Назначение озу: Оперативная память компьютера (ОЗУ, RAM) – Что такое оперативная память и зачем она нужна?

Содержание

Оперативная память компьютера (ОЗУ, RAM)

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory — память с произвольным доступом).

Название RAM более точно отражает строение и назначение устройства.

Назначение ОЗУ

  • Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.
  • Хранение результатов вычислений, произведенных процессором.
  • Считывание (или запись) содержимого ячеек.

Особенности работы ОЗУ

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствует в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом. Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ в любой момент времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

Логическое устройство оперативной памяти

Оперативная память состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах.

Обычно одна ячейка содержит 1 байт информации (8 бит, то же самое, что 8 разрядов) и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

Типы оперативной памяти

Принято выделять два вида оперативной памяти: статическую (SRAM) и динамическую (DRAM). SRAM используется в качестве кэш-памяти процессора, а DRAM — непосредственно в роли оперативной памяти компьютера.

SRAM состоит из триггеров. Триггеры могут находиться лишь в двух состояниях: «включен» или «выключен» (хранение бита). Триггер не хранит заряд, поэтому переключение между состояниями происходит очень быстро. Однако триггеры требуют более сложную технологию производства. Это неминуемо отражается на цене устройства. Во-вторых, триггер, состоящий из группы транзисторов и связей между ними, занимает много места (на микроуровне), в результате SRAM получается достаточно большим устройством.

В DRAM нет триггеров, а бит сохраняется за счет использования одного транзистора и одного конденсатора. Получается дешевле и компактней. Однако конденсаторы хранят заряд, а процесс зарядки-разрядки более длительный, чем переключение триггера. Как следствие, DRAM работает медленнее. Второй минус – это самопроизвольная разрядка конденсаторов. Для поддержания заряда его регенерируют через определенные промежутки времени, на что тратится дополнительное время.

Вид модуля оперативной памяти

Внешне оперативная память персонального компьютера представляет собой модуль из микросхем (8 или 16 штук) на печатной плате. Модуль вставляется в специальный разъем на материнской плате.

По конструкции модули оперативной памяти для персональных компьютеров делят на SIMM (одностороннее расположение выводов) и DIMM (двустороннее расположение выводов). DIMM обладает большей скоростью передачи данных, чем SIMM. В настоящее время преимущественно выпускаются DIMM-модули.

Основными характеристиками ОЗУ являются информационная емкость и быстродействие. Емкость оперативной памяти на сегодняшний день выражается в гигабайтах.

Что такое оперативная память и зачем она нужна?

Здравствуйте, многоуважаемые читатели нашего блога. Сегодня мы сНазначение оперативной памятиНазначение оперативной памяти вами вновь поговорим о железе, а именно об оперативной памяти компьютера. Мы разделим данную статью на две части. В первой, то бишь в этой статье я расскажу о том, что такое оперативная память, ее назначение и прочую полезную информацию, а во второй статье будет описано то, как выбрать оперативную память, каким критериям следовать и прочее.

Теперь перейдем к конкретному вопросу, а именно, что такое оперативная память и для чего она необходима.

Назначение оперативной памяти

У каждого из нас есть компьютер, и перед пользователями часто может возникать вопрос об улучшении и модернизации этого самого ПК. Каждый человек вправе экспериментировать над своим электронным устройством, но в пределах разумного, конечно. Кто-то приобретает видеокарту, кто-то колдует над материнской платой и процессором, ну а мы с вами разберем более дешевый вариант – оперативную память, а именно увеличение ее объема.

Назначение оперативной памяти_2Назначение оперативной памяти_2

Во-первых, вариант выбора оперативной памяти является наиболее простым, так как особых знаний для этого иметь не нужно, а установка модуля памяти проходит в одно мгновение. Тем более, в настоящее время данная техническая часть является довольно дешевой.

А сейчас мы перейдем к определению оперативной памяти, по-другому ОЗУ.

ОЗУ (оперативное запоминающее устройство)

– структура временного хранения данных, при помощи которой осуществляется функционирование ПО. Всегда представляет собой набор микросхем и модулей, подключающихся к материнской плате.

Данная память обычно выступает в виде буфера между накопителями и процессором, в ней производится временное хранение файлов и данных, а также в ней хранятся запущенные приложения.

Кстати, не стоит путать ОЗУ с памятью жесткого диска. ПЗУ – это память жесткого диска (постоянное запоминающее устройство). Это разные виды памяти.  

По структуре, оперативная память состоит из ячеек, в которых хранятся данные определённого объема, 1 или 4 бит. Также, каждая ячейка имеет свой адрес, который разделяется на горизонтальные строки и вертикальные столбцы.

Описанные выше ячейки являются конденсаторами, которые накапливают электрический заряд. Еще здесь находятся специальные усилители, способные аналоговые сигналы переводить в цифровые, которые потом создают данные.

При передаче адреса строки на микросхему, используется сигнал, называемый RAS (Row Address Strobe), для передачи адреса столбца, используется сигнал CAS (Column Address Strobe).

Со сложными определениями разобрались, теперь перейдем к работе оперативной памяти.

Как работает оперативная память?

Работа ОЗУ безоговорочно связана с работой процессора и других внешних устройств компьютера, так как в нее поступают данные со всех этих устройств. Прежде всего данные с жесткого диска попадают в оперативную память, а потом обрабатываются процессором, такую структуру можно увидеть на рисунке ниже:

Как работает оперативная памятьКак работает оперативная память

Обмен информацией между ОЗУ и самим процессором может происходить либо напрямую, либо с участием кэш памяти.

