Основная память это: Основная память – Основная область памяти — Википедия

Основная память

Основная память (ОП) представляет собой единственный вид памяти, к которой ЦП может обращаться непосредственно (исключение составляют лишь регистры центрального процессора). Информация, хранящаяся на внешних ЗУ, становится доступной процессору только после того, как будет переписана в основную память. Основную память образуют запоминающие устройства с произвольным досту­пом. Такие ЗУ образованы как массив ячеек, а «произвольный доступ» означает, что обращение к любой ячейке занимает одно и то же время и может производить­ся в произвольной последовательности. Каждая ячейка содержит фиксированное число запоминающих элементов и имеет уникальный адрес, позволяющий разли­чать ячейки при обращении к ним для выполнения операций записи и считыва­ния. Основная память может включать в себя два типа устройств: оперативные за­поминающие устройства

(ОЗУ) и постоянные запоминающие устройства (ПЗУ).

Преимущественную долю основной памяти образует ОЗУ, называемое опера­тивным, потому что оно допускает как запись, так и считывание информации, причем обе операции выполняются однотипно, практически с одной и той же ско­ростью, и производятся с помощью электрических сигналов. В англоязычной литературе ОЗУ соответствует аббревиатура RAM — Random Access Memory, то есть «память с произвольным доступом», что не совсем корректно, поскольку па­мятью с произвольным доступом являются также ПЗУ и регистры процессора. Для большинства типов полупроводниковых ОЗУ характерна энергозависимость — даже при кратковременном прерывании питания хранимая информация теряется. Микросхема ОЗУ должна быть постоянно подключена к источнику питания и по­этому может использоваться только как временная память.

Вторую группу полупроводниковых ЗУ основной памяти образуют энергоне­зависимые микросхемы ПЗУ (ROM — ReadOnly Memory). ПЗУ обеспечивает счи­тывание информации, но не допускает ее изменения (в ряде случаев информация в ПЗУ может быть изменена, но этот процесс сильно отличается от считывания и требует значительно большего времени).

Оперативные запоминающие устройства

Большинство из применяемых в настоящее время типов микросхем оперативной памяти не в состоянии сохранять данные без внешнего источника энергии, то есть являются энергозависимыми (volatile memory). Широкое распространение таких устройств связано с рядом их достоинств по сравнению с энергонезависимыми типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотребле­нием, более высоким быстродействием и невысокой себестоимостью хранения еди­ницы информации.

 Энергозависимые ОЗУ можно подразделить на две основные подгруппы: ди­намическую память (DRAM — Dynamic Random Access Memory) и статическую память (SRAM — Static Random Access Memory).

Статическая и динамическая оперативная память

В статических ОЗУ

запоминающий элемент может хранить записанную инфор­мацию неограниченно долго (при наличии питающего напряжения). Запоминаю­щий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и стати­ческие, энергозависимы.

 Статические оперативные запоминающие устройства

Напомним, что роль запоминающего элемента в статическом ОЗУ исполняет триг­гер. Статические ОЗУ на настоящий момент — наиболее быстрый, правда, и наи­более дорогостоящий вид оперативной памяти. Известно достаточно много раз­личных вариантов реализации SRAM, отличающихся по технологии, способам организации и сфере применения (рис. 5.9).

Асинхронные статические ОЗУ. Асинхронные статические ОЗУ применялись в кэш-памяти второго уровня в течение многих лет, еще с момента появления мик­ропроцессора i80386. Для таких ИМС время доступа составляло 15-20 не (в луч­шем случае — 12 не), что не позволяло кэш-памяти второго уровня работать в тем­пе процессора.

Рис. 5.9. Виды статических ОЗУ

Синхронные статические ОЗУ. В рамках данной группы статических ОЗУ вы­деляют ИМС типа SSRAM и более совершенные РВ SRAM.

  Последние модификации микропроцессоров Pentium, начиная с Pentium II, взамен SSRAM оснащаются статической оперативной памятью с пакетным кон­вейерным доступом (РВ SRAM — Pipelined Burst SRAM). В этой разновидности SRAM реализована внутренняя конвейеризация, за счет которой скорость обмена пакетами данных возрастает примерно вдвое. Память данного типа хорошо рабо­тает при повышенных частотах системной шины. Время доступа к РВ SRAM со­ставляет от 4,5 до 8 нс, при этом формула 3-1-1-1 сохраняется даже при частоте системной шины 133 МГц.

