Оптического кабеля пропускная способность: 26 терабит/с по оптоволокну одним лазером / Habr – Пропускная способность оптоволоконного кабеля

Содержание

26 терабит/с по оптоволокну одним лазером / Habr

В журнале Nature Photonics опубликовано описание новой технология передачи данных по оптоволокну на скорости до 26 Тбит/с вместо нынешних максимальных 1,6 Тбит/с.

Группа немецких инженеров под руководством профессора Вольфганга Фройде (Wolfgang Freude) из университета Карлсруэ применила в оптоволокне технику OFDM (ортогональное частотное разделение каналов с мультиплексированием), которая широко используется в беспроводной связи (802.11 и LTE), цифровом телевидении (DVB-T) и ADSL.

В оптоволокне использовать OFDM сложнее, ведь тут нужно разделить на поднесущие световой поток. Раньше единственным способом сделать это было использование отдельного лазера для каждой поднесущей.


Сравнение разных видов мультиплексирования

Для вещания на каждой частоте используется отдельный лазер и отдельный приёмник, так что в одном оптоволоконном канале одновременно могут передавать сигнал сотни лазеров. По словам профессора Фройде, общая пропускная способность канала ограничена только количеством лазеров. «Уже был проведён эксперимент и продемонстрирована скорость 100 терабит/с», — сказал он в интервью BBC. Но для этого пришлось использовать около 500 лазеров, что само по себе очень дорого.

Фройде с коллегами разработали технологию передачи по оптоволокну более 300 поднесущих разного цвета одним-единственным лазером, который работает короткими импульсами. Здесь проявляется интересный феномен под названием оптический частотный гребень. Каждый маленький импульс «размазывается» по частотам и времени, так что приёмник сигнала с помощью хорошего тайминга теоретически может обработать каждую частоту по отдельности.

После нескольких лет работы немецким исследователям всё-таки удалось найти правильный тайминг, подобрать подходящие материалы и осуществить на практике обработку каждой поднесущей с помощью быстрого преобразования Фурье (БПФ). Преобразование Фурье — операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.

БПФ идеально подходит для разложения света по поднесущим. Оказалось, что из обычного импульса можно извлечь в совокупности около 350 цветов (частот), и каждый из них используется в качестве отдельной поднесущей, как и в традиционной технике OFDM. В прошлом году Фройде с коллегами провели эксперимент и на практике показали скорость 10,8 терабит/с, а сейчас ещё больше усовершенствовали точность распознавания частот.

По словам Фройде, разработанная им технология тайминга и БПФ вполне может быть реализована в микросхеме и найти коммерческое применение.

Пропускная способность оптоволоконного кабеля


Оптоволоконный кабель

На сегодняшний день широкое распространение при создании телекоммуникационных сетей получил оптический кабель. В его характерные особенности включены такие показатели, как:

  • высокая скорость передачи данных;
  • отсутствие восприимчивости к различным помехам;
  • по сравнению с медными кабелями, малый вес и габаритные размеры;
  • высокая продолжительность срока эксплуатации;
  • возможность увеличения расстояния между передающими устройствами до 800 км.

Пожалуй, единственными недостатками, которые можно выделить при создании сети из оптоволокна — высокая стоимость материалов и оборудования, трудоемкий процесс монтажа кабеля, связанный с необходимостью проведения сварочных работ при прокладке основных магистралей.

Конструкция оптического кабеля

  • 1 — центральный силовой элемент
  • 2 — оптические волокна
  • 3 — пластиковые трубочки-модули
  • 4 — плёнка
  • 5 — тонкая внутренняя оболочка из полиэтилена
  • 6 — кевларовые нити или броня
  • 7 — внешняя толстая оболочка из полиэтилена

Пропускная способность оптоволокна

За последние несколько десятков лет пропускная способность волоконно-оптического кабеля значительно увеличилась. При этом разработки по усовершенствованию одной из передовых технологий передачи данных не прекращается даже на минуту. В сущности, скорость передачи сигнала во многом зависит от расстояния между оборудованием, типа волоконного носителя и количества соединительных стыков в магистралях.

К примеру, использованный при построении внутренней сети (между серверами данных) многомодовый оптический кабель на расстоянии приблизительно в 200 метров способен обеспечить скорость до 10 Гбит/с.

Для прокладки внешних коммуникаций, где расстояние между передатчиками может достигать нескольких десятков километров применяется одномодовое оптоволокно. Структура такого кабеля позволяет развивать скорость потока более 10 Гбит/с. Правда, это далеко не предел возможности оптики. С увеличением потребительского спроса возникнет необходимость наращивать мощность оборудования и даже замена техники, позволяющая добиться скорости передачи данных на уровне 160 Гбит/с не способна использовать потенциал носителя в полной мере.

Виды оптоволоконного кабеля

По своей структуре оптоволоконный кабель делится на две категории:

  • многомодовое;
  • одномодовое.

Многомодовый оптический кабель хорошо зарекомендовал себя как проводник, передающий сигнал на малые расстояния. В первую очередь, это обусловлено структурой самого волокна, в названии которого слово «много» означает далеко не то, что принято считать хорошим показателем. Рекомендованное расстояние, при прокладке многомодового кабеля, от передающего устройства и до пользователя должно составлять не более одного километра. На этой дистанции проводник показывает великолепные способности по передаче светового потока практически без потерь и способен обеспечивать скорость до 10 Гбит/с. Таким образом, его можно использовать при построении сети в маленьком районе или же как оптический кабель для внутренней прокладки.

Одномодовый оптический кабель в первую очередь предназначен для передачи данных на большие расстояния, которые могут исчисляться в десятках, а то и сотнях километров. По своей структуре такой тип волокна обладает более лучшими качествами и способен поддерживать постоянную высокую скорость потока информации практически без затухания в оптическом кабеле. Таким образом, пропускная способность одномодового оптического носителя лимитируется непосредственно передающими устройствами и, при установленном мощном оборудовании, может достигать нескольких Тбит/с.

Необходимое оборудование для передачи информации по оптоволоконному кабелю

На сегодняшний день оптоволоконные сети получили широкое распространение среди компаний, предоставляющих своим абонентам доступ к интернету. При этом, для осуществления передачи данных, если не считать промежуточных муфт и прочего сопутствующего оборудования, используется следующая техника:

со стороны провайдера: — специальное оборудование DLC, известное также под названием мультиплексор. Оно позволяет производить передачу данных по волоконно-оптическому кабелю на значительные расстояния с постоянно поддерживаемой высокой скоростью.

со стороны абонента: — роутер ONT, который является оконечным клиентским оборудованием и позволяет обеспечить доступ к интернету через оптоволоконную сеть. Позволяет осуществлять доступ на скорости до 2.5 Гбит/с.

xn—-etbqnigrhw.xn--p1ai

26 терабит/с по оптоволокну одним лазером

В журнале Nature Photonics опубликовано описание новой технология передачи данных по оптоволокну на скорости до 26 Тбит/с вместо нынешних максимальных 1,6 Тбит/с.

Группа немецких инженеров под руководством профессора Вольфганга Фройде (Wolfgang Freude) из университета Карлсруэ применила в оптоволокне технику OFDM (ортогональное частотное разделение каналов с мультиплексированием), которая широко используется в беспроводной связи (802.11 и LTE), цифровом телевидении (DVB-T) и ADSL.

В оптоволокне использовать OFDM сложнее, ведь тут нужно разделить на поднесущие световой поток. Раньше единственным способом сделать это было использование отдельного лазера для каждой поднесущей. Сравнение разных видов мультиплексирования

Для вещания на каждой частоте используется отдельный лазер и отдельный приёмник, так что в одном оптоволоконном канале одновременно могут передавать сигнал сотни лазеров. По словам профессора Фройде, общая пропускная способность канала ограничена только количеством лазеров. «Уже был проведён эксперимент и продемонстрирована скорость 100 терабит/с», — сказал он в интервью BBC. Но для этого пришлось использовать около 500 лазеров, что само по себе очень дорого.

Фройде с коллегами разработали технологию передачи по оптоволокну более 300 поднесущих разного цвета одним-единственным лазером, который работает короткими импульсами. Здесь проявляется интересный феномен под названием оптический частотный гребень. Каждый маленький импульс «размазывается» по частотам и времени, так что приёмник сигнала с помощью хорошего тайминга теоретически может обработать каждую частоту по отдельности.