Кэш память также является временным хранилищем данных и представляет собой участки локальной памяти. Использование данной памяти значительно сокращает время доставки данных в регистр процессора, а все потому, что быстродействие внешних носителей очень медленное в отличие от процессорного. Также из-за этого повышается производительность системы, что тоже немаловажно.

А собственно, кто или что управляет оперативкой? ОЗУ управляется с помощью контроллера, установленного в чипсете материнской платы. Это часть называется «Северный мост», которая обеспечивает подключение процессора (CPU) к различным узлам, использующим графический контроллер и ОЗУ. Такую схему Вы можете увидеть ниже.

что такое оперативная память

что такое оперативная память

Еще хочется сказать одну важную вещь. Если в оперативную память идет запись данных, в какую-либо ячейку, то содержимое, которое было до записи, немедленно сотрётся.

Сейчас контроллер памяти перенесен в процессор и им же память управляется. Поэтому при выборе оперативной памяти конкретного объема нужно убедиться, поддерживает ли его процессор, то то относится и к типу памяти.

Важным моментом в прикладных программах является то, что они должны работать под управлением той или иной операционной системы, иначе она не сможет выделить нужный объем оперативной памяти для этой программы. Бывали случаи, что не получалось запустить на новой операционной системе, старые программы, которые предназначались под старые ОС.   

Следует знать, что ОС Windows 7, имеющая разрядность 64 бита, поддерживает 192 Гб объема оперативной памяти, а вот 32-х разрядная Windows 7 поддерживает только 4 Гб.

Зачем нужна оперативная память?

Итак, теперь мы знаем, что в процессе обмена данными участвует, так называемая кэш-память. В этот момент ею управляет контроллер, который анализирует какую-либо программу и просчитывает то, какие данные скорее всего понадобятся процессору, а потом подгружает их в кэш-память из оперативной памяти, далее модифицированные данные процессором, если нужно, возвращаются обратно в оперативную память.

Оперативную память можно считать почти самым быстродействующим элементов компьютера, после процессора, конечно. Таким образом, весь обмен информацией осуществляется между этими двумя устройствами.

Для начала заметим, что вся ваша информация хранится на жестком диске, далее, когда вы включаете ПК, с этого самого жесткого диска в оперативную память записываются различные драйвера, элементы ОС, и специальные программы. В конце записываются те программы, которые мы будем запускать, а когда мы их закроем, они сотрутся из ОЗУ.

Информация, записанная в оперативную память, передается в процессор, им обрабатывается и записывается обратно и так каждый раз. Но может случиться так, что ячейки памяти закончатся, что же в этом случае делать?

В этом случае, в процесс работы вступает, так называемый файл подкачки. Этот файл находится на жестком диске, туда записывается информация, не вошедшая в оперативную память. Это является большим плюсом. Минусом же является то, что жесткий диск по быстродействию сильно уступает ОЗУ, поэтому может возникнуть замедленная работа системы. Также сокращается жизнь самого жесткого диска.

Из чего состоит оперативная память?

Теперь можно рассмотреть из чего же состоит сам модуль оперативной памяти.

Обычно все планки (модули) ОЗУ состоят из одних и тех же элементов. Также модули бывают двух типов: односторонние и двухсторонние. И говорят, что двухсторонние намного быстрее. Но бывает так, что двусторонняя планка не работала в полную силу, так как чипы с какой-либо стороны не были задействованы. А все потому, что, как и материнская плата, так и процессор должны поддерживать ту или иную память.

На заметку – если будете приобретать, например, два модуля оперативной памяти, то покупать лучше одного типа.

2342452523424525

На данный момент существуют несколько типов памяти: DDR, DDR2, DDR3. Также, разработан новый тип памяти – DDR4, который еще особо не используется. Сегодня, DDR3 является самым популярным и используемым типом памяти.

Для ноутбука используется почти такая же память, модуль которого немного меньше. Носит она название SO-DIMM (DDR, DDR2, DDR3).

На этом, я думаю стоит закончить, мы узнали, что такое оперативная память и ее назначения, различные характеристики и типы. Возможно у вас возникнут комментарии по данному вопросу, не стесняйтесь задавать их ниже. Любые пожелания и критика приветствуются.

Оперативную память можно сделать в виде накопителя, то есть хранить на ней данные и устанавливать программы. Такая технология называется RAM-диск. Если вам интересно, то можете о ней прочитать.

Оперативное запоминающее устройство — это… Что такое Оперативное запоминающее устройство?

Простейшая схема взаимодействия оперативной памяти с ЦП

Операти́вная па́мять (также оперативное запоминающее устройство, ОЗУ) — в информатике — память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно, либо через кэш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.

В современных вычислительных устройствах, по типу исполнения различают два основных вида ОЗУ:

1. ОЗУ, собранное на триггерах, называемое статической памятью с произвольным доступом, или просто статической памятью — SRAM (Static RAM). Достоинство этой памяти — скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Также данная память не лишена недостатоков. Во-первых, группа транзисторов, входящих в состав триггера обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Эти соображения заставили изобретателей изобрести более экономичную память, как по стоимости, так и по компактности.