  Особенности записи в статических ОЗУ. Важным моментом, характеризующим SRAM, является технология записи. Известны два варианта записи:

стандартная и запаздывающая. В стандартном режиме адрес и данные выставляются на соот­ветствующие шины в одном и том же такте. В режиме запаздывающей записи дан­ные для нее передаются в следующем такте после выбора адреса нужной ячейки, что напоминает режим конвейерного чтения, когда данные появляются на шине в следующем такте. Оба рассматриваемых варианта позволяют производить запись данных с частотой системной шины. Различия сказываются только при переклю­чении между операциями чтения и записи.

Динамические оперативные запоминающие устройства

Динамической памяти в вычислительной машине значительно больше, чем стати­ческой, поскольку именно DRAM используется в качестве основной памяти ВМ. Как и SRAM, динамическая память состоит из ядра (массива ЗЭ) и интерфейсной логики (буферных регистров, усилителей чтения данных, схемы регенерации и др.). 

В отличие от SRAM адрес ячейки DRAM передается в микросхему за два шага — вначале адрес столбца, а затем строки, что позволяет сократить количество выво­дов шины адреса примерно вдвое, уменьшить размеры корпуса и разместить на материнской плате большее количество микросхем. Это, разумеется, приводит к снижению быстродействия, так как для передачи адреса нужно вдвое больше вре­мени. Для указания, какая именно часть адреса передается в определенный момент, служат два вспомогательных сигнала RAS и CAS. При обращении к ячейке памя­ти на шину адреса выставляется адрес строки. После стабилизации процессов на шине подается сигнал RAS и адрес записывается во внутренний регистр микро­схемы памяти. Затем на шину адреса выставляется адрес столбца и выдается сиг­нал CAS. В зависимости от состояния линии WE производится чтение данных из ячейки или их запись в ячейку (перед записью данные должны быть помещены на шину данных). Интервал между установкой адреса и выдачей сигнала RAS (или CAS) оговаривается техническими характеристиками микросхемы, но обычно ад­рес выставляется в одном такте системной шины, а управляющий сигнал — в сле­дующем. Таким образом, для чтения или записи одной ячейки динамического ОЗУ требуется пять тактов, в которых происходит соответственно: выдача адреса строки, выдача сигнала RAS, выдача адреса столбца, выдача сигнала CAS, выполнение операции чтения/записи (в статической памяти процедура занимает лишь от двух до трех тактов).

Рис. 5.10. Классификация динамических ОЗУ: а — микросхемы для основной памяти; б — микросхемы для видеоадаптеров

Следует также помнить о необходимости регенерации данных. Но наряду с ес­тественным разрядом конденсатора ЗЭ со временем к потере заряда приводит так­же считывание данных из DRAM, поэтому после каждой операции чтения данные должны быть восстановлены. Это достигается за счет повторной записи тех же данных сразу после чтения. При считывании информации из одной ячейки факти­чески выдаются данные сразу всей выбранной строки, но используются только те, которые находятся в интересующем столбце, а все остальные игнорируются. Та­ким образом, операция чтения из одной ячейки приводит к разрушению данных всей строки, и их нужно восстанавливать. Регенерация данных после чтения выполняется автоматически интерфейсной логикой микросхемы, и происходит это сразу же после считывания строки. Теперь рассмотрим различные типы микросхем динамической памяти, начнем с системных DRAM, то есть микросхем, предназначенных для использования в ка­честве основной памяти. На начальном этапе это были микросхемы асинхронной памяти, работа которых не привязана жестко к тактовым импульсам системной шины.

  Асинхронные динамические ОЗУ. Микросхемы асинхронных динамических ОЗУ управляются сигналами RAS и CAS, и их работа в принципе не связана непосред­ственно тактовыми импульсами шины. Асинхронной памяти свойственны допол­нительные затраты времени на взаимодействие микросхем памяти и контроллера. Так, в асинхронной схеме сигнал RAS будет сформирован только после поступле­ния в контроллер тактирующего импульса и будет воспринят микросхемой памя­ти через некоторое время. После этого память выдаст данные, но контроллер смо­жет их считать только по приходу следующего тактирующего импульса, так как он должен работать синхронно с остальными устройствами ВМ. Таким образом, на протяжении цикла чтения/записи происходят небольшие задержки из-за ожида­ния памятью контроллера и контроллером памяти.

  Микросхемы DRAM. В первых микросхемах динамической памяти применялся наиболее простой способ обмена данными, часто называемый традиционным (con­ventional). Он позволял считывать и записывать строку памяти только на каждый пятый такт (рис. 5.11, а). Этапы такой процедуры были описаны ранее. Традици­онной DRAM соответствует формула 5-5-5-5. Микросхемы данного типа могли работать на частотах до 40 МГц и из-за своей медлительности (время доступа со­ставляло около 120 не) просуществовали недолго.