После нескольких лет работы немецким исследователям всё-таки удалось найти правильный тайминг, подобрать подходящие материалы и осуществить на практике обработку каждой поднесущей с помощью быстрого преобразования Фурье (БПФ). Преобразование Фурье — операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты при разложении исходной функции на элементарные составляющие — гармонические колебания с разными частотами.

БПФ идеально подходит для разложения света по поднесущим. Оказалось, что из обычного импульса можно извлечь в совокупности около 350 цветов (частот), и каждый из них используется в качестве отдельной поднесущей, как и в традиционной технике OFDM. В прошлом году Фройде с коллегами провели эксперимент и на практике показали скорость 10,8 терабит/с, а сейчас ещё больше усовершенствовали точность распознавания частот.

По словам Фройде, разработанная им технология тайминга и БПФ вполне может быть реализована в микросхеме и найти коммерческое применение.

Метки:

habrahabr.ru

Оптоволокно

1. Что означают термины «терминирование» кабельной системы и «сплайсирование» оптоволоконного кабеля?  Терминирование — процедура соединения кабеля, провода или волокна с коммутационным оборудованием.  Сплайсирование – механическое сращивание концов волокон друг с другом при помощи муфты-зажима (сплайса).  2. Поясните понятия «базовые параметры» кабельной системы и

«затухание оптоволоконного кабеля»? Затухание – процесс ослабления светового потока в оптическом волокне. Факторы, вызывающие затухание могут быть различными: — затухание, вызванное поглощением света. Определяется как превращение светового импульса в тепло, связанное с резонансом в материале волокна. Существуют внутренние поглощения (связано с материалом волокна) и внешние поглощения (наличие микропримесей). Оптические волокна, производимые в настоящее время, им

Практическое руководство по волоконно-оптическим технологиям | Журнал сетевых решений/LAN

Администраторы относятся часто с некоторым опасением к волоконно-оптическим технологиям. Однако волоконная оптика гораздо проще, чем кажется.

ПОЧЕМУ ОПТОВОЛОКНО?
ФИЗИЧЕСКАЯ ТОПОЛОГИЯ СЕТИ
ЧИСЛО ВОЛОКОН И ГИБРИДНЫЕ КАБЕЛИ
СПЕЦИФИКАЦИИ НА ОПТОВОЛОКНО
ВОЛОКОННО-ОПТИЧЕСКИЕ СОЕДИНИТЕЛИ
ПАНЕЛЬ ПЕРЕКЛЮЧЕНИЙ
СРАЩИВАНИЕ ВОЛОКОН
ТЕСТОВОЕ ОБОРУДОВАНИЕ
НАПОСЛЕДОК

ЭТИ СОВЕТЫ ПОМОГУТ СЭКОНОМИТЬ ВАМ ВРЕМЯ И НЕРВЫ
Наиболее важные советы по оптоволокну


Спросите администратора сети, что он думает о волоконно-оптических технологиях, и вы, скорее всего, услышите, что они очень дороги, сложны и требуют постоянного внимания. Реальность же выглядит совершенно по-другому: оптоволокно недорого, чрезвычайно надежно и обеспечивает любые мыслимые скорости передачи данных. Если вам приходилось работать с UTP Категории 5 или даже с коаксиалом, то вы без труда освоитесь с волоконно-оптическими технологиями.

Такая область, как волоконно-оптические технологии, слишком обширна для одной статьи. Поэтому сосредоточим свое внимание исключительно на доводах в пользу применения оптоволокна в вашей сети. Затем мы коснемся топологии сети, спецификаций, числа волокон, соединителей, панели переключений и квантования и, наконец, вкратце расскажем об устройствах для тестирования оптоволокна.

ПОЧЕМУ ОПТОВОЛОКНО?

Зачем вместо медного кабеля надо прокладывать оптоволокно? Оптический кабель может передавать данные с очень высокой пропускной способностью. Оптоволокно обладает отличными трансмиссионными характеристиками, высокой емкостью передаваемых данных, потенциалом для дальнейшего увеличения пропускной способности и устойчивостью к электромагнитным и радиочастотным помехам.

Световод состоит из сердцевины и защитного стеклянного внешнего слоя (оболочки). Оболочка служит в качестве отражающего слоя, с помощью которого световой сигнал удерживается внутри сердцевины. Оптический кабель может состоять только из одного световода, но на практике он содержит множество световодов. Световоды уложены в мягкий защитный материал (буфер), а он, в свою очередь, защищен жестким покрытием.

В широкораспространенных световодах диаметр оболочки составляет 125 микрон. Размер сердцевины в распространенных типах световодов составляет 50 микрон и 62,5 микрон для многомодового оптоволокна и 8 микрон для одномодового оптоволокна. Вобщем-то, световоды характеризуются соотношением размеров сердцевины и оболочки, например 50/125, 62,5/125 или 8/125.

Световые сигналы передаются через оптоволокно и принимаются электронным оборудованием на другом конце кабеля. Это электронное оборудование, называемое оконечным оборудованием волоконно-оптической линии связи, преобразует электрические сигналы в оптические, и наоборот. Одно из преимуществ оптоволокна, кстати, состоит в том, что пропускную способность сети на базе оптоволокна можно увеличить простой заменой электронного оборудования на обоих концах кабеля.

Многомодовое и одномодовое оптоволокно отличаются емкостью и способом прохождения света. Наиболее очевидное отличие заключается в размере оптической сердцевины световода. Более конкретно, многомодовое волокно может передавать несколько мод (независимых световых путей) с различными длинами волн или фазами, однако больший диаметр сердцевины приводит к тому, что вероятность отражения света от внешней поверхности сердцевины повышается, а это чревато дисперсией и, как следствие, уменьшением пропускной способности и расстояния между повторителями. Грубо говоря, пропускная способность многомодового оптоволокна составляет около 2,5 Гбит/с. Одномодовое оптоволокно передает свет только с одной модой, однако меньший диаметр означает меньшую дисперсию, и в результате сигнал может передаваться на большие расстояния без повторителей. Проблема в том, что как само одномодовое оптоволокно, так и электронные компоненты для передачи и приема света стоят дороже.

Одномодовое волокно имеет очень тонкую сердцевину (диаметром 10 микрон или менее). Из-за малого диаметра световой пучок отражается от поверхности сердцевины реже, а это ведет к меньшей дисперсии. Термин «одномодовый» означает, что такая тонкая сердцевина может передавать только один световой несущий сигнал. Пропускная способность одномодового оптоволокна превышает 10 Гбит/с.

ФИЗИЧЕСКАЯ ТОПОЛОГИЯ СЕТИ

Волоконно-оптическая проводка, как и проводка UTP, имеет физическую и логическую топологии. Физическая топология — это схема проводки оптического кабеля между зданиями и внутри каждого здания для создания основы гибкой логической топологии.

Одним из наилучших, если не самым лучшим, источником практической информации по физической проводке кабелей является руководство BISCI Telecommunications Distribution Method (TDM) за 1995 год. TDM представляет основу для формирования топологии сети с проводкой из оптического кабеля в соответствии с принятыми стандартами.

TDM и стандарт на связную проводку для коммерческих зданий (ANSI/TIA/EIA-568A) рекомендуют физическую топологию типа звезда для соединения между собой волоконно-оптических магистралей как внутри, так и вне зданий. Конечно, физическая топология во многом определяется взаимным расположением и внутренней планировкой зданий, а также наличием готовых кабелепроводов. Несмотря на то что иерархическая звездообразная топология обеспечивает наибольшую гибкость, она может оказаться невыгодной по чисто финансовым соображениям. Но даже физическое кольцо лучше, чем вообще отсутствие оптической кабельной магистрали.

ЧИСЛО ВОЛОКОН И ГИБРИДНЫЕ КАБЕЛИ

Число световодов в кабеле называется числом волокон. К сожалению, ни один опубликованный стандарт не определяет, сколько световодов должно быть в кабеле.

Поэтому проектировщик должен сам решить, сколько световодов будет в каждом кабеле и сколько из них будет одномодовыми.

Оптический кабель, в котором одна часть световодов одномодовые, а другая — многомодовые, называется гибридным. При выборе числа волокон и комбинации одномодовых и многомодовых волокон помните, что производители оптического кабеля, как правило, изготовляют кабели с числом волокон кратным 6 или 12. Кабели, производимые на продажу, обычно гораздо дешевле кабелей, сделанных на заказ, с уникальным числом и комбинацией волокон.