2. В более экономичной памяти для хранения разряда (бита) используют схему, состоящую из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов), а во-вторых, компактности (на том месте, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Однако есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того, чтобы установить в единицу бит на основе конденсатора, этот конденсатор нужно зарядить, а для того, чтобы бит установить в 0, соответственно, разрядить. А зарядка или разрядка конденсатора — гораздо более длительная операция, чем переключение триггера (в 10 и более раз), даже если конденсатор имеет весьма небольшие размеры. Есть и второй существенный минус — конденсаторы склонны к «стеканию» заряда, проще говоря, со временем конденсаторы разряжаются. Причем разряжаются они тем быстрее, чем меньше их емкость. В связи с этим обстоятельством, дабы не потерять содержимое битов, эти конденсаторы необходимо регенерировать через определённый интервал времени, чтобы восстанавливать заряд. Регенерация, выполняется путем считывания заряда (считывание заряда с конденсатора выполняется через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации ее содержимого. Эта операция — регенерация значительно снижает производительность ОЗУ. Память на конденсаторах получила название — динамическая память — DRAM (Dynamic RAM) за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени.

Таким образом, DRAM значительно дешевле SRAM, ее плотность значительно выше, что позволяет на том же пространстве кремниевой подложки размещать больше битов, но при этом ее быстродействие очень низкое. SRAM, наоборот, является очень быстрой памятью, но зато и очень дорогой. В связи с чем обычную оперативную память строят на модулях DRAM, а SRAM используется при создании, например кэшей микропроцессоров всех уровней.

ОЗУ может изготавливаться как отдельный блок, или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

Пример структуры адресного пространства памяти на примере IBM PC

Основная область памяти

В область, называемую основной областью памяти (англ. conventional memory), загружается таблица векторов прерываний, различные данные программы

Upper Memory Area

Upper Memory Area (UMA) занимает 384 Кбайт и используется для размещения информации об аппаратной части компьютера. Область условно делится на три области по 128 Кбайт. Первая область служит для видеопамяти. Через вторую область доступны верхней области с помощью специальных драйверов (например, EMM386.EXE, EMS.EXE, LIMEMS.EXE) и/или устройств расширения раньше использовалось для доступа к расширенной памяти через спецификацию расширенной памяти (англ. Expanded Memory Specification, EMS). В современных компьютерах EMS практически не используется.

Дополнительная область памяти

Дополнительная память для 16-битных программ доступна через спецификацию дополнительной памяти (англ. eXtended Memory Specification, XMS). Дополнительная память начинается с адресов выше первого мегабайта и её объём зависит от общего объёма оперативной памяти, установленной на компьютере.

High Memory Area

High Memory Area (HMA) — это область дополнительной памяти за первым мегабайтом размером 64 Кбайт минус 16 байт. Её появление было обусловлено ошибкой в процессоре 80286, в котором не отключалась 21-я линия адреса (а всего их в этом процессоре 24), в результате при обращении по адресам выше FFFF:000F обращение шло ко второму мегабайту памяти вместо начала первого мегабайта (как у 8086/8088). Таким образом, программы реального режима получили доступ к HMA.

См. также

Ссылки

Литература

  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С. 499—572. — ISBN 0-7897-3404-4

Wikimedia Foundation. 2010.

Оперативная память компьютера (озу, ram)

Сокращенно оперативную память компьютера называют ОЗУ (оперативное запоминающее устройство) или RAM (random access memory — память с произвольным доступом).

Назначение озу

  • Хранение данных и команд для дальнейшей их передачи процессору для обработки. Информация может поступать из оперативной памяти не сразу на обработку процессору, а в более быструю, чем ОЗУ, кэш-память процессора.

  • Хранение результатов вычислений, произведенных процессором.

  • Считывание (или запись) содержимого ячеек.

Для характеристики памяти используются следующие параметры:

  1. емкость памяти – максимальное количество хранимой информации в байтах;

  2. быстродействие памяти – время обращения к памяти, определяемое временем считывания или временем записи информации.

Особенности работы озу

Оперативная память может сохранять данные лишь при включенном компьютере. Поэтому при его выключении обрабатываемые данные следует сохранять на жестком диске или другом носителе информации. При запуске программ информация поступает в ОЗУ, например, с жесткого диска компьютера. Пока идет работа с программой она присутствуют в оперативной памяти (обычно). Как только работа с ней закончена, данные перезаписываются на жесткий диск. Другими словами, потоки информации в оперативной памяти очень динамичны.

ОЗУ представляет собой запоминающее устройство с произвольным доступом. Это означает, что прочитать/записать данные можно из любой ячейки ОЗУ за одинаковый интервал времени. Для сравнения, например, магнитная лента является запоминающим устройством с последовательным доступом.

Логическое устройство оперативной памяти

Оперативная память (ОП) состоит их ячеек, каждая из которых имеет свой собственный адрес. Все ячейки содержат одинаковое число бит. Соседние ячейки имеют последовательные адреса. Адреса памяти также как и данные выражаются в двоичных числах. Обычно одна ячейка содержит 1 байт информации и является минимальной единицей информации, к которой возможно обращение. Однако многие команды работают с так называемыми словами. Слово представляет собой область памяти, состоящую из 4 или 8 байт (возможны другие варианты).

