные этому, широко использовались в калькуляторы и цифровые часы с 1970-х годов, но в то время они были относительно дорогими и выдавал только черно-белые (на самом деле, синеватые и белые) изображения.В 1980-х и 1990-х годах производители придумали, как делать цветные экраны большего размера по относительно доступным ценам. Это было тогда, когда рынок ЖК-телевизоров и цветных портативных компьютеров действительно начал развиваться.

Чем отличаются ЖК-дисплеи?

Фото: этот экран iPod — еще один пример ЖК-технология. Его пиксели окрашены в черный цвет, и они либо включены, либо выключены, поэтому дисплей черно-белый. На ЖК-экране телевизора гораздо меньшие пиксели окрашены в красный, синий или зеленый цвет. сделайте яркую движущуюся картинку.

Для многих наиболее привлекательным в ЖК-телевизорах является не то, как они создают изображение, а их плоский компактный экран. В отличие от телевизора старого образца, ЖК-экран достаточно плоский, чтобы его можно было повесить на стене. Это потому, что он формирует свою картину совершенно по-другому.

Вы, наверное, знаете, что телевизор с электронно-лучевой трубкой (ЭЛТ) старого образца делает снимок с помощью трех электронных пушек. Думайте о них как о трех очень быстрых, очень точные кисти, которые танцуют взад и вперед, рисуют движущиеся изображение на обратной стороне экрана, которое вы можете смотреть, сидя на перед ним.

Плоский ЖК-экран и плазменный экран работают совершенно по-другому. Если вы сядете рядом с телевизором с плоским экраном, вы заметите, что изображение создается из миллионы крошечных блоков, называемых пикселями (элементы изображения). Каждый из них фактически представляет собой отдельный красный цвет, синий или зеленый свет, который можно очень быстро включить или выключить, чтобы сделать движущуюся цветную картинку. Пиксели контролируются совершенно по-разному. способы в плазменных и жидкокристаллических экранах. В плазменном экране каждый пиксель представляет собой крошечную люминесцентную лампу, которая включается или выключается. в электронном виде.В ЖК-телевизоре пиксели включаются или выключаются электронным способом с помощью жидкие кристаллы вращаются поляризованные свет. Это не так сложно, как кажется! Чтобы понять, что происходит, нам сначала нужно понять, что такое жидкие кристаллы; тогда нам нужно более внимательно посмотреть на свет и как он путешествует.

Что такое жидкие кристаллы?

Фото: высушенные жидкие кристаллы и просмотр в поляризованном свете. Вы можете видеть, что у них много более правильная структура, чем обычная жидкость.Фото из исследования Дэвида Вайца любезно предоставлено Центр космических полетов НАСА имени Маршалла (NASA-MSFC).

Мы привыкли к мысли, что данное вещество может находиться в одном из трех состояний: твердое тело, жидкость или газ — мы называем их состояниями материи — и вплоть до конца 19 века ученые думали, что это конец истории. Затем в 1888 г. австрийский химик Фридрих Рейнитцер (1857–1927) открыл жидкость. кристаллы, которые представляют собой совершенно другое состояние, где-то посередине жидкости и твердые тела.Жидкие кристаллы могли остаться в безвестности но за то, что они оказались очень полезными характеристики.

Твердые вещества — это замороженные комки материи, которые остаются на месте сами по себе, часто с их атомы упакованы в аккуратную регулярную структуру, называемую кристаллом (или кристаллическая решетка). Жидкости не имеют порядка твердых тел и, хотя они остаются на месте, если вы держите их в контейнере, они текут относительно легко, когда вы их разливаете. А теперь представьте себе вещество с некоторой частью порядка твердого тела и некоторой текучестью жидкость.У вас есть жидкий кристалл — что-то наполовину дом между ними. В любой момент жидкие кристаллы могут находиться в одно из нескольких возможных «подсостояний» (фаз) где-то в неопределенность между твердым телом и жидкостью. Две самые важные жидкости кристаллические фазы называются нематическими и смектическими:

  • Когда они находятся в нематической фазе, жидкие кристаллы немного похожи на жидкость: их молекулы могут перемещаться и перемещаться друг мимо друга, но все они указывают примерно в том же направлении.Они немного похожи на спички в спичечный коробок: вы можете встряхнуть их и переместить, но все они держатся указывая в ту же сторону.
  • Если охладить жидкие кристаллы, они смещаются в смектическую фазу. Теперь молекулы образуют слои, которые могут сравнительно легко скользить мимо друг друга. Молекулы в данный слой может перемещаться внутри него, но они не могут и не перемещаются в другие слои (немного похоже на людей, работающих на разные компании на отдельных этажах офисного блока). На самом деле существует несколько разных смектиков. «подфазы», ​​но мы не будем здесь вдаваться в подробности.

Узнать больше

Хотите узнать больше о жидких кристаллах? Есть отличная страница под названием История и свойства жидких кристаллов, архив с веб-сайта Нобелевской премии.

Рекламные ссылки

Что такое поляризованный свет?

