Оптическая линия это: Ответы Mail.ru: Что такое оптическая линия? – Волоконно-оптическая линия передачи — это… Что такое Волоконно-оптическая линия передачи?

Содержание

Волоконно-оптическая линия передачи — это… Что такое Волоконно-оптическая линия передачи?

Волоко́нно-опти́ческая ли́ния переда́чи (ВОЛП), Волоко́нно-опти́ческая ли́ния свя́зи (ВОЛС) — волоконно-оптическая система, состоящая из пассивных и активных элементов, предназначенная для передачи информации в оптическом (как правило — ближнем инфракрасном) диапазоне.

Элементы ВОЛП

Активные компоненты

  • Мультиплексор/Демультиплексор — широкий класс устройств, предназначенных для объединения и разделения информационных каналов. Мультиплексоры и демультиплексоры могут работать как во временно́й, так и в частотной областях, могут быть электрическими и оптическими (для систем со спектральным уплотнением).
  • Регенератор — устройство, осуществляющее восстановление формы оптического импульса, который, распространяясь по волокну, претерпевает искажения. Регенераторы могут быть как чисто оптическими, так и электрическими, которые преобразуют оптический сигнал в электрический, восстанавливают его, а затем снова преобразуют в оптический.
  • Усилитель — устройство, усиливающее мощность сигнала. Усилители также могут быть оптическими и электрическими, осуществляющими оптико-электронное и электронно-оптическое преобразование сигнала.
  • Лазер — источник монохромного когерентного оптического излучения. В системах с прямой модуляцией, которые являются наиболее распространёнными, лазер одновременно является и модулятором, непосредственно преобразующим электрический сигнал в оптический.
  • Модулятор — устройство, модулирующее оптическую несущую по закону информационного электрического сигнала. В большинстве систем эту функцию выполняет лазер, однако в системах с непрямой модуляцией для этого используются отдельные устройства.
  • Фотоприёмник (фотодиод) — устройство, осуществляющее опто-электронное преобразование сигнала.

Пассивные компоненты

  • Оптический кабель, светонесущими элементами которого являются оптические волокна. Наружная оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов. Оптический кабель может иметь бронирование различного типа и специфические защитные слои (например, мелкие стеклянные иглы для защиты от грызунов).
  • Оптическая муфта — устройство, используемое для соединения двух и более оптических кабелей.
  • Оптический кросс — устройство, предназначенное для оконечивания оптического кабеля и подключения к нему активного оборудования.

Преимущества ВОЛП

Волоконно-оптические линии обладают рядом преимуществ перед проводными (медными) и радиорелейными системами связи:

  • Малое затухание сигнала (0,15 дБ/км в третьем окне прозрачности) позволяет передавать информацию на значительно большее расстояние без использования усилителей. Усилители в ВОЛП могут ставиться через 40, 80 и 120 километров, в зависимости от класса оконечного оборудования.
  • Высокая пропускная способность оптического волокна позволяет передавать информацию на высокой скорости, недостижимой для других систем связи.
  • Высокая надёжность оптической среды: оптические волокна не окисляются, не намокают, не подвержены слабому электромагнитному воздействию.
  • Информационная безопасность — информация по оптическому волокну передаётся «из точки в точку».
  • Высокая защищённость от межволоконных влияний — уровень экранирования излучения более 100 дБ. Излучение в одном волокне совершенно не влияет на сигнал в соседнем волокне.
  • Пожаро- и взрывобезопасность при изменении физических и химических параметров
  • Малые габариты и масса

Недостатки ВОЛП

  • Относительная хрупкость оптического волокна. При сильном изгибании кабеля (особенно, если в качестве силового элемента используется стеклопластиковый пруток) возможна поломка волокон или их замутнение из-за возникновения микротрещин.
  • Сложность соединения в случае разрыва.
  • Сложная технология изготовления как самого волокна, так и компонентов ВОЛП.
  • Сложность преобразования сигнала (в интерфейсном оборудовании).
  • Относительная дороговизна оптического оконечного оборудования. Однако, оборудование является дорогим в абсолютных цифрах. Соотношение цены и пропускной способности для ВОЛП лучше, чем для других систем.
  • Замутнение волокна с течением времени вследствие старения.

Применение ВОЛП

Достоинства волоконно-оптических линий обусловило их широкое применение в телекоммуникационных сетях самых разных уровней — от межконтинентальных магистралей до корпоративных и домашних компьютерных сетей.

Монтаж ВОЛП

Укладка кабеля

Оптический кабель для линий связи может быть уложен следующим образом:

  • В кабельную канализацию или кабельный коллектор;
  • Непосредственно в грунт — в предварительно подготовленную траншею или с использованием кабелеукладчика;
  • Подвес кабеля — воздушная линия связи.

Для каждого случая изготавливаются специальные кабели, отличающиеся типом оболочки, брони, допустимым растягивающим усилием и другими параметрами.

Монтаж муфт и кроссов

Для сращивания оптических кабелей применяются оптические муфты, представляющие собой пластиковые контейнеры, внутри которых расположена сплайс-пластина, удерживающая оптические волокна.