ОП является основной памятью для хранения информации. Она организована как одномерный массив ячеек памяти размером в 1 байт. Каждый из байтов имеет уникальный 20 битный физический адрес в диапазоне от 00000 до FFFFFh (здесь и далее для записи адресов используется шестнадцатеричная система счисления, признаком которой является символ h в конце кода). Таким образом, размер адресного пространства ОП составляет 220= 1Мбайт. Любые два смежных байта в памяти могут рассматриваться как 16-битовое слово. Младший байт слова имеет меньший адрес, а старший — больший. Так шестнадцатеричное число 1F8Ah, занимающее слово, в памяти будет расположено в последовательности 8Ah, 1Fh. Адресом слова считается адрес его младшего байта. Поэтому 20 битовый адрес памяти может рассматриваться и как адрес байта, и как адрес слова.

Команды, байты и слова данных можно размещать по любому адресу, что позволяет экономить память вследствие ее более полного заполнения. Однако для экономии времени выполнения программ целесообразно размещать слова данных в памяти, начиная с четного адреса, так как микропроцессор передает такие слова за один цикл работы шины. Слово с четным адресом называется выровненным по границе слов. Не выровненные слова данных с нечетным адресом допустимы, но для их передачи требуется два цикла шины, что снижает производительность компьютера. Заметим, что необходимое количество циклов считывания слова данных инициируется микропроцессором автоматически. Следует иметь в виду, что при операциях со стеком слова данных должны быть выровнены, а указатель стека инициирован на четный адрес, так как в таких операциях участвуют только слова данных.

Поток команд разделяется на байты при заполнении очереди команд внутри микропроцессора. Поэтому выравнивание команд практически не влияет на производительность и не используется.

Адресное пространство ОП делится на сегменты. Сегмент состоит из смежных ячеек ОП и является независимой и отдельно адресуемой единицей памяти, которая в базовой архитектуре ПК имеет фиксированную емкость 216= 64К байт. Каждому сегменту назначается начальный (базовый) адрес, являющийся адресом первого байта сегмента в адресном поле ОП. Значение физического адреса ячейки складывается из адреса сегмента и смещения ячейки памяти относительно начала сегмента (внутрисегментное смещение). Для хранения значений адреса сегмента и смещения используются 16-битовые слова.

Чтобы получить 20-битовый физический адрес, микропроцессор автоматически осуществляет следующие операции. Значение базового адреса сегмента умножается на 16 (сдвиг на 4 разряда влево) и суммируется со значением смещения в сегменте. В результате получается 20-битовое значение физического адреса. При суммировании может возникнуть перенос из старшего бита, который игнорируется. Это приводит к тому, что ОП оказывается как бы организованной по кольцевому принципу. За ячейкой с максимальным адресом FFFFFh следует ячейка с адресом 00000h.

Сегменты физически не привязаны к конкретному адресу ОП, и каждая ячейка памяти может принадлежать одновременно нескольким сегментам, так как базовый адрес сегмента может определяться любым 16-битовым значением. Сегменты могут быть смежными, неперекрывающимися, частично или полностью перекрывающимися. Вместе с тем, в соответствии с алгоритмом вычисления физического адреса, начальные адреса сегментов всегда кратны 16.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

Доброго времени суток… В этой статье я хол бы рассказать что такое использование оперативной памяти компьютера, назначение и выбор ОЗУ. ОЗУ (Оперативное Запоминающее Устройство) представляет собой отдельную часть памяти компьютера. В которой хранятся все временные данные. В отличие от жёсткого диска, оперативная память не может гарантировать пользователю то, что если ее отключить от питания, она сохранит все данные.

Казалось бы, при таком положении вещей назначение и выбор ОЗУ становится непонятным. Для чего подключать к материнской плате устройство, которое не гарантирует пользователю сохранение данных… На самом деле назначение у оперативной памяти довольно таки существенное. Она используется для того, чтобы пользователь получал более быстрый доступ ко всем имеющимся на компьютере приложениям, утилитам и программам.

Более того, если ОЗУ отсутствует, пользователь просто напросто не сможет запускать сложные приложения или сразу несколько из них. Если будет работать только ПЗУ (Постоянно Записывающее Устройство), тогда приложения запускаются очень медленно.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

Что касается использования ОЗУ. То здесь пользователь может выбрать одну из трех моделей. Это DDR, DDR2 и DDR3. Если между первыми двумя платами наблюдается существенная разница в скорости и качестве работы. То третья оперативка не особо отличается от второго варианта.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

Изначально производители и разработчики ОЗУ делали упор непосредственно на скорость. Однако из этого вышло мало полезного. Тогда было решено акцентировать внимание на объеме… Чем выше объем оперативной памяти, тем больше приложений сможет запустить пользователь. Более того, некоторые приложения являются настолько тяжелыми, что на компьютере с плохой «оперативкой» они не запустятся.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

Что касается ценовой категории, то оперативки не стоят дорого. Однако если пользователь решает использовать вторую модель, то наверняка ему придется заменить материнскую плату. Ценовая характеристика которой – высокая. Это обусловлено тем, что разные поколения оперативок соответствуют различным разъемам.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

Нельзя не отметить того, что многие материнские платы предлагают больше входов для ОЗУ, чем один. Здесь всем пользователям следует обратить внимание на то, что для того, чтобы задействовать оба разъема, необходимо подбирать одинаковые по объему устройства.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

То есть, если поставить ОЗУ с объемами 1 и 2 гигабайта, то работать будет только 2. Если же ставить 2 и 2 гигабайта, тогда работать будут оба устройства. Нужно учитывать это перед приобретением устройства. Имеются статистические и динамические ОЗУ. Первое устройство стоит намного дешевле. Однако в скорости работы оно довольно таки сильно уступает динамическим оперативкам. Кроме того, производители динамических ОЗУ пошли по пути увеличения объема. Что касается статистических, то в них разрабатывалась скорость и частота.