У нематических жидких кристаллов есть действительно изящный трюк. Они могут иметь скрученную структуру, и когда вы подаете на них электричество, они снова выпрямляются. Может показаться, что это не уловка, но это ключ к тому, как ЖК-дисплеи поворачиваются. включение и выключение пикселей.Чтобы понять, как жидкие кристаллы могут управлять пикселями, нам нужно знать о поляризованный свет.

Свет — вещь загадочная. Иногда ведет себя как поток частицы — как постоянный шквал микроскопических ядер, несущих энергия, которую мы можем видеть сквозь воздух на чрезвычайно высокой скорости. Другой раз, свет больше похож на морские волны. Вместо воды, поднимающейся вверх и вниз, свет представляет собой волновой узор из электрических и магнитная энергия вибрирует в пространстве.

Фотография: Уловка поляризованного света: поверните одну пару поляризационных солнцезащитных очков мимо другой, и вы сможете заблокировать практически весь свет, который обычно проходит.

Когда солнечный свет струится с неба, все световые волны перепутались и вибрировали во всех возможных направлениях. Но если поставить фильтр в пути, с сеткой линий, расположенных вертикально, как отверстия в тюремных решетках (только намного ближе друг к другу), мы можем заблокировать все световые волны, кроме тех, которые колеблются вертикально (единственный световые волны, которые могут проходить через вертикальные полосы). Поскольку мы блокируем Наш фильтр эффективно затемняет большую часть исходного солнечного света. Вот как работают поляризационные солнцезащитные очки: они вырезают все, кроме солнечный свет колеблется в одном направлении или плоскости.Свет просочился в этот путь называется поляризованным или плоскополяризованным светом (потому что он может распространяться в только один самолет).

Фото: Менее известный прием поляризованного света: он заставляет кристаллы сиять удивительными спектральными цветами из-за явления, называемого плеохроизмом. Фотография кристаллов белков и вирусов, многие из которых были выращены в космосе. Предоставлено: д-р Алекс Макферсон, Калифорнийский университет, Ирвин. Фото любезно предоставлено Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Если у вас есть две пары поляризационных солнцезащитных очков (и они не подойдут с обычными солнцезащитными очками) можно сделать хитрый обманывать.Если вы поставите одну пару прямо перед другой, вы должны все еще можно видеть насквозь. Но если медленно вращать одну пару, и оставьте другую пару на том же месте, вы увидите приближающийся свет через постепенно темнеет. Когда две пары солнцезащитных очков под углом 90 градусов друг к другу, вы не сможете увидеть сквозь них все. Первая пара солнцезащитных очков блокирует все световые волны, кроме вибрирующие вертикально. Вторая пара солнцезащитных очков работает точно так же, как и первая пара.Если обе пары очков направлены в одном направлении, это нормально — световые волны, колеблющиеся вертикально, все еще могут проходить оба. Но если повернуть вторую пару очков на 90 градусов, световые волны, прошедшие через первую пару очков, не могут дольше продержаться через вторую пару. Никакой свет не может пройти два поляризационных фильтра, расположенных под углом 90 градусов друг к другу.

Как ЖК-дисплеи используют жидкие кристаллы и поляризованный свет

Фото: убедитесь, что ЖК-дисплей использует поляризованный свет.Просто наденьте поляризационные солнцезащитные очки и поверните голову (или дисплей). Вы увидите дисплей с максимальной яркостью под одним углом и с самым темным ровно под 90 градусами от этого угла.

ЖК-экран телевизора использует уловку солнцезащитных очков для переключения цвета пиксели включены или выключены. Сзади экрана большой яркий свет, который направлен на зрителя. Перед этим есть миллионы пикселей, каждый из которых состоит из меньших областей, называемых субпиксели красного, синего или зеленого цвета.Каждый пиксель имеет поляризационный стеклянный фильтр за ним и еще один перед это на 90 градусов. Это означает, что пиксель обычно выглядит темным. Между два поляризационных фильтра — это крошечный скрученный нематический жидкий кристалл, который может включаться или выключаться (закручиваться или раскручиваться) электронным способом. Когда он выключен, он поворачивает проходящий через него свет на 90 градусов, эффективно позволяя свету проходить через два поляризационных фильтра и делая пиксель выглядит ярким. Когда он включен, он не вращается свет, который блокируется одним из поляризаторов, и пиксель выглядит темным.Каждый пиксель управляется отдельным транзистором (крошечный электронный компонент), который может включать и выключать его много раз в секунду.