Общее правило же таково: волокон в кабеле между зданиями должно быть столько, сколько ваш бюджет позволяет. Но, все же, каков практический минимум для числа волокон? Посчитайте, сколько волокон вам нужно для поддержки приложений с первого же дня, а затем умножьте это число на два, и вы получите необходимый минимум. Например, если вы собираетесь задействовать в кабеле между двумя зданиями 31 волокно, то надо округлить это число до ближайшего кратного шести (в большую сторону), что равняется 36. В нашей гипотетической ситуации потребуется кабель по крайней мере с 72 волокнами.

Следующий параметр, который вы должны принять во внимание, — это соотношение между одномодовыми и многомодовыми световодами в кабеле. Обычно мы рекомендуем, чтобы 25% световодов в кабеле были одномодовыми. Продолжая пример с 72 волокнами, мы имеем 18 одномодовых и 54 многомодовых световодов.

Если вы привыкли к UTP, то 72 волокна могут показаться вам слишком большим числом. Однако помните, что цена кабеля с 72 волокнами отнюдь не вдвое больше цены кабеля с 36 волокнами. В действительности, он стоит всего лишь на 20% дороже кабеля с 32 волокнами. Кроме того, помните, что затраты и сложность прокладки кабеля с 72 волокнами практически такие же, как и у кабеля с 36 волокнами, а дополнительные волокна могут вполне пригодиться вам в будущем.

СПЕЦИФИКАЦИИ НА ОПТОВОЛОКНО

Спецификаций на оптоволокно существует сотни, они охватывают все возможные аспекты — от физических размеров до пропускной способности, от плотности на разрыв до цвета защитного материала. Защитный материал (буфер) предохраняет световод от повреждения, и он обычно маркируется разным цветом для простоты идентификации. Практические параметры, которые необходимо знать, — это длина, диаметр, оптическое окно (длина волны), затухание, пропускная способность и качество волокна.

В спецификациях на оптоволокно длина указывается в метрах и километрах. Однако мы настоятельно рекомендуем, чтобы в спецификациях для продавца или производителя вы указывали длину не только в метрах/километрах, но и футах/милях (2 км равняется 1,3 мили).

При получении заказанного оптического кабеля проверьте, что поставляемый кабель имеет нужную длину. Например, если вам нужен один 600-футовый и два 700-футовых кабеля, что в сумме дает 2000 футов, а вы получаете две катушки с 1000-футовым кабелем, то после прокладки одного 600-футового и 700-футового кабеля останетесь с одним 300-футовым и одним 400-футовым кабелями, но они не смогут заменить вам еще один необходимый 700-футовый кабель. Во избежание этой проблемы следует заказать специально три куска кабеля: один 650-футовый и два 750-футовых. Допуск в 50 футов может пригодиться, если вы, например, неправильно оценили протяженность кабельных каналов. Кроме того, на случай, скажем, перестановки стойки с оборудованием в пределах комнаты приобретение дополнительной катушки кабеля для комнаты с оконечным оборудованием вполне оправдано.

Многомодовое оптоволокно может быть нескольких диаметров, но наиболее распространено из них оптоволокно с соотношением сердцевины к оболочке 62,5 на 125 микрон. Именно это многомодовое оптоволокно мы будем использовать во всех примерах данной статьи. Размер 65,2/125 называется в спецификации ANSI/TIA/

EIA-568A стандартным для проводки в зданиях. Одномодовое оптоволокно имеет один стандартный размер — 9 микрон (плюс-минус один микрон). Помните, если ваше оконечное оборудование волоконно-оптических линий связи предусматривает применение оптоволокна специального диаметра и вы собираетесь и дальше его использовать, то, скорее всего, оно не будет работать с оптоволокном обычного диаметра.

Оптическое окно — это длина световой волны, которую волокно передает с наименьшим затуханием. Длина волны измеряется обычно в нанометрах (нм). Самые распространенные значения длины волны — 850, 1300, 1310 и 1550 нм. Большинство волокон имеет два окна — т. е. свет может передаваться на двух длинах волн. Для многомодовых световодов это 850 и 1310 нм, а для одномодовых — 1310 и 1550 нм.

Затухание характеризует величину потери сигнала и аналогично сопротивлению в медном кабеле. Затухание измеряется в децибелах на километр (дБ/км). Типичное затухание для одномодового волокна составляет 0,5 дБ/км при длине волны в 1310 нм и 0,4 дБ/км при 1550 нм. Для многомодового волокна эти величины равны 3,0 дБ/км при 850 нм и 1,5 дБ/км при 1300 нм. Благодаря тому, что оно тоньше, одномодовое волокно позволяет передавать сигнал с тем же затуханием на более дальние расстояния, чем эквивалентное многомодовое волокно.

Заметим, однако, что спецификацию на кабели надо составлять исходя из максимально допустимого затухания (т. е. наихудшего сценария), а не типичной величины потерь. Так, максимальная величина затухания при указанных длинах волн для одномодового 1,0/0,75 дБ/км и 3,75/1,5 дБ/км для многомодового. Чем шире оптическое окно, т. е. чем длиннее волна, тем меньше затухание для кабелей обоих типов. Спецификация затухания может выглядеть, например, так: максимальное затухание одномодового волокна должно быть 0,5 дБ/км при окне 1310 нм или максимальное затухание многомодового волокна должно быть 3,75/1,5 дБ/км для оптического окна 850/1300 нм.

Пропускная способность или емкость данных, передаваемых по световоду, обратно пропорциональна затуханию. Иными словами, чем меньше затухание (дБ/км), тем шире полоса пропускания в МГц. Минимально допустимая пропускная способность для многомодового волокна должна быть 160/500 МГц при 850/1300 нм при максимальном затухании 3,75/1,5 дБ/км. Эта спецификация отвечает требованиям FDDI и TIA/EIA-568 для Ethernet и Token Ring.

Волокно может быть трех различных типов в зависимости от необходимых характеристик оптической передачи: стандартное, высококачественное и премиумное. Волокно более высокого качества используется обычно для удовлетворения более жестких требований к протяженности кабеля и затуханию сигнала.

ВОЛОКОННО-ОПТИЧЕСКИЕ СОЕДИНИТЕЛИ

Типов соединителей столько, сколько производителей оборудования. Рекомендуемым типом соединителей согласно спецификации ANSI/TIA/EIA-568A на связную проводку для коммерческих зданий является двойной защелкивающийся SC-соединитель, однако наиболее часто используемым типом соединителя в панелях переключений стал ST-совместимый штыковидный соединителей по технологии AT&T. Ввиду широкой распространенности ST-совместимых волоконно-оптических соединителей стандарт 568A, несмотря на их нестандартность, предусматривает их применение.

Если вы только собираетесь прокладывать волоконно-оптические кабели, то мы рекомендуем использовать двусторонние SC-соединители, поскольку их применение позволяет гарантировать правильную полярность волокон при их прохождении через панель переключений.

Несмотря на стандартность соединителей для панели переключений вы наверняка столкнетесь со множеством волоконно-оптических соединителей в оконечном оборудовании. Производители такого оборудования могут предлагать различные варианты соединителей для обеспечения их стандартизации, но, когда доходит до дела, следует ожидать самого худшего. Если соединитель на оконечном оборудовании не соответствует соединителю на панели переключений, то вам придется покупать двустороннюю перемычку с требуемыми соединителями.

ПАНЕЛЬ ПЕРЕКЛЮЧЕНИЙ

Мы настоятельно рекомендуем применять панели переключений для завершения оптических кабелей внутри и между зданиями. Производители предлагают самые разные панели, но вне зависимости от того, какие панели вы используете, все они должны применять в них только один тип соединителей. Если у вас есть возможность, то те же соединители следует использовать и в оконечном оборудовании.

При выборе панели переключений помните о человеческом факторе. Иметь на площади 7 на 18 дюймов 72 соединителя для волоконного кабеля хорошо, пока инженеру не придется искать в этом частоколе нужный, чтобы его вынуть. Понятно, что хорошо бы снять один, не трогая остальных. Но сможете ли вы протиснуть пальцы между оставшимися 71?

Муфты, перемычки или рукава обеспечивают соединение между двумя волоконно-оптическими соединителями, и они используются в панелях переключений для подключения кабельной проводки.

СРАЩИВАНИЕ ВОЛОКОН

Сращивание кабелей — процедура неизбежная. Наиболее распространены два метода сращивания: механическое сращивание и сплавка, каждый из которых имеет своих верных сторонников. При механическом сращивании концы волокон соединяются друг с другом с помощью зажима, при сплавке концы волокон запаиваются вместе.