Использование оперативной памяти компьютера, назначение и выбор ОЗУ

Если пользователь работает только с простыми программами. Офисными или прикладными, то ему нет необходимости тратить крупную денежную сумму. Динамические ОЗУ необходимы для нормальной работы видеоигр или графических редакторов.

Заключение

Напоследок надо сказать о том, что ОЗУ не гарантирует сохранность данных. Как указывалось выше. Именно поэтому, когда пользователь проводит ту или иную работу, то ему необходимо либо постоянно сохранять все изменения, либо настроить автоматическое сохранение.

что важно и что не очень

 

Здравствуйте мальчики и девочки. Настало время разобраться с оперативной памятью. Точнее мы уже много раз разбирались, но сегодня пройдёмся ещё разок. Скорее всего вы зашли сюда для того чтоб познать некоторые моменты для покупки новой памяти?

В принципе в предложенных описаниях на витринах различных магазинов ничего непонятного нету (это на мой взгляд). Но если вы так не считаете, то милости прошу прочесть мой пост про характеристики оперативной памяти. Надеюсь вы почерпнёте для себя что-то ценное.

Сначала начну с самых важных параметров, о насущном нужно говорить сразу. Тянуть кота за хвост не благодарное дело :). Итак, самым важными параметрами планок памяти являются: частота, объём и пропускная способность. Есть ещё несколько дополнительных, но эти три самые важные. Давайте разберём всё по порядку и поподробнее.

 

Тактовая частота

Измеряется в мегагерцах (МГц) и отвечает непосредственно за скорость работы. Процессор и память работают в связке. И от того как они будут сбалансированы — будет зависеть общая производительность. Одна из первых (и главных) характеристик которая указывается в спецификациях.

  • Первый момент

Бытует мнение что чем выше мегагерцевость памяти, тем комп будет работать быстрее. Но это не совсем так, точнее совсем не так. Если ваш проц не поддерживает работу с высокоскоростной ОЗУ то толку от того что вы купите быструю память нету абсолютно никакого. Я думаю это и так понятно, но есть ещё один очень важный момент.

  • Второй момент

Я к сожалению тестами не занимаюсь (пока), но вот поискав в сети всякие графики можно понять следующее. Что есть допустим какой-то процессор и с ним тестируют планки с разной частотой и быстрые и медленные. И типа, разницы нету никакой от быстрой памяти, или она минимальная. Я могу из личного опыта сказать лишь следующее.

Всё зависит от самого процессора и приложений которые на нём запускаются. Есть процессоры которые поддерживают высокую память по МГц, но толку от этого тоже не будет если этот процессор сам по себе медленный.

Вот допустим ваш проц поддерживает планки в 4000 МГц, но сам проц слабенький. Вы купили память в 4000 МГц и ждёте чуда. Но его не будет. Ваша система будет работать примерно также как ели-бы вы поставили планки 2000 МГц. Проц просто не сможет обрабатывать тот поток данных, которые озу ему сможет поставлять. Скорость всей системы упрётся в возможности CPU. Это очень тонкий момент и его нужно чувствовать.

 

Оптимальное решение за вами

Нужно понимать некий баланс, некие рамки в которые стоит вписаться. Это я имею в виду, если вы хотите грамотно инвестировать денежные единицы при покупке. Если много средств на инвестирование в компьютер, то можно брать по максимуму и не парится. Точных закономерных цифр не могу дать, так как опираться на чужие тесты тоже не есть правда. Скажу лиши одно. В данный момент идёт эпоха новой DDR4 и на DDR3 уже не стараются собирать.

Оптимальный выбор при покупке DDR4 будет от 2600 до 3200 МГц. По ценам там разброс небольшой. Соответственно чем больше — тем лучше. Если у вас CPU не сильно шустрый, берите память ближе к 2600. Процессор средненький или чуть выше среднего сегмента? Берите 3200.

Если брать выше 3200 то придётся и брать более мощный процессор, так как велик риск того что более быструю память медленный проц «не сможет раскрыть». Если вы берёте систему под игры, то от памяти там мало будет что зависеть. Есть какое-то влияние оперативы на fps, то оно минимально. В играх основной упор идёт на видеокарту и процессор. Я думаю понятно, едем далее.

 

Объём

Тут вопрос такой, риторический. Сильно много это лишняя трата денег, а сильно мало это путь к тормозам. Этот параметр как наверно вы знаете измеряется в Гигабайтах (Гб). И влияет он на то, сколько процессов память сможет обрабатывать одновременно. Или сможет ли вообще обработать какой нибудь большой-тяжёлый процесс.

Каждая запущенная программа (процесс) занимает какое-то количество объёма оперативы. Также каждая вкладка в вашем браузере занимает отдельный кусочек ОЗУ. Понятное дело, что чем её больше — тем лучше. Но если у вас ограниченный бюджет, то лучше её подрасчитать.