Фото: как жидкие кристаллы включают и выключают свет. В одной ориентации поляризованный свет не может проходить через кристаллы, поэтому они кажутся темными (фото слева). В другой ориентации поляризованный свет проходит нормально, поэтому кристаллы кажутся яркими (фото справа). Мы можем заставить кристаллы менять ориентацию — а также включать и выключать их пиксели — просто прикладывая электрическое поле.Фотография из исследования жидких кристаллов, сделанная Дэвидом Вайцем, любезно предоставлена ​​Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Как работают цветные пиксели в ЖК-дисплеях

На задней панели вашего телевизора есть яркий свет; Есть много мигающие цветные квадраты спереди. Что происходит между ними? Вот как включается или выключается каждый цветной пиксель:

Как выключаются пиксели

  1. Свет идет от задней панели телевизора к передней от большого яркого источника света.
  2. Горизонтальный поляризационный фильтр перед источником света блокирует все световые волны, кроме тех, которые колеблются горизонтально.
  3. Проходить могут только световые волны, колеблющиеся горизонтально.
  4. Транзистор отключает этот пиксель, включая электричество, протекающее через его жидкие кристаллы. Это заставляет кристаллы выпрямляться (так что они полностью раскручиваются), и свет проходит сквозь них без изменений.
  5. Световые волны исходят из жидких кристаллов, которые все еще колеблются горизонтально.
  6. Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые волны, кроме тех, которые колеблются вертикально. Горизонтально колеблющийся свет, проходящий через жидкие кристаллы, не может пройти через вертикальный фильтр.
  7. В этот момент на экран не попадает свет. Другими словами, этот пиксель темный.

Как пиксели включаются

  1. Яркий свет сзади экрана светится по-прежнему.
  2. Горизонтальный поляризационный фильтр перед светом блокирует все световые волны, кроме тех, которые колеблются горизонтально.
  3. Проходить могут только световые волны, колеблющиеся горизонтально.
  4. Транзистор включает этот пиксель, отключая электричество. протекает через его жидкие кристаллы. Это заставляет кристаллы закручиваться. В закрученные кристаллы вращают световые волны на 90 °, проходя сквозь них.
  5. Световые волны, проникшие в колеблющиеся жидкие кристаллы. горизонтально выходят из них, вибрируя вертикально.
  6. Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые волны, кроме тех, которые колеблются вертикально.Вертикально колеблющийся свет, исходящий из жидких кристаллов, может теперь пройти через вертикальный фильтр.
  7. Пиксель светится. Красный, синий или зеленый фильтр дает пиксель его цвет.

В чем разница между ЖК-экраном и плазмой?

Плазменный экран выглядит аналогично ЖК-дисплею, но работает совершенно по-другому: каждый пиксель представляет собой микроскопический флуоресцентный лампа светится плазмой. Плазма — это очень горячая форма газа в атомы разлетелись на части и образовали отрицательно заряженные электроны. и положительно заряженные ионы (атомы минус их электроны).Эти движения свободно, создавая нечеткое свечение света всякий раз, когда они сталкиваются. Плазменные экраны могут быть намного больше обычных телевизоров с электронно-лучевой трубкой, но они также намного дороже.

Краткая история ЖК-дисплеев

Художественное произведение: Ричард Уильямс изложил принцип ЖК-дисплеев в патенте США 3 322 485. Слой жидких кристаллов (желтый) между двумя прозрачными пластинами (красный) включает и выключает дисплей при подаче напряжения (синий). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

  • 1888: Фридрих Рейнитцер, австрийский ученый-растениевод, обнаруживает жидкие кристаллы, изучая химическое вещество, называемое холестерилбензоатом. Кажется, что он имеет две различные кристаллические формы, твердую и жидкую, каждая со своей температурой плавления.
  • 1889: Основываясь на работе Рейнитцера, немецкий химик и физик Отто Леманн вводит термин «жидкие кристаллы» (первоначально «текучие кристаллы» или «fliessende Krystalle» на немецком языке) и проводит более подробные исследования с использованием поляризованного света.Хотя его работа номинирована на Нобелевскую премию, на самом деле он никогда ее не получает.
  • 1962: Ричард Уильямс из RCA начинает исследование оптических свойств нематических жидких кристаллов. Он подает новаторский патент на ЖК-дисплей. (Патент США 3 322 485) 9 ноября 1962 г., и, наконец, он был выдан спустя почти пять лет, 30 мая 1967 г.
  • 1960-е: инженеры RCA, такие как Джордж Хейлмайер, опираются на это теоретическое исследование для создания самых первых практических электронных дисплеев, надеясь создать ЖК-телевизоры.
  • 1968: RCA публично представляет ЖК-технологию на пресс-конференции, побуждая New York Times предвкушает появление таких продуктов, как «Тонкий телеэкран, который можно повесить на стене гостиной, как картину».
  • 1968: французский ученый Пьер-Жиль де Женн проводит новаторские исследования фазовых переходов с участием жидких кристаллов, за что он получил Нобелевскую премию по физике в 1991 году.
  • 1969: Вольфганг Хельфрих из RCA разрабатывает нематические ЖК-дисплеи на основе поляризованного света, но компания настроена скептически и уклоняется от их разработки.В Кентском государственном университете Джеймс Фергасон разрабатывает и запатентовал альтернативную версию той же идеи. Сегодня Хелфриху, его сотруднику Мартину Шадту и Фергасону приписывают совместное изобретение современного ЖК-дисплея.
  • 1970: Не имея возможности коммерциализировать ЖК-дисплей, RCA продает свою технологию компании Timex, которая популяризирует ЖК-дисплеи в первых цифровых наручных часах.
  • 1973: Sharp представляет первый в мире карманный калькулятор с ЖК-экраном (EL-805).
  • 1980: Появляются дисплеи STN (super twisted nematic) с гораздо большим количеством пикселей, предлагающих изображения с более высоким разрешением.
  • 1988: 100 лет спустя после открытия жидких кристаллов, Sharp стала похоронным звоном для электронно-лучевых трубок, выпустив первый 14-дюймовый цветной телевизор с ЖК-дисплеем TFT (тонкопленочный транзистор).
  • 2010-е годы: ученые-оптики экспериментируют с более эффективными ЖК-дисплеями с более яркими цветами на основе квантовых точек.
Рекламные ссылки