Оптический кросс представляет собой устройство, посредством которого осуществляется соединение оптических волокон кабеля со стандартными разъёмами. Кросс выполняется в виде металлической (как правило) коробки, на внешней панели которой находятся оптические разъёмы, а внутри — сплайс-пластина. Соединение разъёмов кросса с волокнами кабеля осуществляется с помощью пигтейлов — коротких кусков оптического волокна с разъёмами. Разъём пигтейла с внутренней стороны кросса соединяется с внешним разъёмом кросса, а другой конец приваривается к волокну оптического кабеля.

Оптические кроссы могут изготавливаться для монтажа в стандартную 19-дюймовую стойку, монтажа на стену и в других исполнениях. Кроссы могут иметь возможность открываться без демонтажа или не иметь таковой.

Сварка оптических волокон осуществляется в полуавтоматическом режиме специальными сварочными аппаратами.

Взаимодействие ВОЛП с сильным электромагнитным излучением

Сильное электромагнитное излучение способно вносить межканальные помехи в системах HDWDM и приводить к увеличению количества ошибок. Данное явление характерно в системах телематики на железной дороге, где ВОЛП прокладывается на опорах контактной сети в непосредственной близости от контактного провода. Ошибки появляются в моменты переходных процессов, например, при коротком замыкании. Данное явление объясняется эффектами Керра и Фарадея.

См. также

Примечания

Ссылки

волоконно-оптические линии связи — это… Что такое волоконно-оптические линии связи?


волоконно-оптические линии связи
волоко́нно-опти́ческие ли́нии свя́зи
(ВОЛС), линии оптической связи, в которых передача информации осуществляется с помощью волоконно-оптических элементов. ВОЛС состоит из передающего и приёмного оптических модулей, волоконно-оптических кабелей и волоконно-оптических соединителей. Оптическое волокно – самая совершенная среда для передачи больших потоков информации на большие расстояния. Оно изготовлено из кварца, основу которого составляет двуокись кремния, – широко распространённого и недорогого материала, в отличие от меди, используемой в обычных проводах. Оптическое волокно очень компактное и лёгкое, его диаметр всего ок. 100 мкм. Волоконные световоды представляют собой волоконно-оптические жгуты, склеенные или спечённые у концов, защищённые непрозрачной оболочкой и имеющие торцы с полированной поверхностью. Стеклянное волокно – диэлектрик, поэтому при строительстве волоконно-оптических систем связи отдельные оптические волокна не нуждаются в изоляции друг от друга. Долговечность оптического волокна – до 25 лет.

При создании волоконно-оптических линий связи необходимы высоконадёжные электронные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы, а также оптические соединители с малыми оптическими потерями. Поэтому для монтажа таких линий требуется дорогостоящее оборудование. Однако преимущества от применения волоконно-оптических линий связи настолько велики, что, несмотря на перечисленные недостатки оптических волокон, эти линии связи всё шире используются для передачи информации. Скорость передачи данных может быть увеличена за счёт передачи информации сразу в двух направлениях, т. к. световые волны могут распространяться в одном оптическом волокне независимо друг от друга. Это даёт возможность удвоить пропускную способность оптического канала связи.

Волоконно-оптические линии связи устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. К таким линиям связи невозможно подключиться без нарушения целостности линии. Впервые передача сигналов по оптическому волокну была осуществлена в 1975 г. Ныне быстрыми темпами развиваются системы дальней оптической связи на расстояния в многие тысячи километров. Успешно эксплуатируются трансатлантические линии связи США – Европа, Тихоокеанская линия США – Гавайские острова – Япония. Ведутся работы по завершению строительства глобальной волоконно-оптической линии связи Япония – Сингапур – Индия – Саудовская Аравия – Египет – Италия. В России компания ТрансТелеКом создала волоконно-оптическую сеть связи протяжённостью более 36 000 км. Она дублирована спутниковыми каналами связи. В кон. 2001 г. создана единая магистральная цифровая сеть связи. Она обеспечивает услуги междугородной и международной телефонной связи, Интернета, кабельного телевидения в 56 из 89 регионов России, где проживает 85–90 % населения.

Энциклопедия «Техника». — М.: Росмэн. 2006.

.

  • волокна химические
  • волоконно-оптический кабель

Смотреть что такое «волоконно-оптические линии связи» в других словарях:

  • Волоконно-оптические линии связи — Волоконно оптическая линия связи (ВОЛС) представляет собой волоконно оптическую систему, состоящую из пассивных и активных элементов, предназначенных для передачи оптического сигнала по оптоволоконному кабелю. Содержание 1 Элементы ВОЛС 2 Монтаж… …   Википедия

  • волоконно-оптическая система связи — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] волоконно оптическая коммуникационная система Передача модулированной или немодулированной оптической энергии по волоконно оптической среде,… …   Справочник технического переводчика