Эта характеристика тоже влияет на скорость, но косвенно. Пример: если у вас 1 Гб быстрой DDR4 в 4000 МГц — то тормоза у вас будут жёсткие. Верно и обратное. Если у вас 16 Гб медленной 200 МГц — то тормоза будут тоже жёсткие. Опять таки важен баланс. Нужно опираться на свои потребности. Могу лишь дать некоторые рекомендации.

  • Если вы только лазаете на интернете, то вам хватит и 4 Гб. Ну может 5 в некоторых случаях.
  • Если интернет и игры в средних настройках то 8 Гб. В принципе это сейчас золотой минимум, которым комплектуются компы.
  • Вы пользуетесь ещё и довесом крутыми программами типа Фотошопа или Вегаса и играете в игры на высоких настройках — то 16 Гб.

Более 16-ти это уже запас, который вряд ли вы используете полностью. То есть память будет полупустая. Исключением к большим объёмам будет только то, что вы рисуете к примеру 3D модели. Но в принципе 16 хватит с головой. Это на момент 2019 года.

В любом случае, дополнительные плашки можно докупить потом, если вам не хватит. Если у вас много денег, то берите, как можно больше. У вас появится возможность создать дополнительный буст с помощью Ram диска. Ещё небольшое дополнение: сама Windows, или любая другая ОС съедает по дефолту какое-то количество памяти.

 

Пропускная способность

Этот параметр не сильно важен, так как он по сути зависит от тактовой частоты. Измеряется в мегабайтах на секунду времени (MB/s). Чем выше частота памяти — тем выше пропускная способность и наоборот. Я лично на неё не обращаю внимания, так как это лишь отражение скорости в более понятном виде. То есть, частота работы наверно не сильно понятна покупателям, а вот скорость передачи мегабайт — более ясно.

Есть ещё и подводный камень

Пропускную способность в основном сопоставляют с возможностями процессора. А именно есть такая характеристика в его спецификациях как «предел Гигабайт/сек» по шине. Вот к примеру i5 9400F:

Но тут есть большое НО. Значение в Гигабайтах! А в характеристиках памяти указана в мегабайтах. В CPU закладывают большой запас и упереться в эти цифры практически нереально. Поэтому я и не смотрю на данный параметр.

 

Частая путаница в названиях модулей

Это важный момент на котором спотыкаются новички при выборе. Да даже сами магазины путают эти цифры в своих прайс листах. О чём я? Иногда вначале названия моделей планок пишут такое обозначение как: «PC-12800, PC-14900» и т.д.

Это цифры, а точнее стандарты означающие пропускную способность в двухканальном режиме.

Иногда некоторые витрины вообще ставят эти цифры показывающие одноканальный режим. В одном магазине написано так, в другом написано по-другому. Короче на это тоже не стоит обращать внимание, так есть более важный параметр как частота. Это лишь цифры показывающие пропускную способность в одно канальной и много канальной работе.

 

Тайминги

Это тоже такая сложная тема. Не сильно важная в принципе. Тайминги — это временные задержки между тактами. На тайминги смотрят в последнюю очередь изучая производительность оперативной памяти. Скажу сразу.

Чем они ниже — тем лучше. Быстрее работает ОЗУ.

С каждым новым поколением DDR растут и тайминги. И в основном чем ниже её частота, тем ниже и тайминги. Кстати говоря, в БИОСе немного можно их понизить, на пару пунктов. Если у вас есть два кандидата на сравнение, то выбирайте того у кого эти значения ниже. Две модели идентичные при прочих показателях будут разные по скорости, если у одного будут тайминги ниже. Тот у кого они ниже, будет чуть побырей.

Прирост от низких таймингов не такой уж и большой. От того что вы выберите плашки с низкими значениями вы получите максимум 5-7 процентов прироста производительности. Много писать тут не хочу, чуть поподробнее тут. Эта тема слишком преувеличена в значимости, мне кажется.

Просто старайтесь подобрать значения пониже. Если таких вариантов нет, то ничего страшного, большой скорости вы не потеряете.

Также вспоминаются мне люди, которые с ума сходят по этим циферкам. Они из того же легиона, что и те кто скрупулёзно выбирает типы памяти SSD. Серьёзно ребят, эти цифры это миллисекунды, чё там по ним с ума сходить???

На некоторых площадках есть такие хитрые обозначения как tRCD и tRP и CL. Это всё относится к этим же параметрам. CL — это латентность, tRCD — это время открытия первой строчки кода данных. tRP — это время между закрытием одного процесса (строчки кода) и открытием следующего. Вообщем всё это относится к этим параметрам и заостряться на этом думаю нету смысла.

 

Многоканальность

Сейчас уже вряд ли можно найти плашки не поддерживающие эту фишку. Много канальный режим это ускорение работы за счёт количества самих планок. Один и тот же процесс планки будут выполнять вместе.

Это что-то наподобие многоядерности процов. Аналогично это можно описать так: допустим есть несколько мешков картошки и их нужно перетаскать. Два грузчика выполнят эту работу быстрее если они буду каждый мешок таскать вместе, нежели каждый по одному. Три грузчика ещё быстрее. Самый популярный это 2-х канальный режим.

За счёт 2-х канального режима память ускорится на процентов 15-20. Но не в двое как некоторые считают.

Трёх и четырёх канальные памяти я не пробовал, поэтому реальный прирост от них не могу обозначить. Теоретически такая память ещё быстрее. Но. 3 и 4 должен поддерживать ваш процессор и материнская плата. Должны быть соответствующие слоты и их количество.