  Микросхемы FPMDRAM. Микросхемы динамического ОЗУ, реализующие ре­жим FPM, также относятся к ранним типам DRAM. Сущность режима была пока­зана ранее. Схема чтения для FPM DRAM (рис. 5.11, 6) описывается формулой 5-3-3-3 (всего 14 тактов). Применение схемы быстрого страничного доступа по­зволило сократить время доступа до 60 не, что, с учетом возможности работать на более высоких частотах шины, привело к увеличению производительности памя­ти по сравнению с традиционной .DRAM приблизительно на 70%. Данный тип микросхем применялся в персональных компьютерах примерно до 1994 года.

  Микросхемы EDO DRAM. Следующим этапом в развитии динамических ОЗУ стали ИМС с гиперстраничным режимом доступа (НРМ, Hyper Page Mode), бо­лее известные как EDO (Extended Data Output — расширенное время удержания данных на выходе). Главная особенность технологии — увеличенное по сравне­нию с FPM DRAM время доступности данных на выходе микросхемы. В микро­схемах FPM DRAM выходные данные остаются действительными только при ак­тивном сигнале CAS, из-за чего во втором и последующих доступах к строке нужно три такта: такт переключения CAS в активное состояние, такт считывания данных и такт переключения CAS в неактивное состояние. В EDO DRAM по активному (спадающему) фронту сигнала CAS данные запоминаются во внутреннем регистре, где хранятся еще некоторое время после того, как поступит следующий активный фронт сигнала. Это позволяет использовать хранимые данные, когда CAS уже переведен в неактивное состояние (рис. 5.11, б). Иными словами, временные пара­метры улучшаются за счет исключения циклов ожидания момента стабилизации данных на выходе микросхемы.

  Схема чтения у EDO DRAM уже 5-2-2-2, что на 20% быстрее, чем у FPM. Вре­мя доступа составляет порядка 30-40 не. Следует отметить, что максимальная ча­стота системной шины для микросхем EDO DRAM не должна была превышать 66 МГц.

  Микросхемы BEDO DRAM. Технология EDO была усовершенствована компа­нией VIA Technologies. Новая модификация EDO известна как BEDO (Burst EDO — пакетная EDO). Новизна метода в том, что при первом обращении считы­вается вся строка микросхемы, в которую входят последовательные слова пакета. За последовательной пересылкой слов (переключением столбцов) автоматически следит внутренний счетчик микросхемы. Это исключает необходимость выдавать адреса для всех ячеек пакета, но требует поддержки со стороны внешней логики. Способ позволяет сократить время считывания второго и последующих слов еще на один такт (рис. 5.11, г), благодаря чему формула приобретает вид 5-1-1-1.

Микросхемы EDRAM. Более быстрая версия DRAM была разработана подраз­делением фирмы Ramtron — компанией Enhanced Memory Systems. Технология реализована в вариантах FPM, EDO и BEDO. У микросхемы более быстрое ядро и внутренняя кэш-память. Наличие последней — главная особенность технологии. В роли кэш-памяти выступает статическая память (SRAM) емкостью 2048 бит. Ядро EDRAM имеет 2048 столбцов, каждый из которых соединен с внутренней кэш-памятью. При обращении к какой-либо ячейке одновременно считывается целая строка (2048 бит). Считанная строка заносится в SRAM, причем перенос информации в кэш-память практически не сказывается на быстродействии, по­скольку происходит за один такт. При дальнейших обращениях к ячейкам, отно­сящимся к той же строке, данные берутся из более быстрой кэш-памяти. Следую­щее обращение к ядру происходит при доступе к ячейке, не расположенной в строке, хранимой в кэш-памяти микросхемы.

Технология наиболее эффективна при последовательном чтении, то есть когда среднее время доступа для микросхемы приближается к значениям, характерным для статической памяти (порядка 10 нс). Главная сложность состоит в несовмес­тимости с контроллерами, используемыми при работе с другими видами DRAM.

Синхронные динамические ОЗУ. В синхронных DRAM обмен информацией син­хронизируется внешними тактовыми сигналами и происходит в строго определен­ные моменты времени, что позволяет взять все от пропускной способности шины «процессор-память» и избежать циклов ожидания. Адресная и управляющая ин­формация фиксируются в ИМС памяти. После чего ответная реакция микросхе­мы произойдет через четко определенное число тактовых импульсов, и это время процессор может использовать для других действий, не связанных с обращением к памяти. В случае синхронной динамической памяти вместо продолжительности цикла доступа говорят о минимально допустимом периоде тактовой частоты, и речь уже идет о времени порядка 8-10 не.