  • РД 45.047-99: Линии передачи волоконно-оптические на магистральной и внутризоновых первичных сетях ВСС России. Техническая эксплуатация. Руководящий технический материал — Терминология РД 45.047 99: Линии передачи волоконно оптические на магистральной и внутризоновых первичных сетях ВСС России. Техническая эксплуатация. Руководящий технический материал: 3.1.18 «АВАРИЯ» параметры качества вышли за пределы… …   Словарь-справочник терминов нормативно-технической документации

  • волоконно-оптический кабель — Кабель, содержащий одно или несколько оптических волокон и предназначенный для передачи данных. [http://www.lexikon.ru/dict/net/index.html] волоконно оптический кабель [Лугинский Я. Н. и др. Англо русский словарь по электротехнике и… …   Справочник технического переводчика

  • волоконно-оптический адаптер — Пассивное устройство, используемое для подключения оптических вилок и соединения оптических волокон. [СН РК 3.02 17 2011] волоконно оптический адаптер Компонент коммутационного оборудования, предназначенный для позиционирования и соединения двух… …   Справочник технического переводчика

  • волоконно-оптическая линия — Совокупность волоконно оптических сегментов и репитеров, которые в соединении образуют передающий путь. [Источник] Тематики оптические линии связи EN fiber optic link …   Справочник технического переводчика

  • волоконно-оптический аттенюатор — Компонент, установленный в волоконно оптической передающей системе с целью уменьшения мощности оптического сигнала. Часто используется для ограничения оптической мощности, полученной фотодетектером, до пределов чувствительности оптического… …   Справочник технического переводчика

  • Волоконно-оптическая линия передачи — (ВОЛП), Волоконно оптическая линия связи (ВОЛС)  волоконно оптическая система, состоящая из пассивных и активных элементов, предназначенная для передачи информации в оптическом (как правило  ближнем инфракрасном) диапазоне. Содержание 1 …   Википедия

  • Каналы утечки информации, передаваемой по оптическим линиям связи — Проверить информацию. Необходимо проверить точность фактов и достоверность сведений, изложенных в этой статье. На странице обсуждения должны быть пояснения …   Википедия

  • ЭЛЕКТРОННЫЕ СРЕДСТВА СВЯЗИ — техника передачи информации из одного места в другое в виде электрических сигналов, посылаемых по проводам, кабелю, оптоволоконным линиям или вообще без направляющих линий. Направленная передача по проводам обычно осуществляется из одной… …   Энциклопедия Кольера

Книги

  • Волоконно-оптические линии связи и их защита от внешних влияний. Учебное пособие, Соколов Станислав Александрович. Даны основные сведения о физических основах, строении и применении оптических волокон, принципах и технологии передачи оптических сигналов, строительстве и эксплуатации волоконно-оптических… Подробнее  Купить за 1531 грн (только Украина)
  • Волоконно-оптические линии связи и их защита от внешних влияний. Учебное пособие, Соколов Станислав Александрович. Даны основные сведения о физических основах, строении и применении оптических волокон, принципах и технологии передачи оптических сигналов, строительстве и эксплуатации волоконно-оптических… Подробнее  Купить за 1195 руб
  • Волоконно-оптические линии связи и их защита от внешних влияний, Соколов С.. Даны основные сведения о физических основах, строении и применении оптических волокон, принципах и технологии передачи оптических сигналов, строительстве и эксплуатации волоконно-оптических… Подробнее  Купить за 869 руб
Другие книги по запросу «волоконно-оптические линии связи» >>

Использование волс. Волоконно-оптические линии связи. Электронные компоненты систем оптической связи

Волоконно-оптические линии связи — это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием «оптическое волокно».

Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. Основания так считать вытекают из ряда особенностей, присущих оптическим волноводам.

1.1 Физические особенности.
  1. Широкополосность оптических сигналов, обусловленная чрезвычайно высокой частотой несущей (Fo=10**14 Гц). Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 10**12 бит/с или Терабит/с. Говоря другими словами, по одному волокну можно передать одновременно 10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут.
  2. Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Лучшие образцы российского волокна имеют затухание 0.22 дБ/км на длине волны 1.55 мкм, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. Для сравнения, лучшее волокно Sumitomo на длине волны 1.55 мкм имеет затухание 0.154 дБ/км. В оптических лабораториях США разрабатываются еще более «прозрачные», так называемые фторцирконатные волокна с теоретическим пределом порядка 0,02 дБ/км на длине волны 2.5 мкм. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.
1.2 Технические особенности.
  1. Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди.
  2. Оптические волокна имеют диаметр около 100 мкм., то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.
  3. Стеклянные волокна — не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.
  4. Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации.

    Существует способ скрытой передачи информации по оптическим линиям связи. При скрытой передаче сигнал от источника излучения модулируется не по амплитуде, как в обычных системах, а по фазе. Затем сигнал смешивается с самим собой, задержанным на некоторое время, большее, чем время когерентности источника излучения.

    Существует два типа обозначения, повторяющиеся для оптических волокон, которые имеют свои собственные характеристики и цели. Одним из них является одномодовое оптическое волокно, которое имеет только один возможный путь распространения и наиболее широко используется для передачи на большие расстояния. Многомодовое волокно позволяет распространять свет в нескольких режимах и наиболее часто используется в локальных сетях из-за его умеренной стоимости.