 

Остальные не сильно важные технические характеристики оперативной памяти

С основными разобрались, теперь перейдём к не совсем важным. Это опять таки на мой субъективный взгляд основанный на личном опыте.

 

Радиатор и внешний вид

В наше современное время производители стараются как-то выделится и уникализировать свой дизайн устройств. Красота это и есть основная функция всех этих крутых радиаторов. То есть, она лишь даёт чисто эстетическое удовольствие. Всё. Вот например внешний вид Kingston.

Сейчас уже и подсветки там есть и мигалки на плашках, и свистоперделки и тому подобное. Если вы не эстет, то можете брать без радиаторов, сэкономите немного на этом.

По поводу охлаждения. Каждое поколение эволюционирует в уменьшении вольтажа. Короче нагрев снижается и это здорово. За это спасибо производителям. В результате смысла в радиаторе нету.

Есть только один небольшой смысл. Радиатор немного вам поможет, если вы будете заниматься разгоном, то есть повышать вольтаж. Если кто не знает, память тоже можно гнать (повышать частоту). Но есть риски в том, что она может не выдержать. Для разгона радиатор может и пригодится. Но активное охлаждение, или большие радиаторы — это излишняя трата денег, от которого 0% КПД.

 

Поддержка ECC и буферизация

Эта полезные функции, но в домашних компах редко встречается. ECC — это отыскивание ошибок в работе памяти и их корректировка. Иногда так бывает что комп просто не с того не с сего виснет. Возможно это какие-то «непонимания» CPU с RAM, или наоборот. У меня бывало такое, но это редкие случае, возникающие тогда когда память забита под завязку. В общем именно для этого и придумали ECC.

Такую опцию в основном поддерживают планки для серверов. Короче, для дома можно покупать без поддержки этой функции. Ничего плохо не случится. Для дома есть волшебная кнопка «Reset», а сервера должны работать 24/7.

Тоже можно сказать и про буферизацию. Сейчас почти каждая железка имеет кэш, вот и с RAM придумали нечто подобное. Повышается надёжность за счёт дополнительного буфера на модулях. В буфере будут находится часто используемые данные. Такую память ставят только для серверов.

 

XMP профиль

Не везде этот параметр указывается. Но к примеру на маркете это можно увидеть. Что конкретно означают эти три буквы?

Это некие заготовки для разгона вашей рам от Intel. Есть несколько параметров, которые можно разогнать: частота, вольтаж и тайминги. Так вот, xmp это типа пресетов-заготовок. Это некие пресеты, которые были заготовлены и протестированы на заводе изготовителя. Короче, вам не придётся думать о каждом параметре отдельно, так как есть эти пресеты.

Совместимость только с процами Интел. Да и не все материнки скорее это будут уметь, точнее не все БИОСы. У меня есть такая память с xmp и я этим не пользовался вообще не разу. Если у вас какой-нибудь Райзен, то для вас это сразу будет недоступно. Подробнее вот на оф сайте.

На мой взгляд, это чисто маркетинговый ход. Польза есть, но минимальная, и за это просят деньги. Если вы не планируете заниматься разгоном, то эта функция для вас бесполезна. Да даже если вы и будете заниматься разгоном, то вполне можно обойтись и без этих xmp профилей.

 

В заключении

В принципе всё основное разобрали, хоть и не тщательно, но всё таки разобрали. Почти по каждому отдельному пункту у меня есть посты. Я тут не рассматривал такие вопросы типа: низкопрофильность, какую именно выбрать DDR (какого поколения), какого типа, как отличаются для ноутбука, какого производителя и тому подобное. Постарался впихнуть только самое нужное и не банальное.

По выбору нужно создавать отдельный пост, так как тут уже накатилась нехилая простыня :). Банальные вопросы я думаю вы и сами сможете решить. Надеюсь я подкинул вам инфу про характеристики оперативной памяти в нужный момент. Возможно вы определяетесь с выбором. Если вам есть, что добавить или подкорректировать, то милости прошу в коменты.

А на этом у меня всё. До свидания друзья и до новых встреч.

 

 

Основные характеристики оперативной памяти и ее назначение

Опубликовано 20.08.2018 автор — 0 комментариев

Приветствую, дорогие читатели! Сегодня мы с вами разберем основные характеристики оперативной памяти и ее назначение. Захватывающих историй о том, как издревле перед человечеством остро стояла проблема хранения данных и слезшая с пальмы человекоподобная обезьяна выточила из булыжника первую планку памяти, не будет – это никак не поможет при выборе ОЗУ для вашего компа.

Что такое оперативная память и зачем она нужна

Если проводить аналогию с работой человеческого мозга, оперативка – это кратковременная память. Она, например, запоминает пункт «Полить фикус по дороге из кухни в спальню» и тому подобное. Можно провести небольшой эксперимент: попросить человека, увлеченного компьютерной игрой или сочинением рассказа, через 15 минут помешать суп. С высокой долей вероятности он забудет это сделать – задача попросту вытесняется новыми данными.

В компьютере оперативка – своеобразное связующее звено между жестким диском и процессором. На работающем компе ОЗУ сохраняет часть исполняемого кода программ и ОСи, а также все промежуточные данные. Хранить все это на HDD и даже SSD не имеет смысла: у самого шустрого харда скорость чтения информации гораздо ниже.