Узнать больше

На сайте

Книги

  • Жидкое золото: история жидкокристаллических дисплеев и создание индустрии Джозеф А.Кастеллано. World Scientific, 2005. Научный хронологический отчет о развитии ЖК-дисплеев, который переносит нас от раннего периода RCA к революции ПК и телевидению высокой четкости.
  • Кристаллы, которые текут: классические статьи из истории жидких кристаллов Тимоти Дж. Слукин, Дэвид А. Данмур, Хорст Стегемейер. Taylor & Francis, 2004. Сборник важных статей по исследованию жидких кристаллов с 1888 по 1970-е годы с краткими комментариями к каждой.
  • Жидкие кристаллы: Введение в жидкие кристаллы: химия и физика Питера Дж.Коллингс и Майкл Хирд. CRC Press, 1997/2017. Междисциплинарная книга, исследующая историю, науку и технологию жидких кристаллов и ЖК-дисплеев.
  • Жидкие кристаллы Шиварамакришны Чандрасекар. Cambridge University Press, 1992. Классический учебник о трех типах жидких кристаллов, их свойствах и различных применениях.

Статьи

  • Умный козырек Bosch отслеживает солнце во время движения Лоуренса Ульриха. IEEE Spectrum, 29 января 2020 г.Старомодные солнцезащитные козырьки могут оказаться устаревшими благодаря электронной версии, которая автоматически подстраивается под силу и положение солнца.
  • Что такое квантовые точки и почему они нужны мне в телевизоре? пользователя Tim Moynihan. Wired, 19 января 2015 г. Как квантовые точки могут сделать ЖК-дисплеи ярче и лучше, но затмят ли они OLED?
  • Наноразмерные столбы и отверстия могут привести к более яркому изображению, меньше бликов, Декстер Джонсон. IEEE Spectrum, 24 ноября 2014 г. Новый поляризационный фильтр, поглощающий меньше света, может сделать ЖК-дисплеи ярче и снизить энергопотребление.
  • Как RCA потерял ЖК-дисплей Бенджамина Гросса. IEEE Spectrum, ноябрь 2012 г. Хотя RCA владела оригинальными патентами на ЖК-дисплеи, ей не удалось превратить их в выигрышную коммерческую технологию.
  • Яркое будущее
  • ЖК-дисплеев Альфреда Поора. IEEE Spectrum, 29 сентября 2011 г. Взгляд на последние тенденции в дизайне ЖК-дисплеев.
  • Карманные цветные ЖК-телевизоры
  • от Герберта Шульдинера, Popular Science, сентябрь 1984 г. Именно так Popular Science объявила о появлении компактных ЖК-экранов более четверти века назад.Включает довольно красивую трехмерную диаграмму того, как жидкие кристаллы скручивают поляризованный свет.

Технические документы

  • [PDF] Основы жидких кристаллов: как они работают и что они делают от Fujitsu. Эта полезная справочная информация начинается с того места, где заканчивается моя статья, просто и ясно объясняя детальную работу ЖК-дисплеев и различные их типы.
  • Патент США 3 322 485: Электрооптические элементы, использующие органическое нематическое соединение, Ричард Уильямс, RCA Corporation, 30 мая 1967 г.Оригинальный патент RCA на нематические ЖК-дисплеи.
  • Патент США 3,731,986: Устройства отображения, использующие жидкокристаллическую модуляцию света. Автор Джеймс Л. Фергасон, RCA Corporation, 8 мая 1973 года. Один из первых дисплеев, в которых использовались ЖК-дисплеи из скрученных нематиков.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис. (2007/2020) LCD (жидкокристаллические дисплеи). Получено с https://www.explainthatstuff.com/lcdtv.html. [Доступ (укажите дату здесь)]

Больше на нашем сайте …

Как работают ЖК-дисплеи (жидкокристаллические дисплеи)?

Как работают ЖК-дисплеи (жидкокристаллические дисплеи)? Рекламное объявление

Криса Вудфорда. Последнее изменение: 8 июля 2020 г.