Начальные затраты на оборудование для сплавки волокон могут быть весьма значительными, но в результате вы получите практически не распознаваемое рефлектометром сращивание. Механическое сращивание близкого качества может быть получено с использованием геля, но все же оно хуже.

Неудачное сращивание многомодового волокна имеет меньшие последствия, нежели одномодового, потому что пропускная способность сигнала, передаваемого по многомодовому волокну, ниже и не так чувствительна к отражениям в результате механического сращивания. Если приложение чувствительно к отражениям, в качестве метода сращивания необходимо применять сплавку.

ТЕСТОВОЕ ОБОРУДОВАНИЕ

Если уж вы собрались делать проводку из оптического кабеля, то тогда не поскупитесь приобрести и измеритель мощности светового сигнала. Такие измерители нуждаются в калибровке для обеспечения точности замера уровня мощности сигнала на волне данной длины. Измерители старшего класса позволяют при замерах мощности выбирать длину волны.

Чтобы генерировать световой сигнал для замера, вам нужен источник световой волны соответствующей длины. Этот источник, как можно было бы ожидать, генерирует свет с известной длиной волны и уровнем мощности. Проверьте, что источник света излучает свет с той же длиной волны, что и оконечное оборудование, ведь если это не так, то измеренные оптические потери не будут соответствовать действительным оптическим потерям конечной волоконно-оптической системы.

При прокладке кабеля вам не обойтись без рефлектометра OTDR. Если вы не можете приобрести OTDR, то арендуйте или займите его на время прокладки. OTDR поможет вам определить характеристики волокна с их графическим представлением. OTDR можно воспринимать как оптический радар: он посылает оптические импульсы, а затем измеряет время и амплитуду отраженного сигнала. Помните, однако, что хотя такие рефлектометры и позволяют измерить величину затухания в дБ, эта величина, как показывает опыт, не очень точна. Для измерения затухания вы должны использовать измеритель мощности светового сигнала и источник с известной длиной волны.

Наконец, адаптеры для оголенного волокна служат для временного соединения с тестовым оборудованием. Они обеспечивают быстрое соединение и рассоединение оголенного конца волокна с тестовым оборудованием. Эти адаптеры присутствуют в разных оптических соединителях; не обеспечивая точного сопряжения волокна, они тем не менее позволяют перед заделкой в оптические соединители проложенных сегментов кабеля проверять их с помощью OTDR.

НАПОСЛЕДОК

Нашей целью было познакомить профессионалов из мира компьютерных сетей с волоконно-оптической технологией. Этим, однако, проблемы с волоконной оптикой не исчерпываются, — остаются, например, радиус изгиба, материалы для изготовления кабеля, выбор оконечного оборудования. Но если мы убедили вас в том, что мир оптического кабеля не так уж сильно отличается от более привычного мира коаксиала и витой пары, то наша задача выполнена.


С Джеймсом Джонсом можно связаться по адресу: [email protected]

ЭТИ СОВЕТЫ ПОМОГУТ СЭКОНОМИТЬ ВАМ ВРЕМЯ И НЕРВЫ

Наиболее важные советы по оптоволокну

Внимание! Никогда не смотрите непосредственно в волокно! Уважайте оптические приемопередатчики! Передаваемые по оптоволокну световые волны не видимы для человеческого глаза, но они могут необратимо повредить сетчатку глаз.

Внимание! Обрезки волокна, образующиеся при сращивании волокон, представляют собой осколки стекла. Эти мелкие, практически невидимые обрезки могут повредить кожу или попасть в глаз. Собрать их поможет клейкая двусторонняя лента.

Внимание! Следите за огнем во время сращивания волокон. При зачистке волокон обычно используется спирт, а он легко воспламеняется, и, кроме того, горение бесцветно!

Общие советы

Документируйте тестирование оптоволокна. Тесты, проводимые во время прокладки кабеля, дают очень ценные данные. На случай возникновения проблем в будущем сохраните копии измерений потерь и волновых форм.

Затухание сигнала. Установите и запишите затухание каждого волокна на используемой длине волны. Если оконечное оборудование работает с волной 780 нм, то затухание надо проверить на 780 нм — затухание на 850 нм будет отличаться от искомого.

Число волокон. Число волокон в кабеле между зданиями и внутри зданий должно быть максимально возможным.

Четырехкратный допуск на мощность. Делайте допуск по крайней мере в 2 дБ на оптическое затухание по оптоволокну и даже, если это позволяет бюджет, больше.

Не курите. Не курите во время сращивания волокон.

Описание оптической линии. Составьте описание оптического канала из конца в конец, включая мощность оптического излучения при передаче, оптические потери, местоположение панели переключений, тип соединителя для каждого соединения и мощность оптического излучения при приеме.

Соединители для одномодового волокна. Если вы используете как одномодовое, так и многомодовое волокно в кабельной проводке, то одномодовые соединители и муфты следует держать отдельно от многомодовых. Во-первых, одномодовые компоненты обходятся дороже. А во-вторых, многомодовый компонент, установленный вместо одномодового, не так-то просто обнаружить даже с помощью специальных приборов.

Топология «звезда». По возможности, физическая проводка должна иметь топологию «звезда».

Местоположение переходов Tx/Rx. Местоположение переходов Tx/Rx необходимо отметить в описании линии. Соединение Tx/Tx на оконечном оборудовании эквивалентно обрезке волокна: оно не работает.

Использование волокна 62,5/125. Для внутренних приложений наиболее предпочтительно применение многомодового волокна 62,5/125 микрон, к тому же оно рекомендовано стандартом ANSI/TIA/EIA/-568A.

Практическое руководство по волоконно-оптическим технологиям

Поделитесь материалом с коллегами и друзьями

500 Гбит/с — рекорд скорости в оптоволоконных сетях / VAS Experts corporate blog / Habr

Инженерам из Германии удалось добиться рекордной скорости передачи данных по оптоволокну в реальных, не лабораторных, условиях — 500 Гбит/с в одном канале.


/ Flickr / Tony Webster / CC BY

Кто установил рекорд


По данным ОЭСР, через три года количество устройств интернета вещей может достигнуть 50 млрд. С ростом числа гаджетов вырастет и объем трафика в мобильных сетях — по некоторым оценкам, примерно в четыре раза. В Deloitte говорят, что существующая оптоволоконная инфраструктура, которая станет основой для 5G-сетей, не справится с подобной нагрузкой.

По этой причине все больше компаний и исследовательских организаций работают над технологиями, повышающими пропускную способность «оптики». Одной из таких организаций является Мюнхенский технологический университет (TUM). Его сотрудники еще пять лет назад разработали алгоритм вероятностного формирования сигнального созвездия — Probabilistic Constellation Shaping, или PCS (подробнее о нем расскажем далее). В 2016 году с её помощью удалось впервые достичь терабитной скорости передачи данных в лаборатории.

В феврале этого года та же группа ученых поставила другой рекорд — они осуществили передачу данных на скорости 500 Гбит/с, но сделали это в «полевых» условиях. Для тестов использовали сигнальный процессор Nokia PSE-3, который внедрили в сеть немецкого оператора M-Net.

Как работает алгоритм


PCS — это метод, который дополняет квадратурную амплитудную модуляцию (QAM) в оптоволоконных сетях. В классическом случае QAM все точки (значения амплитуды сигнала) имеют равные веса и используются с одинаковой частотой.

Алгоритм PCS, разработанный инженерами из TUM, каждый раз выбирает оптимальную группу точек, которая лучше всего подходит для текущего состояния канала. Для каждой из точек созвездия высчитывается вероятность искажения данных и значение требуемой на отправку сигнала энергии. Чем меньше искажение сообщения и энергозатраты, тем чаще используется конкретная амплитуда. То, насколько часто использовать точку созвездия, определяют функции распределения вероятности. Они выводятся опытным путём для каждой конкретной сети на основе данных о среднем уровне шумов в оптическом канале.

/ Wikimedia / Splash / CC BY-SA / Сигнальное созвездие для 16-QAM

Обычно PSC реже задействует сигнальные точки с большой амплитудой. По словам разработчиков, это позволяет повысить устойчивость сигнала к шумам и увеличить скорость передачи. Например, для 16-QAM «прирост» составляет от 15 до 43%.

Применение и потенциал технологии


По словам президента Nokia Bell Lab Маркуса Велдона (Marcus Weldon), в будущем PCS позволит оптоволоконным сетям передавать большие объемы данных и динамически адаптироваться под текущие потребности в трафике (например, в 5G-сетях).