  Микросхемы SDRAM. Аббревиатура SDRAM (Synchronous DRAM — синхрон­ная DRAM) используется для обозначения микросхем «обычных» синхронных динамических ОЗУ. Кардинальные отличия SDRAM от рассмотренных выше асин­хронных динамических ОЗУ можно свести к четырем положениям:

         синхронный метод передачи данных на шину;

         конвейерный механизм пересылки пакета;

         применение нескольких (двух или четырех) внутренних банков памяти;

         передача части функций контроллера памяти логике самой микросхемы.

Синхронность памяти позволяет контроллеру памяти «знать» моменты готов­ности данных, за счет чего снижаются издержки циклов ожидания и поиска дан­ных. Так как данные появляются на выходе ИМС одновременно с тактовыми им­пульсами, упрощается взаимодействие памяти с другими устройствами ВМ.

  В отличие от BEDO конвейер позволяет передавать данные пакета по тактам, благодаря чему ОЗУ может работать бесперебойно на более высоких частотах, чем асинхронные ОЗУ. Преимущества конвейера особенно возрастают при передаче длинных пакетов, но не превышающих длину строки микросхемы.

  Значительный эффект дает разбиение всей совокупности ячеек на независи­мые внутренние массивы (банки). Это позволяет совмещать доступ к ячейке одного банка с подготовкой к следующей операции в остальных банках (перезарядкой управляющих цепей и восстановлением информации). Возможность держать открытыми одновременно несколько строк памяти (из разных банков) также спо­собствует повышению быстродействия памяти. При поочередном доступе к бан­кам частота обращения к каждому из них в отдельности уменьшается пропор­ционально числу банков и SDRAM может работать на более высоких частотах. Благодаря встроенному счетчику адресов SDRAM, как и BEDO DRAM, позволя­ет производить чтение и запись в пакетном режиме, причем в SDRAM длина паке­та варьируется и в пакетном режиме есть возможность чтения целой строки памя­ти. ИМС может быть охарактеризована формулой 5-1-1-1. Несмотря на то, что формула для этого типа динамической памяти такая же, что и у BEDO, способ­ность работать на более высоких частотах приводит к тому, что SDRAM с двумя банками при тактовой частоте шины 100 МГц по производительности может по­чти вдвое превосходить память типа BEDO.

  Микросхемы DDR SDRAM. Важным этапом в дальнейшем развитии техноло­гии SDRAM стала DDR SDRAM (Double Data Rate SDRAM — SDRAM с удвоен­ной скоростью передачи данных). В отличие от SDRAM новая модификация вы­дает данные в пакетном режиме по обоим фронтам импульса синхронизации, за счет чего пропускная способность возрастает вдвое. Существует несколько специ­фикаций DDR SDRAM, в зависимости от тактовой частоты системной шины: DDR266, DDR333, DDR400, DDR533. Так, пиковая пропускная способность мик­росхемы памяти спецификации DDR333 составляет 2,7 Гбайт/с, а для DDR400 — 3,2 Гбайт/с. DDR SDRAM в настоящее время является наиболее распространен­ным типом динамической памяти персональных ВМ.

  Микросхемы RDRAM, DRDRAM. Наиболее очевидные способы повышения эффективности работы процессора с памятью — увеличение тактовой частоты шины либо ширины выборки (количества одновременно пересылаемых разрядов). К сожалению, попытки совмещения обоих вариантов наталкиваются на существен­ные технические трудности (с повышением частоты усугубляются проблемы элек­тромагнитной совместимости, труднее становится обеспечить одновременность поступления потребителю всех параллельно пересылаемых битов информации). В большинстве синхронных DRAM (SDRAM, DDR) применяется широкая вы­борка (64 бита) при ограниченной частоте шины.

  Принципиально отличный подход к построению DRAM был предложен ком­панией Rambus в 1997 году. В нем упор сделан на повышение тактовой частоты до 400 МГц при одновременном уменьшении ширины выборки до 16 бит. Новая па­мять известна как RDRAM (Rambus Direct RAM). Существует несколько разно­видностей этой технологии: Base, Concurrent и Direct. Во всех тактирование ведется по обоим фронтам синхросигналов (как в DDR), благодаря чему результирующая частота составляет соответственно 500-600, 600-700 и 800 МГц. Два первых ва­рианта практически идентичны, а вот изменения в технологии Direct Rambus (DRDRAM) весьма значительны.