Телевизоры раньше были горячими, тяжелыми, властолюбивые звери, которые сидели в углу вашей гостиной. Уже нет! Теперь они достаточно тонкие, чтобы их можно было повесить на стену, и они потребляют меньше энергии, чем раньше.Как и портативные компьютеры, большинство новые телевизоры имеют плоские экраны с ЖК-дисплеями (жидкокристаллические дисплеи) — та же технология мы много лет использовали в таких вещах, как калькуляторы, мобильные телефоны и цифровые часы. Какие они и как работают? Давайте посмотрим поближе!

Фото: Маленькие ЖК-дисплеи, подобные этому, широко использовались в калькуляторы и цифровые часы с 1970-х годов, но в то время они были относительно дорогими и выдавал только черно-белые (на самом деле, синеватые и белые) изображения.В 1980-х и 1990-х годах производители придумали, как делать цветные экраны большего размера по относительно доступным ценам. Это было тогда, когда рынок ЖК-телевизоров и цветных портативных компьютеров действительно начал развиваться.

Чем отличаются ЖК-дисплеи?

Фото: этот экран iPod — еще один пример ЖК-технология. Его пиксели окрашены в черный цвет, и они либо включены, либо выключены, поэтому дисплей черно-белый. На ЖК-экране телевизора гораздо меньшие пиксели окрашены в красный, синий или зеленый цвет. сделайте яркую движущуюся картинку.

Для многих наиболее привлекательным в ЖК-телевизорах является не то, как они создают изображение, а их плоский компактный экран. В отличие от телевизора старого образца, ЖК-экран достаточно плоский, чтобы его можно было повесить на стене. Это потому, что он формирует свою картину совершенно по-другому.

Вы, наверное, знаете, что телевизор с электронно-лучевой трубкой (ЭЛТ) старого образца делает снимок с помощью трех электронных пушек. Думайте о них как о трех очень быстрых, очень точные кисти, которые танцуют взад и вперед, рисуют движущиеся изображение на обратной стороне экрана, которое вы можете смотреть, сидя на перед ним.

Плоский ЖК-экран и плазменный экран работают совершенно по-другому. Если вы сядете рядом с телевизором с плоским экраном, вы заметите, что изображение создается из миллионы крошечных блоков, называемых пикселями (элементы изображения). Каждый из них фактически представляет собой отдельный красный цвет, синий или зеленый свет, который можно очень быстро включить или выключить, чтобы сделать движущуюся цветную картинку. Пиксели контролируются совершенно по-разному. способы в плазменных и жидкокристаллических экранах. В плазменном экране каждый пиксель представляет собой крошечную люминесцентную лампу, которая включается или выключается. в электронном виде.В ЖК-телевизоре пиксели включаются или выключаются электронным способом с помощью жидкие кристаллы вращаются поляризованные свет. Это не так сложно, как кажется! Чтобы понять, что происходит, нам сначала нужно понять, что такое жидкие кристаллы; тогда нам нужно более внимательно посмотреть на свет и как он путешествует.

Что такое жидкие кристаллы?

Фото: высушенные жидкие кристаллы и просмотр в поляризованном свете. Вы можете видеть, что у них много более правильная структура, чем обычная жидкость.Фото из исследования Дэвида Вайца любезно предоставлено Центр космических полетов НАСА имени Маршалла (NASA-MSFC).

Мы привыкли к мысли, что данное вещество может находиться в одном из трех состояний: твердое тело, жидкость или газ — мы называем их состояниями материи — и вплоть до конца 19 века ученые думали, что это конец истории. Затем в 1888 г. австрийский химик Фридрих Рейнитцер (1857–1927) открыл жидкость. кристаллы, которые представляют собой совершенно другое состояние, где-то посередине жидкости и твердые тела.Жидкие кристаллы могли остаться в безвестности но за то, что они оказались очень полезными характеристики.

Твердые вещества — это замороженные комки материи, которые остаются на месте сами по себе, часто с их атомы упакованы в аккуратную регулярную структуру, называемую кристаллом (или кристаллическая решетка). Жидкости не имеют порядка твердых тел и, хотя они остаются на месте, если вы держите их в контейнере, они текут относительно легко, когда вы их разливаете. А теперь представьте себе вещество с некоторой частью порядка твердого тела и некоторой текучестью жидкость.У вас есть жидкий кристалл — что-то наполовину дом между ними. В любой момент жидкие кристаллы могут находиться в одно из нескольких возможных «подсостояний» (фаз) где-то в неопределенность между твердым телом и жидкостью. Две самые важные жидкости кристаллические фазы называются нематическими и смектическими:

  • Когда они находятся в нематической фазе, жидкие кристаллы немного похожи на жидкость: их молекулы могут перемещаться и перемещаться друг мимо друга, но все они указывают примерно в том же направлении.Они немного похожи на спички в спичечный коробок: вы можете встряхнуть их и переместить, но все они держатся указывая в ту же сторону.
  • Если охладить жидкие кристаллы, они смещаются в смектическую фазу. Теперь молекулы образуют слои, которые могут сравнительно легко скользить мимо друг друга. Молекулы в данный слой может перемещаться внутри него, но они не могут и не перемещаются в другие слои (немного похоже на людей, работающих на разные компании на отдельных этажах офисного блока). На самом деле существует несколько разных смектиков. «подфазы», ​​но мы не будем здесь вдаваться в подробности.