    Оптические волокна обычно состоят из цилиндрического и прозрачного центрального сердечника из чистого стекла, окруженного слоем материала с более низким показателем преломления. То есть оптическое волокно состоит из материала с более высоким показателем преломления, охватываемого материалом с более низким показателем преломления. Вокруг корпуса по-прежнему есть крышка из пластмассы, необходимая для защиты интерьера от механических повреждений.

    При таком способе передачи информация не может быть перехвачена амплитудным приемником излучения, так как он зарегистрирует лишь сигнал постоянной интенсивности.

    Для обнаружения перехватываемого сигнала понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видность интерференционной картины может быть ослаблена как 1:2N, где N — количество сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

    Идея о том, что свет может транспортироваться через изогнутые среды, был представлен исследователем Джоном Тиндалом Королевскому обществу. Через эксперимент, проведенный с помощью фонарика и ведра водопроводной воды, свет стекал вместе с водой, как если бы она была сложена. Именно на основе этого принципа было бы создано 82 года спустя оптическое волокно.

    В возрасте 25 лет физик сделал первые эксперименты, которые приведут к созданию инкапсулированного провода, способного распространять свет с малыми потерями. Капани попыталась получить степень доктора философии в области оптики в Лондонском университете, изучив внутреннее полное отражение света, предмет, который интересовал его с детства. По общему отражению вода смогла сделать «кривую» в классическом эксперименте Тиндала. Изучение этого явления стремится понять, что заставляет свет в условиях высокой рефракции отражаться в одной среде или переходить на другую среду.

  5. Важное свойство оптического волокна — долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие.

Есть в волоконной технологии и свои недостатки:

  1. При создании линии связи требуются высоконадежные активные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение. Точность изготовления таких элементов линии связи должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.
  2. Другой недостаток заключается в том, что для монтажа оптических волокон требуется прецизионное, а потому дорогое, технологическое оборудование.
  3. Как следствие, при аварии (обрыве) оптического кабеля затраты на восстановление выше, чем при работе с медными кабелями.

Преимущества от применения волоконно-оптических линий связи (ВОЛС) настолько значительны, что несмотря на перечисленные недостатки оптического волокна, эти линии связи все шире используются для передачи информации.

Пытаясь «ловить» свет в одной среде, физик использовал два цилиндра, один внутри другого. На протяжении всех исследований физик понял, что стеклянная пленка с более низким показателем преломления, чем цилиндр, будет функционироват

ВОЛС — это… Что такое ВОЛС?

Волоконно-оптическая линия связи (ВОЛС) представляет собой волоконно-оптическую систему, состоящую из пассивных и активных элементов, предназначенных для передачи оптического сигнала по оптоволоконному кабелю.

Элементы ВОЛС

Схема волоконно-оптической линии связи

  • оптический кабель — состоит из оптических волокон, находящихся под общей защитной оболочкой. Наружняя оболочка кабеля может быть изготовлена из различных материалов: поливинилхлорида, полиэтилена, полипропилена, тефлона и других материалов.
  • Мультиплексор/Демультиплексор — для объединения нескольких каналов в один для передачи его по оптоволокну.
  • Регенератор — ставится на магистрали для усиления сигнала.
  • лазер — для формирования первоначального оптического сигнала с целью его последующей передачи по кабелю;
  • датчики — для приёма сигнала на концах оптоволоконного кабеля.

Иногда в состав ВОЛС и их системы также включают конвертер (преобразователь) информационной среды, передающий принятый датчиками оптический сигнал для последующей передачи по кабелям наподобие UTP либо по оптическим кабелям с другими характеристиками.

Монтаж ВОЛС

Применение ВОЛС

ВОЛС могут как образовывать новую сеть, так и служить для объединения уже существующих сетей — участков магистралей оптических волокон, объединённых физически — на уровне световода, либо логически — на уровнях протоколов передачи данных.

В случае объединения на физическом уровне используется сварка волокна или механическое соединение, позволяющее создать физическое соединение между отправителем и получателем сигнала, что даёт высокий уровень безопасности отправляемым данным.

В случае объединения на логическом уровне применяются протоколы маршрутизации, реализованные в соответствии со стандартами (разработками) вычисляемых векторов коммутации пакетов данных.

ВОЛС целесообразно использовать при объединении локальных сетей в разных зданиях, в многоэтажных и протяжённых зданиях, а также в сетях, где предъявляются особо высокие требования к информационной безопасности и защите от электромагнитных помех. В настоящее время ВОЛС считаются самой совершенной физической средой для передачи информации.

См. также

Ссылки

Wikimedia Foundation. 2010.

Волоконная оптика — Википедия

Волоконная оптика — под этим термином понимают

  • раздел оптики, который изучает физические явления, возникающие и протекающие в оптических волокнах, либо
  • продукцию отраслей точного машиностроения, имеющую в своём составе компоненты на основе оптических волокон.