Технологию уже поддерживает провайдер сетевого оборудования Infinera. Компания использует вероятностную модуляцию в цифровых сигнальных процессорах серии ICE. В Infinera заявляют, что устройства смогут увеличить пропускную способность сетей до 800 Гбит/с, но пока их возможности еще не были протестированы. Представители компании говорят, что технология поможет мобильным операторам и интернет-провайдерам сократить расходы на развитие инфраструктуры и строительство новых линий.

Но на популярность вероятностной модуляции может повлиять один недостаток: она плохо оптимизирована для работы с существующими методами прямой коррекции ошибок (FEC) при передаче данных. FEC-методы рассчитаны на то, что все комбинации в канале используются одинаково часто. В случае с PCS некоторые точки созвездия выбираются чаще других, что может сказаться на производительности сети. Для решения этой проблемы разрабатывают более совершенные FEC-методы, например «распараллеливают» схемы коррекции и проводят несколько проверок одновременно.

О чем мы пишем в нашем корпоративном блоге:


/ Flickr / Groman123 / CC BY-SA

Аналог вероятностной модуляции


Есть ещё один вид модуляции сигнального созвездия — геометрический. Он отличается от вероятностного тем, что меняет не частоту использования конкретной точки, а форму созвездия. Для этого к амплитудной модуляции сигнала добавляют фазовую, что позволяет «сдвинуть» точки относительно друг друга. Как и вероятностная модуляция, геометрическая помогает добиться более эффективного использования оптического канала: расположение точек в созвездии выбирается так, чтобы в каждой из них отношение сигнал/шум (SNR) было максимальным.

Преимущество геометрического вида перед вероятностным — меньшее количество возможных значений амплитуды. Эта особенность снижает шанс искажения сигнала. Однако у геометрической модуляции есть недостаток: на практике она оказывается менее эффективной в уменьшении искажений сигнала, чем вероятностная.

Специалисты надеются улучшить геометрическую модуляцию с помощью методов машинного обучения, используя их для определения оптимальной формы сигнального созвездия. Результаты пока не очень впечатляют: в исследовании 2018 года простая однослойная нейросеть помогла повысить значение SNR на один процент. Однако инженеры планируют продолжать работу и поэкспериментировать с рекуррентными нейронными сетями.

Пока что геометрическая модуляция сигнального созвездия проигрывает вероятностной при работе в реальных сетях, и поэтому последнюю считают наиболее перспективным методом увеличения пропускной способности интернет-каналов. Ожидается, что в ближайшем будущем вероятностная модуляция принесёт пользу интернет-провайдерам в создании высокоскоростных линий fiber to the home, а также облачным провайдерам, например при переносе данных между разными дата-центрами.

Дополнительное чтение в нашем блоге на Хабре:

Использование оптического кабеля для передачи гигабитных скоростей Б

Институтом инженеров электротехники и электроники (IEEE) 25 июня 1998 г. был принят стандарт 802.3z на кабельные системы для технологии передачи данных GigaEthernet. Он включает в себя стандарты 1000BaseLX и 1000BaseSX (передача по оптическому кабелю с использованием длинных и коротких волн соответственно), а также 1000 BaseCX для соединения оборудования медным кабелем на короткие расстояния. Если новый стандарт на медные кабели — дело привычное, то стандарт на ВОЛС для локальных сетей практически не меняется.

В течение многих лет в локальных сетях в основном использовались оптические волокна с диаметром сердцевины 62,5 микрон. Пропускная способность таких кабелей полностью удовлетворяет требованиям систем передачи данных не только на 10 Мбит/с, но и 100 Мбит/с (FastEthernet). Именно такое волокно рекомендовалось стандартом ISO/IEC для структурированных кабельных систем (СКС). Для современных технологий, таких как АТМ и GigaEthernet, пропускная способность волокна с сердцевиной 62,5 микрон недостаточна. Новый стандарт рекомендует использовать оптические волокна с диаметром сердцевины 50 микрон (Таблица 1).

Принятие стандарта GigaEthernet для оптических кабелей вызвало увеличение числа гигабитных соединений, что было обусловлено ростом количества рабочих мест, использующих технологию FastEthernet. Однако для объединения рабочих групп необходима еще большая скорость. В противном случае, несмотря на хорошее и дорогостоящее оборудование, реальная скорость на рабочем месте вряд ли превысит 10 Мбит/с.

ATM

Сегодня технология АТМ больше знакома миру телекоммуникаций, чем миру передачи данных, поскольку основные ее преимущества проявляются именно при совместной передаче видео, голоса и данных в реальном масштабе времени, где существуют особенно жесткие требования к задержкам. Международная организация ATM-Forum утвердила оптические интерфейсы 51,84; 155,52 и 622,08 Мбит/с. Независимо от этих рекомендаций было также разработано оборудование для сетей АТМ со скоростями передачи 1,2 и 2,4 Гбит/с и даже больше.

Таблица 1

Тип волокна   Одномодовое
Диаметр сердцевины,микрон Полимерное волокно  
Рабочая длина волны, нм 850 1300 850 1300 650 1300
Применение: Гигабитный Ethernet 220м 550м 550м 550м   5000м
АТМ 50 Мбит/с 2000м 2000м 2000м 2000м 50м
155Мбит/с 1000м 2000м 1000м 2000 м 50м
622 Мбит/с 300м 500м 300м 500м 5000м
Fibre Channel  
1,062Гбит/с 175м 500м 10000м
2,125Гбит/с 300м 2000м
4,25 Гбит/с 100м 2000м

Выбор оптического кабеля

Сердцевина оптического волокна с высоким коэффициентом преломления окружена оболочкой с более низким коэффициентом преломления. За счет этой разницы основной световой поток остается внутри сердцевины (явление полного внутреннего отражения). Существует два типа оптических волокон: одномодовое и многомодовое.

  • Одномодовое волокно. Обычно диаметр сердцевины составляет 8 микрон, и по волокну распространяется только одна мода. Это устраняет межмодовую дисперсию, но полоса пропускания ограничивается явлениями второго порядка, такими как внутримодовая дисперсия. Комбинация огромной пропускной способности и низкого затухания делает одномодовое волокно наиболее предпочтительным для использования в большинстве телекоммуникационных систем. Однако необходимость применения лазеров, излучающих лучи света с малыми численными апертурами (диаметрами) для эффективного ввода в волокно, до сих пор ограничивает использование этого волокна в локальных сетях из-за высокой стоимости этих приборов.
  • Многомодовое волокно имеет больший диаметр сердцевины (обычно 50 или 62,5 микрон) и позволяет передавать одновременно много мод. У современного градиентного многомодового волокна сложная оптическая сердцевина сконструирована так, что коэффициент преломления изменяется заданным образом — от высокого у центральной оси до низкого на внешней стороне сердцевины. Оно чаще используется в локальных сетях и внутри зданий, так как больший диаметр сердцевины упрощает процесс оконцовки волокна. Кроме того в многомодовом волокне в качестве источников света можно использовать светодиоды, имеющие большие численные апертуры.

Следует отметить, что полоса пропускания многомодового волокна ограничена дисперсией, которая возникает из-за нескольких факторов. При этом ширина импульса цифрового сигнала по мере прохождения по волокну возрастает.

  • Межмодовая дисперсия. Поскольку моды света имеют различные пути, некоторые из них достигнут приемника раньше других. Этот эффект отчасти нивелируется за счет использования градиентного волокна, в котором коэффициент преломления в центре сердцевины больше. Чем выше коэффициент преломления, тем медленнее распространяется световой луч. В результате все лучи приходят к приемнику одновременно.
  • Хроматическая дисперсия. Скорость света в стекле зависит от коэффициента преломления, а тот в свою очередь — от длины волны света. Хотя светоизлучающий диод, и особенно лазер, настроены на определенную длину волны, они излучают достаточно широкий спектр. Короткий импульс, переданный источником, при прохождении по волокну увеличивается по ширине, поскольку различные цветовые составляющие первоначального импульса передаются на различных скоростях.

Использование лазеров для передачи по многомодовому волокну вызывает другие формы дисперсии.

  • Дисперсия дифференциальной моды. Этот эффект наиболее ощутим при передаче лазером по волокну 62,5/125, когда диаметр входящего луча меньше сердцевины. Это вызвано небольшими различиями коэффициента преломления сердцевины, приводящими к дифференциальной задержке, которая зависит оттого, в какой части сердцевины передается свет. Источники, дающие более широкий луч (светодиоды) «переполняют» сердцевину светом, что ведет к исчезновению дифференциальной дисперсии.