Узнать больше

Хотите узнать больше о жидких кристаллах? Есть отличная страница под названием История и свойства жидких кристаллов, архив с веб-сайта Нобелевской премии.

Рекламные ссылки

Что такое поляризованный свет?

У нематических жидких кристаллов есть действительно изящный трюк. Они могут иметь скрученную структуру, и когда вы подаете на них электричество, они снова выпрямляются. Может показаться, что это не уловка, но это ключ к тому, как ЖК-дисплеи поворачиваются. включение и выключение пикселей.Чтобы понять, как жидкие кристаллы могут управлять пикселями, нам нужно знать о поляризованный свет.

Свет — вещь загадочная. Иногда ведет себя как поток частицы — как постоянный шквал микроскопических ядер, несущих энергия, которую мы можем видеть сквозь воздух на чрезвычайно высокой скорости. Другой раз, свет больше похож на морские волны. Вместо воды, поднимающейся вверх и вниз, свет представляет собой волновой узор из электрических и магнитная энергия вибрирует в пространстве.

Фотография: Уловка поляризованного света: поверните одну пару поляризационных солнцезащитных очков мимо другой, и вы сможете заблокировать практически весь свет, который обычно проходит.

Когда солнечный свет струится с неба, все световые волны перепутались и вибрировали во всех возможных направлениях. Но если поставить фильтр в пути, с сеткой линий, расположенных вертикально, как отверстия в тюремных решетках (только намного ближе друг к другу), мы можем заблокировать все световые волны, кроме тех, которые колеблются вертикально (единственный световые волны, которые могут проходить через вертикальные полосы). Поскольку мы блокируем Наш фильтр эффективно затемняет большую часть исходного солнечного света. Вот как работают поляризационные солнцезащитные очки: они вырезают все, кроме солнечный свет колеблется в одном направлении или плоскости.Свет просочился в этот путь называется поляризованным или плоскополяризованным светом (потому что он может распространяться в только один самолет).

Фото: Менее известный прием поляризованного света: он заставляет кристаллы сиять удивительными спектральными цветами из-за явления, называемого плеохроизмом. Фотография кристаллов белков и вирусов, многие из которых были выращены в космосе. Предоставлено: д-р Алекс Макферсон, Калифорнийский университет, Ирвин. Фото любезно предоставлено Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Если у вас есть две пары поляризационных солнцезащитных очков (и они не подойдут с обычными солнцезащитными очками) можно сделать хитрый обманывать.Если вы поставите одну пару прямо перед другой, вы должны все еще можно видеть насквозь. Но если медленно вращать одну пару, и оставьте другую пару на том же месте, вы увидите приближающийся свет через постепенно темнеет. Когда две пары солнцезащитных очков под углом 90 градусов друг к другу, вы не сможете увидеть сквозь них все. Первая пара солнцезащитных очков блокирует все световые волны, кроме вибрирующие вертикально. Вторая пара солнцезащитных очков работает точно так же, как и первая пара.Если обе пары очков направлены в одном направлении, это нормально — световые волны, колеблющиеся вертикально, все еще могут проходить оба. Но если повернуть вторую пару очков на 90 градусов, световые волны, прошедшие через первую пару очков, не могут дольше продержаться через вторую пару. Никакой свет не может пройти два поляризационных фильтра, расположенных под углом 90 градусов друг к другу.

Как ЖК-дисплеи используют жидкие кристаллы и поляризованный свет

Фото: убедитесь, что ЖК-дисплей использует поляризованный свет.Просто наденьте поляризационные солнцезащитные очки и поверните голову (или дисплей). Вы увидите дисплей с максимальной яркостью под одним углом и с самым темным ровно под 90 градусами от этого угла.

ЖК-экран телевизора использует уловку солнцезащитных очков для переключения цвета пиксели включены или выключены. Сзади экрана большой яркий свет, который направлен на зрителя. Перед этим есть миллионы пикселей, каждый из которых состоит из меньших областей, называемых субпиксели красного, синего или зеленого цвета.Каждый пиксель имеет поляризационный стеклянный фильтр за ним и еще один перед это на 90 градусов. Это означает, что пиксель обычно выглядит темным. Между два поляризационных фильтра — это крошечный скрученный нематический жидкий кристалл, который может включаться или выключаться (закручиваться или раскручиваться) электронным способом. Когда он выключен, он поворачивает проходящий через него свет на 90 градусов, эффективно позволяя свету проходить через два поляризационных фильтра и делая пиксель выглядит ярким. Когда он включен, он не вращается свет, который блокируется одним из поляризаторов, и пиксель выглядит темным.Каждый пиксель управляется отдельным транзистором (крошечный электронный компонент), который может включать и выключать его много раз в секунду.