К волоконно-оптическим приборам относятся лазеры, усилители, мультиплексоры, демультиплексоры и ряд других. К волоконно-оптическим компонентам относятся изоляторы, зеркала, соединители, разветвители и др. Основой волоконно-оптического прибора является его оптическая схема — набор волоконно-оптических компонентов, соединённых в определённой последовательности. Оптические схемы могут быть замкнутые или разомкнутые, с обратной связью или без неё

Оптические схемы волоконно-оптического лазера и усилителя

Лазер[править | править код]

На рис.1 показана простейшая схема волоконно-оптического лазера. Буквами обозначены: А — активное волокно, Д — диод накачки, М1 и М2 — зеркала. Как и в случае обычных лазеров, здесь мы имеем резонатор с активной средой, образованный активным волокном и зеркалами. Зеркала обеспечивают обратную связь. Одно из зеркал может иметь 100%-ное отражение. Тогда излучение будет выходить только из противоположного конца резонатора. Диодов накачки может быть несколько, а располагаться они могут с разных сторон резонатора.

Усилитель[править | править код]

На рис.2 показана простейшая схема волоконно-оптического усилителя. Она схожа со схемой лазера за тем лишь исключением, что зеркала заменены изоляторами для подавления обратной связи. Изоляторы пропускают свет только в одном направлении.

Устройство волоконно-оптических компонентов[править | править код]

Зеркала и фильтры[править | править код]

Зеркалом называется компонент, отражающий излучение определённой частоты с определённым коэффициентом отражения. Фильтр, в свою очередь, пропускает излучение определённой частоты, как правило, в узком частотном диапазоне, а остальное излучение поглощает или рассеивает. Для изготовления зеркал и фильтров используются дифракционные решётки, нанесенные на участок сердцевины волокна. Аналог штриха выполняет ультрафиолетовая засветка, которая изменяет свойства волокна в месте облучения. Одна и та же дифракционная решётка для разных частот сигнала будет либо зеркалом, либо фильтром. На основе длиннопериодных волоконных решёток могут создаваться широкополосные фильтры, поглощающие в определённом диапазоне длин волн.

Объединители и разветвители[править | править код]

Представляют собой два параллельных волокна, лишённые оболочки и соприкасающиеся между собой. Соприкосновение и фиксация волокон достигается при высоких температурах — выше температуры плавления волокна. Таким образом, участки волокон сплавляются воедино. В зависимости от длины общего участка в результате интерференции волн можно получить произвольный коэффициент деления выходного сигнала по двум выходным волокнам.

Объединители и разветвители могут также строиться на элементах микрооптики, включая микролинзы и частично-прозрачные зеркала с заданным коэффициентом деления.

Известны конструкции 1980-х гг. со сполированными до световедущей жилы и механически соединёнными волокнами. Однако наиболее распространены сплавные.

Активное волокно[править | править код]

Волокно, способное усиливать или генерировать сигнал определённой частоты. Это достигается введением в кварцевое волокно редкоземельных металлов в зависимости от требуемой частоты усиления. Так, иттербиевые (Yb) примеси дают усиление на длине волны 1,06 мкм, а эрбиевые (Er) на длине волны 1,5 мкм. Пик усиления определяется пиком прозрачности той или иной примеси.

Пассивное волокно[править | править код]

Волокно, не обладающее свойствами усиления. Используется для соединения волоконно-оптических компонентов между собой, а также для увеличения общей протяженности оптической схемы, если это необходимо.

Диоды накачки[править | править код]

Как и в случае обычных лазеров для начала усиления и генерации необходима накачка активной среды. Для накачки активных волокон используют полупроводниковые лазерные диоды. На выходе из полупроводникового кристалла лазерный пучок коллимируют и вводят в волокно. Выбор длины волны диодов накачки обусловлен пиками поглощения активных волокон, которые приходятся на узкие диапазоны в районах 0,81 мкм, 0,98 мкм и 1,48 мкм. Для иттербиевых волокон наиболее эффективна накачка в диапазоне 0,95—0,98 мкм.

Глядя на отношение длин волн накачки и сигнала можно определить максимально возможный КПД лазеров и усилителей. Для иттербиевых волокон он будет 0,95 : 1,06 = 90%. На практике, КПД, конечно оказывается ниже.

  • Бейли Д., Райт Э. Волоконная оптика: теория и практика. Пер. с англ. — М.: «КУДИЦ-ПРЕСС», 2008. — С. 320. — ISBN 978-5-91136-048-1.

Оптоволоконная связь — что это такое, и для чего она нужна?

Всем привет и сегодня речь у нас поёдет о не особо известных, но широко применяемых оптоволоконных связях. По-другому их можно ещё называть как ВОЛС или волоконно-оптические линии связи. Достаточно длинное название, поэтому в широких кругах чаще используется простое сокращение как «оптика» или «оптоволокно». На самом деле это не совсем одно и тоже, но обо всё по порядку.

ВОЛС — это специализированные линии связи, по которым передача информации идёт путём светового пучка в определённой кодировке. Эту технологию в первую очередь применяют для передачи данных в локальных и глобальных сетях на достаточно большое расстояние. Но её также используют и в военной промышленности, медицине и в других не сетевых сферах.

Оптоволоконные сети - что это такое, и для чего они нужны?