При передаче волны 1300 нм по многомодовому волокну на большие расстояния необходимо использовать специальный соединитель со смещенным вводом. Это позволяет компенсировать задержку дифференциальной моды.

  • Полимерное волокно дешевле и проще в установке. Однако оно не обеспечивает такую пропускную способность, как у медного кабеля категории 5 и поэтому в настоящее время не используется.

Новые стандарты

В Таблице 2 приведена спецификация для GigaEthernet для кабелей с различной полосой пропускания, В будущем большие проблемы может вызвать необходимость применения технологии WDM (передача с разделением по длине волны), которая позволяет эффективнее использовать имеющиеся коммуникации. Если в дешевых кабелях удается использовать два канала в одном волокне, то в современных высококачественных волоконных системах на данный момент — до 80 каналов одновременно.

Из статистики крупнейшего в Европе производителя кабелей компании BICC Brand-Rex в сетях Великобритании (было исследовано 650 км кабелей от основных поставщиков) видно, что 82 % инсталлированного многомодового оптического кабеля имеют пропускную способность 160 МГц-км при длине волны 850 нм. Предел 220 м, установленный для передачи GigaEthernet, ограничивает возможность его применения на больших расстояниях в аэропортах, университетах и на крупных предприятиях.

При тестировании в Центральном исследовательском центре волоконно-оптического кабеля Millenium компании BICC Brand-Rex были получены более высокие характеристики, чем предусмотрено стандартом (для волокна 62,5/125 предел расстояния составляет 220 м на скорости 1 Гбит/с).

Методы увеличения пропускной способности волокна

 Существует два способа увеличения пропускной способности проложенных оптических кабелей, предусматривающие использование:

  • мультиплексора с разделением по длине волны — оптического смесителя, позволяющего пропускать по одному волокну одновременно несколько длин волн. Это мультиплексирование не решает проблему расстояния на гигабитных скоростях, поскольку не влияет на соотношение пропускная способность/ расстояние. Стоимость оборудования для мультиплексирования сравнима с прокладкой нового кабеля;
  • оборудования, увеличивающего полосу пропускания, — специальный тип соединительных кабелей (патч-кордов), позволяющих отбросить некоторые из оптических мод высшего порядка. Это увеличивает затухание и полосу пропускания. Для определения оптимального соотношения затухания и полосы пропускания сначала проводятся примерные расчеты, после чего каждое волокно тестируется.
Таблица 2
      Длина волны,нм
Волокно Характеристики 850 1300
62,5/125 (дешевое) Полоса пропускания, МГц-км 160 500
  Расстояние,м 220 550
62,5/125 Полоса пропускания, МГц-км 200 500
  Расстояние,м 275 550
50/125 (дешевое) Полоса пропускания, МГц-км 400 400
  Расстояние 500 550
50/125 Полоса пропускания, МГц-км 500 500
  Расстояние,м 550 550
Одномодовое волокно Расстояние,м   5500

Возможно, какое-нибудь предприятие, уже проложившее большое количество кабеля, будет заинтересовано в увеличении его возможностей, однако для удовлетворения всех потребностей целесообразнее купить соответствующий тип оптического кабеля. Во всяком случае, такие затраты сравнимы по цене.

Прокладка кабеля

Технологии передачи данных развиваются очень быстро, и их замена может потребовать строительства новой кабельной системы. Для защиты капиталовложений при прокладке кабеля необходимо предусмотреть возможность его использования с другими технологиями.

Одним из способов учета постоянно увеличивающихся потребностей в полосе пропускания является применение кабеля, состоящего из уже используемых и свободных волокон, которые можно будет задействовать в будущем. Например, это может быть комбинация одномодового и многомодового волокна, дающая наилучшие результаты при минимальной цене.

Для снижения стоимости и наибольшей гибкости можно использовать заранее заложенные трубки с дальнейшей продувкой в них оптического волокна. Этот способ применяется в системе Blolite компании BICC Brand-Rex. Blolite состоит из пустых пластиковых трубок, прокладываемых внутри или между зданиями, т. е. там, где может понадобиться канал связи. Волокно продувается по определенным путям, а некоторые из трубок или направлений остаются пустыми. В дальнейшем при необходимости можно «додуть» новые волокна или заменить старое волокно и использовать его на новых направлениях или в новых комбинациях.

Утверждение стандарта GigaEthernet для оптического кабеля IEEE 802.3z накладывает более серьезные требования на производительность оптических кабелей, чем все предыдущие стандарты.

Многомодовое волокно до сих пор является наилучшей комбинацией цены и производительности в тех случаях, когда рассматривается общая стоимость системы. Преимущество волокон 50/125 — значительный выигрыш в полосе пропускания.

Сегодня имеется большой выбор кабелей, отличающихся как полосой пропускания, так и ценой. При покупке дешевого продукта следует учитывать, что он имеет ограниченные возможности и не может использоваться для высокоскоростных приложений, особенно в будущем при принятии новых стандартов. Стоит принять во внимание результаты расширенных тестирований кабелей в Европейском исследовательском центре и международную сертификацию, особенно при использовании на предельных расстояниях.   

Выбор оптического кабеля при проектировании магистрали СКС

При проектировании структурированных кабельных систем (СКС) часто возникают ситуации, когда необходимо объединить два или несколько достаточно удаленных друг от друга сегментов сетей или требуется подключить удаленное на значительное расстояние оборудование. Другими словами – возникают ситуации, когда использовать соединение нескольких сегментов с помощью медного кабеля витая пара не обеспечивает необходимую пропускную способность на заданном расстоянии.

В таких случаях при проектировании магистральных подсистем структурированной кабельной системы в качестве магистрального кабеля используются волоконно-оптические кабели (ВОК). Основные преимущества волоконно-оптических кабелей перед линиями на основе медных пар очевидны – это низкий коэффициент затухания, позволяющий строить участки линий связи на большие расстояния, а так же высокая полоса пропускания, ограниченная только возможностями оконечного активного оборудования, составляющая на сегодняшний день 10 Гбит/с и выше. Уже сейчас есть решения у производителей для 40 и 100 Гбит/с.

При введении в СКС оптических сегментов, на этапе проектирования необходимо определиться с тем, какой тип оптических кабелей необходимо использовать в тех или иных условиях. Основные вопросы, которые решает проектировщик, при построении волоконно-оптической линии связи (ВОЛС) и критерии выбора в ходе разработки проекта СКС:

  • Какой тип и категорию оптоволокна применять на данном объекте?
  • Какой кабель выбрать — кабель с плотным или свободным буфером?
  • Какой тип внешнего покрытия волоконно-оптического кабеля выбрать?

Выбор типа оптоволокна — одномодовое или многомодовое оптическое волокно

В названии типа волокна ест корень «модовое» и это не случайно. Чтобы понять, что такое «мода», вспомним принцип работы оптического волокна (рисунок 1). Сейчас мы не будем рассматривать множество защитных слоев, а рассмотрим только среду передачи. Оптическое волокно состоит из двух частей с различными коэффициентами преломления – сердцевины (б) и оболочки (а) . При nс> nо существует такой угол падения, при котором луч, проходящий через сердцевину волокна испытывает полное отражение от границы раздела с оболочкой. При размерах сердцевины, значительно больших, чем длина волны луча (рисунок 1 верхняя картинка), возможно множество траекторий (мод), а при диаметре сердцевины близких к длине волны – только одна (рисунок 1 нижняя картинка).

При передаче светового импульса через многомодовое оптическое волокно (рисунок 1-1) луч проходит по нескольким путям различной длины. Поэтому на приемной стороне импульс «расплывается», и при попытке отправки пакета сигналов на слишком большое расстояние приемная аппаратура может просто не различить один сигнал от другого. Этот эффект называется «расширением задержки» (delay spread), и именно он в наибольшей степени ограничивает дальность и полосу пропускания для многомодовых систем. Этот эффект называется межмодовой дисперсией. При использовании одномодовых волокон, луч движется по одной единственной траектории (рисунок 1-1), поэтому в них этот эффект отсутствует, и дальность связи ограничивается только затуханием сигнала и возможностями протокола связи.