Фото: как жидкие кристаллы включают и выключают свет. В одной ориентации поляризованный свет не может проходить через кристаллы, поэтому они кажутся темными (фото слева). В другой ориентации поляризованный свет проходит нормально, поэтому кристаллы кажутся яркими (фото справа). Мы можем заставить кристаллы менять ориентацию — а также включать и выключать их пиксели — просто прикладывая электрическое поле.Фотография из исследования жидких кристаллов, сделанная Дэвидом Вайцем, любезно предоставлена ​​Центром космических полетов им. Маршалла НАСА (NASA-MSFC).

Как работают цветные пиксели в ЖК-дисплеях

На задней панели вашего телевизора есть яркий свет; Есть много мигающие цветные квадраты спереди. Что происходит между ними? Вот как включается или выключается каждый цветной пиксель:

Как выключаются пиксели

  1. Свет идет от задней панели телевизора к передней от большого яркого источника света.
  2. Горизонтальный поляризационный фильтр перед источником света блокирует все световые волны, кроме тех, которые колеблются горизонтально.
  3. Проходить могут только световые волны, колеблющиеся горизонтально.
  4. Транзистор отключает этот пиксель, включая электричество, протекающее через его жидкие кристаллы. Это заставляет кристаллы выпрямляться (так что они полностью раскручиваются), и свет проходит сквозь них без изменений.
  5. Световые волны исходят из жидких кристаллов, которые все еще колеблются горизонтально.
  6. Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые волны, кроме тех, которые колеблются вертикально. Горизонтально колеблющийся свет, проходящий через жидкие кристаллы, не может пройти через вертикальный фильтр.
  7. В этот момент на экран не попадает свет. Другими словами, этот пиксель темный.

Как пиксели включаются

  1. Яркий свет сзади экрана светится по-прежнему.
  2. Горизонтальный поляризационный фильтр перед светом блокирует все световые волны, кроме тех, которые колеблются горизонтально.
  3. Проходить могут только световые волны, колеблющиеся горизонтально.
  4. Транзистор включает этот пиксель, отключая электричество. протекает через его жидкие кристаллы. Это заставляет кристаллы закручиваться. В закрученные кристаллы вращают световые волны на 90 °, проходя сквозь них.
  5. Световые волны, проникшие в колеблющиеся жидкие кристаллы. горизонтально выходят из них, вибрируя вертикально.
  6. Вертикальный поляризационный фильтр перед жидкими кристаллами блокирует все световые волны, кроме тех, которые колеблются вертикально.Вертикально колеблющийся свет, исходящий из жидких кристаллов, может теперь пройти через вертикальный фильтр.
  7. Пиксель светится. Красный, синий или зеленый фильтр дает пиксель его цвет.

В чем разница между ЖК-экраном и плазмой?

Плазменный экран выглядит аналогично ЖК-дисплею, но работает совершенно по-другому: каждый пиксель представляет собой микроскопический флуоресцентный лампа светится плазмой. Плазма — это очень горячая форма газа в атомы разлетелись на части и образовали отрицательно заряженные электроны. и положительно заряженные ионы (атомы минус их электроны).Эти движения свободно, создавая нечеткое свечение света всякий раз, когда они сталкиваются. Плазменные экраны могут быть намного больше обычных телевизоров с электронно-лучевой трубкой, но они также намного дороже.

Краткая история ЖК-дисплеев

Художественное произведение: Ричард Уильямс изложил принцип ЖК-дисплеев в патенте США 3 322 485. Слой жидких кристаллов (желтый) между двумя прозрачными пластинами (красный) включает и выключает дисплей при подаче напряжения (синий). Изображение любезно предоставлено Управлением по патентам и товарным знакам США.

  • 1888: Фридрих Рейнитцер, австрийский ученый-растениевод, обнаруживает жидкие кристаллы, изучая химическое вещество, называемое холестерилбензоатом. Кажется, что он имеет две различные кристаллические формы, твердую и жидкую, каждая со своей температурой плавления.
  • 1889: Основываясь на работе Рейнитцера, немецкий химик и физик Отто Леманн вводит термин «жидкие кристаллы» (первоначально «текучие кристаллы» или «fliessende Krystalle» на немецком языке) и проводит более подробные исследования с использованием поляризованного света.Хотя его работа номинирована на Нобелевскую премию, на самом деле он никогда ее не получает.
  • 1962: Ричард Уильямс из RCA начинает исследование оптических свойств нематических жидких кристаллов. Он подает новаторский патент на ЖК-дисплей. (Патент США 3 322 485) 9 ноября 1962 г., и, наконец, он был выдан спустя почти пять лет, 30 мая 1967 г.
  • 1960-е: инженеры RCA, такие как Джордж Хейлмайер, опираются на это теоретическое исследование для создания самых первых практических электронных дисплеев, надеясь создать ЖК-телевизоры.
  • 1968: RCA публично представляет ЖК-технологию на пресс-конференции, побуждая New York Times предвкушает появление таких продуктов, как «Тонкий телеэкран, который можно повесить на стене гостиной, как картину».
  • 1968: французский ученый Пьер-Жиль де Женн проводит новаторские исследования фазовых переходов с участием жидких кристаллов, за что он получил Нобелевскую премию по физике в 1991 году.
  • 1969: Вольфганг Хельфрих из RCA разрабатывает нематические ЖК-дисплеи на основе поляризованного света, но компания настроена скептически и уклоняется от их разработки.В Кентском государственном университете Джеймс Фергасон разрабатывает и запатентовал альтернативную версию той же идеи. Сегодня Хелфриху, его сотруднику Мартину Шадту и Фергасону приписывают совместное изобретение современного ЖК-дисплея.
  • 1970: Не имея возможности коммерциализировать ЖК-дисплей, RCA продает свою технологию компании Timex, которая популяризирует ЖК-дисплеи в первых цифровых наручных часах.
  • 1973: Sharp представляет первый в мире карманный калькулятор с ЖК-экраном (EL-805).
  • 1980: Появляются дисплеи STN (super twisted nematic) с гораздо большим количеством пикселей, предлагающих изображения с более высоким разрешением.
  • 1988: 100 лет спустя после открытия жидких кристаллов, Sharp стала похоронным звоном для электронно-лучевых трубок, выпустив первый 14-дюймовый цветной телевизор с ЖК-дисплеем TFT (тонкопленочный транзистор).
  • 2010-е годы: ученые-оптики экспериментируют с более эффективными ЖК-дисплеями с более яркими цветами на основе квантовых точек.
Рекламные ссылки