Оптоволоконные сети - что это такое, и для чего они нужны?

Принцип действия

И так мы уже разобрались, что такое ВОЛС, но каким же образом по ним передаётся информация. В подобных сетях используется оптоволокно. Оно состоит из центральной жили и имеет небольшой размер. Жила обычно сделана как вы, наверное, уже догадались из стекла. Именно по жиле и идёт передача данных пучком света.

Но тут сразу же встаёт вопрос – а как увеличить передачу на большее расстояние? Для этого используют второй слой стекла, который обволакивает центральную жилу и при передаче информации отражает свет. Ранее думали использовать в качестве отражения зеркала или подобие зеркальных поверхностей – но как оказалось, такой материал был бы очень дорогим.

Оптоволоконные сети - что это такое, и для чего они нужны?

Оптоволоконные сети - что это такое, и для чего они нужны?

Вы когда-нибудь бывали на море или озере в лучах заката. Помните, как свет от солнца под большим углом отражался от воды. Хотя как вы, наверное, знаете, вода прозрачная. Но при увеличении угла и плотности между двумя материалами – свет начинает отражаться от разных сред.

Именно эту технологию и используют в оптоволоконной связи. Сердечник и внешняя оболочка имеют разную плотность и структуру, из-за чего луч света, отражаясь, распространяется куда дальше. Для передачи и воспроизведения света используется полупроводниковый или диодный лазер.

Если окунуться в историю, то первыми трудами, который заложили основу «оптики» – было исследование Даниелем Колладоном и Жаком Бабинеттом. Они в первую очередь изучали возможности преломления света. Но если быть точнее, то прародителем стал Кларенс Хаснелл – он в первые применил свет для передачи изображения через специальные трубки.

Оптоволоконные сети - что это такое, и для чего они нужны?

Оптоволоконные сети - что это такое, и для чего они нужны?

Отличие от витой пары

Если окунуться в 2000-е годы, то возможно кто-то вспомнит, что тогда в России и других странах СНГ использовался только интернет по типу aDLS. Когда интернет пришёл в РФ, то страна была просто не готова к этому. По всей стране не было ничего подходящего, чтобы передавать информацию от компьютера к компьютеру.

Именно тогда пришла идея использовать старые телефонные провода. Напомню, что это обычные два проводка без оплётки и дополнительной защиты. В результате интернет всё же появился, но имел очень маленькую скорость. Также многие жаловались, на лаги, прерывания, постоянное отваливающийся интернет.

Все эти проблемы были связаны как раз со способом передачи информации. По двум проводкам без оплётки очень сложно было передавать данные – так как при передаче многие пакеты терялись или изменялись в результате помех от электромагнитных волн. На смену телефонным линиям пришла витая пара.

Оптоволоконные сети - что это такое, и для чего они нужны?

Оптоволоконные сети - что это такое, и для чего они нужны?

Витая пара — это скрученные пары проводов во одной внешней оплётке. Чаще всего используется именно витая пара с 4 парами (8 проводков). Данный вид коммуникации уже стал намного надёжнее телефонного кабеля. В качестве защиты от радиоволн придумали нехитрую штуку – а именно скручивание.

По одной паре передаётся одна и та же информация. При скручивании провод постоянно меняет своё положение. В результате первый проводок находится с внешней стороны и принимает весь удар окружающей среды. Второй провод прячется за него. Так передаваясь, информация по паре проводов в конце складывается. В результате также вычитается помехи.

Скорость при это выросла в несколько раз. Но была проблема быстрого затухания сигнала. Подобные провода могут бить до 100 метров, не дальше. А при увеличении скорости будет падать и диапазон действия.

Вот тут на смену пришла оптоволоконная связь. Скорость выросла ещё сильнее, но также увеличилось дальность отправки пакета. Если раньше приходилось каждые 100 метров устанавливать повторители, то при передаче с помощью «оптики» дальность стала больше на несколько километров.

Оптоволоконные сети - что это такое, и для чего они нужны?

Оптоволоконные сети - что это такое, и для чего они нужны?

Но что самое интересное – волоконная связь почти полностью защищена от электромагнитного воздействия. Также подобные провода почти неподвержены температурным скачкам и могут работать как в сильную жару, так и в дикий холод.

Частота передачи с помощью света выше поэтому минимальная скорость начинается от 1 Гбит в секунду. При передаче в витой паре при задействовании всех пар скорость будет 1 Гбит в секунду. Но при этом провод будет очень дорогим, так как для достижения такого результата нужно защитить каждый провод «экраном» от воздействия внешней среды.

К недостаткам ВОЛС можно отнести только сложность в монтаже и сварке. Для этого нужно специальное оборудования и знания. При «сварке» или по-другому соединении двух оптических кабелей – нужно добиться идеального соединения между центральными жилами и внешним стеклом. Иначе свет будет затухать именно на этом участке или коэффициент преломления будет не правильным.