И кстати, такое все же происходит при переполнении оперативки, когда в дело вступает файл подкачки, записывая на жесткий диск все то, что не поместилось в оперативке. Процесс можно обнаружить даже на глаз по характерной симптоматике – существенному снижению быстродействия работы ПК.Процессор может обмениваться данными с оперативкой как непосредственно, так и через аппаратный кеш. Так как ОЗУ является энергозависимой, при отключении питания, содержащаяся в ней информация стирается. Достаточно даже незначительного скачка напряжения, провоцирующего перезагрузку рабочей станции.

Именно поэтому рекомендуется сохранить все изменения в документах, с которыми вы работаете, если собираетесь отойти от компа. Ну и не забываем периодически сохраняться! В режиме же гибернации компьютер записывает содержимое оперативки на жесткий диск.

Чуть не забыл главное: представляет собой оперативка длинную узкую планку, в большинстве случаев располагающуюся на материнке вертикально. Обычно это модуль зеленого цвета, если производитель не укомплектовал его дополнительным кулером или радиатором.

Итак, рассмотрим основные технические параметры оперативки, которые помогут определиться с выбором.

Типы памяти

Вообще, тема о типах оперативной памяти заслуживает отдельной публикации. Скажу так: стандарт определяет большинство параметров и существенно влияет на быстродействие компьютера в целом.

Те, кому интересно вникнуть в такие тонкости, могут почитать соответствующую статью. Здесь же я повторяю рекомендацию: при покупке комплектующих ориентируйтесь на стандарт DDR4 как самый современный – мы же не хотим, чтобы новый компьютер уже через год морально устарел?

Объем

Параметр, который влияет на количество информации, которую может запомнить одна планка. Для офисной «рабочей лошадки» сегодня достаточно 2 Гб оперативки.

Исключение – компьютер дизайнера, работающего с «Фотошопом» и подобными прожорливыми программами. В этом случае и 4 Гб не всегда достаточно.Для домашнего медиацентра, который используется для просмотра фильмов, караоке, прослушивания музыки, серфинга интернета и прочих радостей, 4 Гб тоже вполне хватит.Геймеры в последнее время (впрочем, как и всегда) страдают больше всех: для запуска современных игр даже 8 Гб может оказаться мало. Если думать о перспективе, лучше укомплектовать компьютер 16 Гб – неизвестно, что вкусного игроделы «выкатят» даже весной следующего года.

В качестве примера можно привести Far Cry 5 – последний шутер из культовой серии, особенностью которого является открытый бесшовный мир. Переход между локациями незаметен при условии, что объема оперативки достаточно для того, чтобы запомнить все недвижимые объекты, а также положение героя, его компаньонов, противников и техники.

Что касается музыкантов, то требуемый объем оперативки зависит от прочего оборудования. Гитаристу, выводящему звук электрогитары через Guitar Rig, хватит и 4 Гб. Электронщику, использующему FL Studio и прочие DAW (цифровые звуковые рабочие станции), особенно несколько штук одновременно, и 8 Гб может оказаться недостаточно.

Частота

Грубо говоря, это пропускная способность каналов, передающих данные на материнскую плату и далее в процессор или на жесткий диск. Чем выше этот показатель, тем лучше для производительности. Однако и стоять такая планка будет дороже.

При подборе комплектующих крайне желательно, чтобы частота оперативной памяти совпадала с частотой материнской платы.

Покупать ОЗУ с частотой выше, чем у материнской платы, не имеет смысла – она не сможет работать быстрее, чем это позволяет «база».

Тайминги

Что такое тайминги и как они влияют на производительность оперативки в целом, мы с вами разберем в отдельной теме. Сейчас же достаточно знать: это характеристика задержки данных при их переносе между разными модулями ОЗУ. Чем меньше это значение, тем выше быстродействие оперативки.

Рабочее напряжение

Минимальное напряжение, достаточное для стабильной работы планки памяти при стандартных настройках таймингов и частоты. Их повышение при оверклокинге требует соответственно и повышение напряжения. Это, в свою очередь, сопровождается повышением температуры некоторых блоков материнки и может повлиять на быстродействие и стабильность системы в целом. А вы как думали? Разогнать комп – это вам не просто кнопки нажать, а подходящие кнопки в правильной последовательности.

Производитель детали

Как по мне, этот параметр вообще не играет роли. Однако многие со мной не согласятся, так как доверяют одним производителям и совершенно игнорируют других. Если вы из этих, то в качестве хорошо показавших себя производителей могу рекомендовать таких:

  • Kingston;
  • Transcend;
  • Samsung;
  • Corsair;
  • Hunix.

А вообще, любая планка оперативки проходит многоэтапный контроль качества и при малейшем несоответствии стандартам попросту не попадет на прилавок.

Естественно, никто не застрахован от проявления скрытых дефектов или выхода детали из строя по причинам, не поддающимся рациональному объяснению. Впрочем, как и любой электроники.

В заключении хочу добавить, что почти все домашние компьютеры используются в том числе и в качестве игровой приставки – разница только в запускаемых играх и уделяемом им времени. О влиянии оперативной памяти на производительность в играх вы можете почитать здесь.

Спасибо за внимание и до встречи в следующих публикациях. Спасибо всем, кто делится ими в социальных сетях. И не забывайте подписаться на новостную рассылку, чтобы быть в курсе обновлений.

С уважением к вам, автор блога Андреев Андрей

Leave a comment