В связи с указанными особенностями, существуют рекомендации по применению различных типов волокон в зависимости от длины сегмента и используемого приложения. Например, для Gigabit Ethernet, при длине сегмента до 550 м можно использовать многомодовый кабель, а до 2 км и выше – одномодовый. Для 10 Gigabit Ethernet 10GBase_SR/SW при длине сегмента до 300 м можно использовать многомодовый кабель категории ОМ3, свыше 300 метров – одномодовый кабель.

Другая сторона выбора между одномодовыми и многомодовыми волокнами – стоимость портов активного оборудования. Несмотря на то, что стоимость одномодовых кабелей несколько ниже, передатчики для одномодового волокна значительно дороже (приемники в обоих случаях используются одинаковые) передатчиков для многомодового волокна.

Выбор оптического кабеля с плотным или свободным буфером

Волокно в кабеле со свободным буфером (рисунок 2) защищается базовым покрытием и располагается в достаточно жестком пластиковом модуле, имеющим значительный внутренний диаметр и заполненном гидрофобным гелем.

Модуль может быть уплотненным, то есть содержащим несколько волокон, или неуплотненным – одно. Для повышения прочности на растяжение, в модуль могут закладываться еще и капроновые нити. Модуль защищает волокна от внешних механических воздействий. Кабель, как правило, состоит из нескольких модулей, силовых элементов, защищающих от растяжений, сжатий, усадки и резких перегибов, а так же внешнего покрытия. Межмодульное пространство, как правило, так же заполнено гидрофобным гелем. Для такого типа кабелей нежелательны многочисленные изгибы и механические напряжения, в том числе вертикальная прокладка. Кроме того, при сращивании и терминации необходимо исключить возможность проникновения влаги и веществ, способных взаимодействовать с наполнителем.

В кабелях с волокнами с плотным буфером (рисунок 3) защитный слой образуется путем непосредственного выдавливания пластика вокруг волокна. Такая конструкция имеет более высокую стойкость к растяжениям, ударам и сжатиям, а так же допускает изгибы значительно меньшего радиуса, чем кабели с волокнами в свободном буфере. Минусы данного типа кабелей – плохо переносит влажность и значительные температурные колебания, хотя стали появляться модели, лучше приспособленные к таким условиям. Кроме того, кабели такого типа имеют больший диаметр и вес.

Можно сделать вывод, что для прокладки внутри помещений идеальным решением является кабель с оптическими волокнами в плотном буфере, а в сложных климатических условиях больше подойдет кабель со свободным буфером.

Тип внешнего покрытия оптических кабелей

Одним из важнейших критериев выбора материала внешнего покрытия является его пожаробезопасность. Особенно это становится актуальным, в связи с трагическими событиями в Перми. На пожаробезопасность будет обращаться пристальное внимание различных контролирующих и проверяющих органов, а также этим вопросом могут быть обеспокоены собственники, сдающие офисы в аренду. Кстати, если что-то подобное произойдет в коммерческом офисном здании, то я не думаю, что кому-то захочется отвечать за проект, в котором будет запроектирован кабель с горючей оболочкой, которая выделяет при горении опасные для людей вещества.

Напомню читателям, что в 2009 году был принят ГОСТ Р 53315-2009 «Кабельные изделия. Пожарная безопасность». Согласно этому документу, вся кабельная продукция на российском рынке должна пройти обязательную сертификацию и получить соответствующий класс пожаробезопасности. Подробнее про ГОСТ Р 53315-2009 читайте в этой новости Соблюдение правил противопожарной безопасности при проектировании и монтаже СКС. При сертификации учитываются такие параметры, как предел огнестойкости, предел распространения горения, показатель коррозионной активности продуктов горения и тления изоляции, показатель дымообразования и показатель токсичности продуктов горения. Кроме того, стандарт определяет максимальный уровень пожарной опасности кабелей при прокладке в определенных типах помещения.

Второй критерий – механические свойства покрытия. Для прокладки в сложных условиях, например в трубах канализации или напрямую в грунт, обычно используется кабели с покрытием из полиэтилена высокой плотности (HDPE). Это довольно дорогостоящее покрытие, и поэтому используется, как правило, в кабелях высокой емкости. Более бюджетное покрытие выполняется из полиэтилена средней плотности (MDPE), которое так же имеет достаточно неплохие механические характеристики. Менее прочное покрытие из полиэтилена низкой плотности (LDPE), как правило, укладывается под броней кабеля, которая, в свою очередь покрывается слоем MDPE или HDPE.

Для повышения механической прочности и стойкости к агрессивным средам, таким как масла, концентрированные щелочи, органические и минеральные кислоты, полиэтиленовая оболочка покрывается тонким (до 0,5 мм) слоем полиамида (РА). Кроме того, такое покрытие уменьшает коэффициент трения и облегчает укладку в трубопровод. Такая оболочка обычно имеет черный или оранжевый цвет. Возможны и другие материалы оболочек.

Третий критерий выбора оболочки – необходимость защиты от грызунов. Такая защита обычно выполняется двумя путями – бронирование кабеля и добавления в оболочку отпугивающих веществ.

Металлическая броня обычно выполняется либо в виде металлической ленты, свернутой в трубку, обычно гофрированной (повышает защиту от ударных нагрузок), либо из стальной проволоки (повышает допустимое усилие на растяжение). Наиболее дешевы, а поэтому более распространены, кабели с ленточной броней.

В случае, когда металлическую броню использовать нельзя, применяется покрытие из полиамида, полипропилена или плотный слой стекловолоконных нитей, выполняющих роль силового элемента. Кабели с химической защитой от грызунов очень дороги, поэтому используются нечасто.

На что обратить внимание про проектировании магистрали СКС

Проектирование оптико-волоконных сегментов в магистрали СКС с характеристиками, близкими к требуемым на момент строительства – это неправильное расходование денежных средств. Технологии развиваются семимильными шагами, сети со временем имеют свойство расти, поэтому при проектировании волоконно-оптических линий связи очень важно заложить запас как по количеству оптических волокон, так и по пропускной способности. Правильнее построить один раз ВОЛС с запасом и перспективой расширения в будущем, чем потом ее перестраивать.

Использование оптического кабеля для передачи гигабитных скоростей Б

Институтом инженеров электротехники и электроники (IEEE) 25 июня 1998 г. был принят стандарт 802.3z на кабельные системы для технологии передачи данных GigaEthernet. Он включает в себя стандарты 1000BaseLX и 1000BaseSX (передача по оптическому кабелю с использованием длинных и коротких волн соответственно), а также 1000 BaseCX для соединения оборудования медным кабелем на короткие расстояния. Если новый стандарт на медные кабели — дело привычное, то стандарт на ВОЛС для локальных сетей практически не меняется.

В течение многих лет в локальных сетях в основном использовались оптические волокна с диаметром сердцевины 62,5 микрон. Пропускная способность таких кабелей полностью удовлетворяет требованиям систем передачи данных не только на 10 Мбит/с, но и 100 Мбит/с (FastEthernet). Именно такое волокно рекомендовалось стандартом ISO/IEC для структурированных кабельных систем (СКС). Для современных технологий, таких как АТМ и GigaEthernet, пропускная способность волокна с сердцевиной 62,5 микрон недостаточна. Новый стандарт рекомендует использовать оптические волокна с диаметром сердцевины 50 микрон (Таблица 1).

Принятие стандарта GigaEthernet для оптических кабелей вызвало увеличение числа гигабитных соединений, что было обусловлено ростом количества рабочих мест, использующих технологию FastEthernet. Однако для объединения рабочих групп необходима еще большая скорость. В противном случае, несмотря на хорошее и дорогостоящее оборудование, реальная скорость на рабочем месте вряд ли превысит 10 Мбит/с.

ATM

Сегодня технология АТМ больше знакома миру телекоммуникаций, чем миру передачи данных, поскольку основные ее преимущества проявляются именно при совместной передаче видео, голоса и данных в реальном масштабе времени, где существуют особенно жесткие требования к задержкам. Международная организация ATM-Forum утвердила оптические интерфейсы 51,84; 155,52 и 622,08 Мбит/с. Независимо от этих рекомендаций было также разработано оборудование для сетей АТМ со скоростями передачи 1,2 и 2,4 Гбит/с и даже больше.