Передача данных в сетях

Все происходит аналогично. Изначально отправительное устройство кодирует информацию в виде пакетов. Далее данные переводятся в тот формат, который можно передать с помощью света через ВОЛС. После этого информация отправляется по линиям связи. Почти моментально она доходит до приёмника. Ему же остаётся перевести данные в формат, понятный для компьютера, коммутатора, роутера или другого сетевого оборудования.

Оптоволоконные сети - что это такое, и для чего они нужны?

Оптоволоконные сети - что это такое, и для чего они нужны?

Сегодня оптоволоконные сети есть почти во всех городах. Подключение домов имеет непосредственно через «оптику». Кабель идёт к центральному коммутатору. Далее от него с помощью витой пары провода идут в каждый дом. Сейчас некоторые провайдеры начали подключать клиентов по оптоволокну. То есть вместо той же витой пары – используется «стекло».

Скорость на таких соединениях выше. При этом вырастает и качество связи и интернета. Из-за более высокой надёжности – значение отклика ниже и лагов меньше. Но тут нужно учитывать, что для подключения такого кабеля нужны специальные маршрутизаторы.

Волоконно-оптические линии связи (стр. 1 из 3)

Содержание

Введение

1. Основная часть

1. Волоконно-оптические линии связи как понятие

Физические особенности

Технические особенности

Есть в волоконной технологии и свои недостатки

Оптическое волокно и его виды

Волоконно-оптический кабель

Электронные компоненты систем оптической связи

Лазерные модули для ВОЛС

Фотоприемные модули для ВОЛС

Применение ВОЛС в вычислительных сетях

Заключение

Список используемой литературы

Введение

С начала развития компьютерной техники прошло немного немало шестьдесят лет. За это время мы получили такие скорости вычислений, такие скорости передачи данных, о которых шестьдесят лет тому назад нельзя было и мечтать. Все началось с того, что в 1948 году вышли книги К. Шеннона “Математическая теория связи” и Н. Винера “Кибернетика, или управление и связь в животном и машине ”. Они и определили новый вектор развития науки, в результате чего появился компьютер: вначале ламповый гигант, затем транзисторный и на интегральных схемах, на микропроцессорах. И вот в 1989 году появился персональный компьютер IBM. В том же году вышла программа MS – DOS, а в 1990 – Windows-3.0, и далее пошло стремительное совершенствование “железа” и программного обеспечения. К концу столетия человечество получило потрясающую миниатюризацию компьютерной техники, сокращения расстояния между компьютером и человеком, тотальное проникновение компьютерных технологий в бытовую сферу. 1986 год – рождение Интернета, глобальной сети, охватившей практически все страны мира, поставляющей каждому пользователю текущую информацию. Получив настолько быструю обработку данных, люди пришли к выводу, что можно перестать терять время и деньги, также на передачу этих данных, а также увеличить скорость доступа, и скорость передачу данных. Это стало возможным благодаря использованию новых видов связи, таких как оптическое волокно, пришедших на замену банальным алюминиевым и медным проводам.

Тема об оптоволоконной линии связи, является актуальной на данный момент времени, так как число людей на планете растет, и потребности в улучшение жизни то же увеличиваются. Ещё с древних времён человек совершенствуется: улучшает свои знания, стремится улучшить жизнь, создавая и моделируя предметы быта. И сейчас многие фирмы создают телевизоры, телефоны, магнитофоны, компьютера и многое другое, то есть – бытовую технику, которая упрощают жизнь человека. Но для внедрения этих новых технологий нужно изменять или улучшать старое. В пример этому можно привести наши линии связи на коаксиальном (медном) кабеле, про которые уже было упомянуто выше. Их скорость мала, даже для передачи видеоинформации. А волоконная оптика как раз то, что нам нужно — её скоростью передачи информации очень велика. Плюс, низкие потери при передаче сигнала позволяет прокладывать значительные по дальности участки кабеля без установки дополнительного оборудования. Оптоволокно имеет хорошую помехозащищенность, легкость прокладки и долгие сроки работы кабеля практически в любых условиях. И, кроме того, оптоволокно не имеет смысла воровать с целью сдачи на металлолом. В настоящее время оптоволокно находит свое применение преимущественно в теле — и интернет – коммуникациях. Но считается, что сегодняшнее использование оптоволокна лишь вершина айсберга его применения.

1. Волоконно-оптические линии связи как понятие

Волоконно-оптические линии связи — это вид связи, при котором информация передается по оптическим диэлектрическим волноводам, известным под названием «оптическое волокно». Оптическое волокно в настоящее время считается самой совершенной физической средой для передачи информации, а также самой перспективной средой для передачи больших потоков информации на значительные расстояния. К примеру, В настоящее время волоконно-оптические кабели проложены по дну Тихого и Атлантического океанов и практически весь мир «опутан» сетью волоконных систем связи (Laser Mag.-1993.-№3; Laser Focus World.-1992.-28, №12; Telecom. mag.-1993.-№25; AEU: J. Asia Electron. Union.-1992.-№5). Европейские страны через Атлантику связаны волоконными линиями связи с Америкой. США, через Гавайские острова и остров Гуам — с Японией, Новой Зеландией и Австралией. Волоконно-оптическая линия связи соединяет Японию и Корею с Дальним Востоком России. На западе Россия связана с европейскими странами Петербург — Кингисепп — Дания и С.-Петербург – Выборг — Финляндия, на юге — с азиатскими странами Новороссийск — Турция. В Европе, также, как и в Америке, давно уже нашли широкое применение практически во всех сферах связи, энергетики, транспорта, науки, образования, медицины, экономики, обороны, государственно-политической и финансовой деятельности. Итак, основания считать оптоволокно самой перспективной средой для передачи больших потоков информации вытекает из ряда особенностей, присущих оптическим волноводам.