Узнать больше

На сайте

Книги

  • Жидкое золото: история жидкокристаллических дисплеев и создание индустрии Джозеф А.Кастеллано. World Scientific, 2005. Научный хронологический отчет о развитии ЖК-дисплеев, который переносит нас от раннего периода RCA к революции ПК и телевидению высокой четкости.
  • Кристаллы, которые текут: классические статьи из истории жидких кристаллов Тимоти Дж. Слукин, Дэвид А. Данмур, Хорст Стегемейер. Taylor & Francis, 2004. Сборник важных статей по исследованию жидких кристаллов с 1888 по 1970-е годы с краткими комментариями к каждой.
  • Жидкие кристаллы: Введение в жидкие кристаллы: химия и физика Питера Дж.Коллингс и Майкл Хирд. CRC Press, 1997/2017. Междисциплинарная книга, исследующая историю, науку и технологию жидких кристаллов и ЖК-дисплеев.
  • Жидкие кристаллы Шиварамакришны Чандрасекар. Cambridge University Press, 1992. Классический учебник о трех типах жидких кристаллов, их свойствах и различных применениях.

Статьи

  • Умный козырек Bosch отслеживает солнце во время движения Лоуренса Ульриха. IEEE Spectrum, 29 января 2020 г.Старомодные солнцезащитные козырьки могут оказаться устаревшими благодаря электронной версии, которая автоматически подстраивается под силу и положение солнца.
  • Что такое квантовые точки и почему они нужны мне в телевизоре? пользователя Tim Moynihan. Wired, 19 января 2015 г. Как квантовые точки могут сделать ЖК-дисплеи ярче и лучше, но затмят ли они OLED?
  • Наноразмерные столбы и отверстия могут привести к более яркому изображению, меньше бликов, Декстер Джонсон. IEEE Spectrum, 24 ноября 2014 г. Новый поляризационный фильтр, поглощающий меньше света, может сделать ЖК-дисплеи ярче и снизить энергопотребление.
  • Как RCA потерял ЖК-дисплей Бенджамина Гросса. IEEE Spectrum, ноябрь 2012 г. Хотя RCA владела оригинальными патентами на ЖК-дисплеи, ей не удалось превратить их в выигрышную коммерческую технологию.
  • Яркое будущее
  • ЖК-дисплеев Альфреда Поора. IEEE Spectrum, 29 сентября 2011 г. Взгляд на последние тенденции в дизайне ЖК-дисплеев.
  • Карманные цветные ЖК-телевизоры
  • от Герберта Шульдинера, Popular Science, сентябрь 1984 г. Именно так Popular Science объявила о появлении компактных ЖК-экранов более четверти века назад.Включает довольно красивую трехмерную диаграмму того, как жидкие кристаллы скручивают поляризованный свет.

Технические документы

  • [PDF] Основы жидких кристаллов: как они работают и что они делают от Fujitsu. Эта полезная справочная информация начинается с того места, где заканчивается моя статья, просто и ясно объясняя детальную работу ЖК-дисплеев и различные их типы.
  • Патент США 3 322 485: Электрооптические элементы, использующие органическое нематическое соединение, Ричард Уильямс, RCA Corporation, 30 мая 1967 г.Оригинальный патент RCA на нематические ЖК-дисплеи.
  • Патент США 3,731,986: Устройства отображения, использующие жидкокристаллическую модуляцию света. Автор Джеймс Л. Фергасон, RCA Corporation, 8 мая 1973 года. Один из первых дисплеев, в которых использовались ЖК-дисплеи из скрученных нематиков.

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

статей с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Chris Woodford 2007, 2020. Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитируйте эту страницу

Вудфорд, Крис.

Leave a comment