Таблица 1

Тип волокна   Одномодовое
Диаметр сердцевины,микрон Полимерное волокно  
Рабочая длина волны, нм 850 1300 850 1300 650 1300
Применение: Гигабитный Ethernet 220м 550м 550м 550м   5000м
АТМ 50 Мбит/с 2000м 2000м 2000м 2000м 50м
155Мбит/с 1000м 2000м 1000м 2000 м 50м
622 Мбит/с 300м 500м 300м 500м 5000м
Fibre Channel  
1,062Гбит/с 175м 500м 10000м
2,125Гбит/с 300м 2000м
4,25 Гбит/с 100м 2000м

Выбор оптического кабеля

Сердцевина оптического волокна с высоким коэффициентом преломления окружена оболочкой с более низким коэффициентом преломления. За счет этой разницы основной световой поток остается внутри сердцевины (явление полного внутреннего отражения). Существует два типа оптических волокон: одномодовое и многомодовое.

  • Одномодовое волокно. Обычно диаметр сердцевины составляет 8 микрон, и по волокну распространяется только одна мода. Это устраняет межмодовую дисперсию, но полоса пропускания ограничивается явлениями второго порядка, такими как внутримодовая дисперсия. Комбинация огромной пропускной способности и низкого затухания делает одномодовое волокно наиболее предпочтительным для использования в большинстве телекоммуникационных систем. Однако необходимость применения лазеров, излучающих лучи света с малыми численными апертурами (диаметрами) для эффективного ввода в волокно, до сих пор ограничивает использование этого волокна в локальных сетях из-за высокой стоимости этих приборов.
  • Многомодовое волокно имеет больший диаметр сердцевины (обычно 50 или 62,5 микрон) и позволяет передавать одновременно много мод. У современного градиентного многомодового волокна сложная оптическая сердцевина сконструирована так, что коэффициент преломления изменяется заданным образом — от высокого у центральной оси до низкого на внешней стороне сердцевины. Оно чаще используется в локальных сетях и внутри зданий, так как больший диаметр сердцевины упрощает процесс оконцовки волокна. Кроме того в многомодовом волокне в качестве источников света можно использовать светодиоды, имеющие большие численные апертуры.

Следует отметить, что полоса пропускания многомодового волокна ограничена дисперсией, которая возникает из-за нескольких факторов. При этом ширина импульса цифрового сигнала по мере прохождения по волокну возрастает.

  • Межмодовая дисперсия. Поскольку моды света имеют различные пути, некоторые из них достигнут приемника раньше других. Этот эффект отчасти нивелируется за счет использования градиентного волокна, в котором коэффициент преломления в центре сердцевины больше. Чем выше коэффициент преломления, тем медленнее распространяется световой луч. В результате все лучи приходят к приемнику одновременно.
  • Хроматическая дисперсия. Скорость света в стекле зависит от коэффициента преломления, а тот в свою очередь — от длины волны света. Хотя светоизлучающий диод, и особенно лазер, настроены на определенную длину волны, они излучают достаточно широкий спектр. Короткий импульс, переданный источником, при прохождении по волокну увеличивается по ширине, поскольку различные цветовые составляющие первоначального импульса передаются на различных скоростях.

Использование лазеров для передачи по многомодовому волокну вызывает другие формы дисперсии.

  • Дисперсия дифференциальной моды. Этот эффект наиболее ощутим при передаче лазером по волокну 62,5/125, когда диаметр входящего луча меньше сердцевины. Это вызвано небольшими различиями коэффициента преломления сердцевины, приводящими к дифференциальной задержке, которая зависит оттого, в какой части сердцевины передается свет. Источники, дающие более широкий луч (светодиоды) «переполняют» сердцевину светом, что ведет к исчезновению дифференциальной дисперсии.

При передаче волны 1300 нм по многомодовому волокну на большие расстояния необходимо использовать специальный соединитель со смещенным вводом. Это позволяет компенсировать задержку дифференциальной моды.

  • Полимерное волокно дешевле и проще в установке. Однако оно не обеспечивает такую пропускную способность, как у медного кабеля категории 5 и поэтому в настоящее время не используется.

Новые стандарты

В Таблице 2 приведена спецификация для GigaEthernet для кабелей с различной полосой пропускания, В будущем большие проблемы может вызвать необходимость применения технологии WDM (передача с разделением по длине волны), которая позволяет эффективнее использовать имеющиеся коммуникации. Если в дешевых кабелях удается использовать два канала в одном волокне, то в современных высококачественных волоконных системах на данный момент — до 80 каналов одновременно.

Из статистики крупнейшего в Европе производителя кабелей компании BICC Brand-Rex в сетях Великобритании (было исследовано 650 км кабелей от основных поставщиков) видно, что 82 % инсталлированного многомодового оптического кабеля имеют пропускную способность 160 МГц-км при длине волны 850 нм. Предел 220 м, установленный для передачи GigaEthernet, ограничивает возможность его применения на больших расстояниях в аэропортах, университетах и на крупных предприятиях.

При тестировании в Центральном исследовательском центре волоконно-оптического кабеля Millenium компании BICC Brand-Rex были получены более высокие характеристики, чем предусмотрено стандартом (для волокна 62,5/125 предел расстояния составляет 220 м на скорости 1 Гбит/с).

Методы увеличения пропускной способности волокна

 Существует два способа увеличения пропускной способности проложенных оптических кабелей, предусматривающие использование:

  • мультиплексора с разделением по длине волны — оптического смесителя, позволяющего пропускать по одному волокну одновременно несколько длин волн. Это мультиплексирование не решает проблему расстояния на гигабитных скоростях, поскольку не влияет на соотношение пропускная способность/ расстояние. Стоимость оборудования для мультиплексирования сравнима с прокладкой нового кабеля;
  • оборудования, увеличивающего полосу пропускания, — специальный тип соединительных кабелей (патч-кордов), позволяющих отбросить некоторые из оптических мод высшего порядка. Это увеличивает затухание и полосу пропускания. Для определения оптимального соотношения затухания и полосы пропускания сначала проводятся примерные расчеты, после чего каждое волокно тестируется.
Таблица 2
      Длина волны,нм
Волокно Характеристики 850 1300
62,5/125 (дешевое) Полоса пропускания, МГц-км 160 500
  Расстояние,м 220 550
62,5/125 Полоса пропускания, МГц-км 200 500
  Расстояние,м 275 550
50/125 (дешевое) Полоса пропускания, МГц-км 400 400
  Расстояние 500 550
50/125 Полоса пропускания, МГц-км 500 500
  Расстояние,м 550 550
Одномодовое волокно Расстояние,м   5500

Возможно, какое-нибудь предприятие, уже проложившее большое количество кабеля, будет заинтересовано в увеличении его возможностей, однако для удовлетворения всех потребностей целесообразнее купить соответствующий тип оптического кабеля. Во всяком случае, такие затраты сравнимы по цене.

Прокладка кабеля

Технологии передачи данных развиваются очень быстро, и их замена может потребовать строительства новой кабельной системы. Для защиты капиталовложений при прокладке кабеля необходимо предусмотреть возможность его использования с другими технологиями.

Одним из способов учета постоянно увеличивающихся потребностей в полосе пропускания является применение кабеля, состоящего из уже используемых и свободных волокон, которые можно будет задействовать в будущем. Например, это может быть комбинация одномодового и многомодового волокна, дающая наилучшие результаты при минимальной цене.

Для снижения стоимости и наибольшей гибкости можно использовать заранее заложенные трубки с дальнейшей продувкой в них оптического волокна. Этот способ применяется в системе Blolite компании BICC Brand-Rex. Blolite состоит из пустых пластиковых трубок, прокладываемых внутри или между зданиями, т. е. там, где может понадобиться канал связи. Волокно продувается по определенным путям, а некоторые из трубок или направлений остаются пустыми. В дальнейшем при необходимости можно «додуть» новые волокна или заменить старое волокно и использовать его на новых направлениях или в новых комбинациях.

Утверждение стандарта GigaEthernet для оптического кабеля IEEE 802.3z накладывает более серьезные требования на производительность оптических кабелей, чем все предыдущие стандарты.

Многомодовое волокно до сих пор является наилучшей комбинацией цены и производительности в тех случаях, когда рассматривается общая стоимость системы. Преимущество волокон 50/125 — значительный выигрыш в полосе пропускания.

Сегодня имеется большой выбор кабелей, отличающихся как полосой пропускания, так и ценой. При покупке дешевого продукта следует учитывать, что он имеет ограниченные возможности и не может использоваться для высокоскоростных приложений, особенно в будущем при принятии новых стандартов. Стоит принять во внимание результаты расширенных тестирований кабелей в Европейском исследовательском центре и международную сертификацию, особенно при использовании на предельных расстояниях.   

Leave a comment