2. Физические особенности

Широкополосность оптических сигналов, обусловленная чрезвычайно высокой несущей частотой. Это означает, что по оптической линии связи можно передавать информацию со скоростью порядка 1 Терабит/с.

Говоря другими словами, по одному волокну можно передать одновременно10 миллионов телефонных разговоров и миллион видеосигналов. Скорость передачи данных может быть увеличена за счет передачи информации сразу в двух направлениях, так как световые волны могут распространяться в одном волокне независимо друг от друга. Кроме того, в оптическом волокне могут распространяться световые сигналы двух разных поляризаций, что позволяет удвоить пропускную способность оптического канала связи. На сегодняшний день предел по плотности передаваемой информации по оптическому волокну не достигнут. А это означает, что до сих пор при столь сильной загруженности нашего интернета не нашлось столько информации, которая при одновременной передачи привела бы к уменьшению скорости передаваемого потока данных.

Очень малое (по сравнению с другими средами) затухание светового сигнала в волокне. Иными словами потеря сигнала за счет сопротивления материала проводника. Лучшие образцы российского волокна имеют столь малое затухание, что позволяет строить линии связи длиной до 100 км без регенерации сигналов. В оптических лабораториях США разрабатываются еще более «прозрачные», так называемые фтороцирконатные волокна. Лабораторные исследования показали, что на основе таких волокон могут быть созданы линии связи с регенерационными участками через 4600 км при скорости передачи порядка 1 Гбит/с.

3. Технические особенности

Волокно изготовлено из кварца, основу которого составляет двуокись кремния, широко распространенного, а потому недорогого материала, в отличие от меди, отсюда и сравнительно не большая цена и практически отсутствие случаев кражи с целью сдачи на металлолом

Оптические волокна имеют диаметр около 1 – 0,2 мм, то есть очень компактны и легки, что делает их перспективными для использования в авиации, приборостроении, в кабельной технике.

Стеклянные волокна — не металл, при строительстве систем связи автоматически достигается гальваническая развязка сегментов. Применяя особо прочный пластик, на кабельных заводах изготавливают самонесущие подвесные кабели, не содержащие металла и тем самым безопасные в электрическом отношении. Такие кабели можно монтировать на мачтах существующих линий электропередач, как отдельно, так и встроенные в фазовый провод, экономя значительные средства на прокладку кабеля через реки и другие преграды.

Системы связи на основе оптических волокон устойчивы к электромагнитным помехам, а передаваемая по световодам информация защищена от несанкционированного доступа. Волоконно-оптические линии связи нельзя подслушать неразрушающим способом. Всякие воздействия на волокно могут быть зарегистрированы методом мониторинга (непрерывного контроля) целостности линии. Теоретически существуют способы обойти защиту путем мониторинга, но затраты на реализацию этих способов будут столь велики, что превзойдут стоимость перехваченной информации. К примеру вы все же решили это сделать. Для обнаружения перехватываемого сигнала вам понадобится перестраиваемый интерферометр Майкельсона специальной конструкции. Причем, видимость интерференционной картины может быть ослаблена большим количеством сигналов, одновременно передаваемых по оптической системе связи. Можно распределить передаваемую информацию по множеству сигналов или передавать несколько шумовых сигналов, ухудшая этим условия перехвата информации. Потребуется значительный отбор мощности из волокна, чтобы несанкционированно принять оптический сигнал, а это вмешательство легко зарегистрировать системами мониторинга.

Важное свойство оптического волокна — долговечность. Время жизни волокна, то есть сохранение им своих свойств в определенных пределах, превышает 25 лет, что позволяет проложить оптико-волоконный кабель один раз и, по мере необходимости, наращивать пропускную способность канала путем замены приемников и передатчиков на более быстродействующие, без замены самого кабеля.

4. Есть в волоконной технологии и свои недостатки

При создании линии связи требуются активные высоконадежные элементы, преобразующие электрические сигналы в свет и свет в электрические сигналы. Необходимы также оптические коннекторы (соединители) с малыми оптическими потерями и большим ресурсом на подключение-отключение.

Точность изготовления таких элементов линии должна соответствовать длине волны излучения, то есть погрешности должны быть порядка доли микрона. Поэтому производство таких компонентов оптических линий связи очень дорогостоящее.

Другой недостаток заключается в том, что для монтажа оптических волокон требуется дорогостоящее технологическое оборудование. а) инструменты для оконцовки. б) коннекторы. в) тестеры. г) муфты и спайс- кассеты.

Отправить ответ

avatar
  Подписаться  
Уведомление о