  Сначала остановимся на принципиальных моментах технологии RDRAM, ори­ентируясь в основном на более современный вариант — DRDRAM. Главным от­личием от других типов DRAM является оригинальная система обмена данными между ядром и контроллером памяти, в основе которой лежит так называемый «канал Rambus», применяющий асинхронный блочно-ориентированный протокол. На логическом уровне информация между контроллером и памятью передается пакетами.

  Различают три вида пакетов: пакеты данных, пакеты строк и пакеты столбцов. Пакеты строк и столбцов служат для передачи от контроллера памяти команд уп­равления соответственно линиями строк и столбцов массива запоминающих эле­ментов. Эти команды заменяют обычную систему управления микросхемой с по­мощью сигналов RAS, CAS, WE и CS.

Микросхемы SLDRAM. Потенциальным конкурентом RDRAM на роль стандарта архитектуры памяти для будущих персональных ВМ выступает новый вид ди­намического ОЗУ, разработанный консорциумом производителей ВМ SyncLink Consortium и известный под аббревиатурой SLDRAM. В отличие от RDRAM, тех­нология которой является собственностью компаний Rambus и Intel, данный стан­дарт — открытый. На системном уровне технологии очень похожи. Данные и ко­манды от контроллера к памяти и обратно в SLDRAM передаются пакетами по 4 или 8 посылок. Команды, адрес и управляющие сигналы посылаются по однонап­равленной 10-разрядной командной шине. Считываемые и записываемые данныепередаются по двунаправленной 18-разрядной шине данных. Обе шины работают на одинаковой частоте. Пока что еще эта частота равна 200 МГц, что, благодаря технике DDR, эквивалентно 400 МГц. Следующие поколения SLDRAM должны работать на частотах 400 МГц и выше, то есть обеспечивать эффективную частоту более 800 МГц.

  К одному контроллеру можно подключить до 8 микросхем памяти. Чтобы из­бежать запаздывания сигналов от микросхем, более удаленных от контроллера, временные характеристики для каждой микросхемы определяются и заносятся в ее управляющий регистр при включении питания.

  Микросхемы ESDRAM. Это синхронная версия EDRAM, в которой использу­ются те же приемы сокращения времени доступа. Операция записи в отличие от чтения происходит в обход кэш-памяти, что увеличивает производительность ESDRAM при возобновлении чтения из строки, уже находящейся в кэш-памяти. Благодаря наличию в микросхеме двух банков простои из-за подготовки к опера­циям чтения/записи сводятся к минимуму. Недостатки у рассматриваемой мик­росхемы те же, что и у EDRAM — усложнение контроллера, так как он должен учитывать возможность подготовки к чтению в кэш-память новой строки ядра. Кроме того, при произвольной последовательности адресов кэш-память задейству­ется неэффективно.

  Микросхемы CDRAM. Данный тип ОЗУ разработан в корпорации Mitsubishi, и его можно рассматривать как пересмотренный вариант ESDRAM, свободный от некоторых ее несовершенств. Изменены емкость кэш-памяти и принцип размеще­ния в ней данных. Емкость одного блока, помещаемого в кэш-память, уменьшена до 128 бит, таким образом, в 16-килобитовом кэше можно одновременно хранить копии из 128 участков памяти, что позволяет эффективнее использовать кэш-па­мять. Замена первого помещенного в кэш участка памяти начинается только после заполнения последнего (128-го) блока. Изменению подверглись и средства доступа. Так, в микросхеме используются раздельные адресные шины для статического кэша и динамического ядра. Перенос данных из динамического ядра в кэш-память со­вмещен с выдачей данных на шину, поэтому частые, но короткие пересылки не снижают производительности ИМС при считывании из памяти больших объе­мов информации и уравнивают CDRAM с ESDRAM, а при чтении по выбо­рочным адресам CDRAM явно выигрывает. Необходимо, однако, отметить, что вышеперечисленные изменения привели к еще большему усложнению кон­троллера памяти.

Основная область памяти — Википедия

Материал из Википедии — свободной энциклопедии

Области памяти IBM PC

Основная область памяти (Основная память, англ. Conventional memory) занимает первые 640 Кбайт оперативной памяти в IBM PC-совместимых компьютерах. В эту область загружается таблица векторов прерываний (занимает 1 Кбайт), некоторые данные из BIOS (например, буфер клавиатуры), различные 16-битные программы DOS. Для них 640 Кбайт являются барьером.

Для IBM PC-совместимых компьютеров 1 Мбайт был пределом памяти, который мог адресовать процессор. CPU Intel 8088 имеет 20 адресных линий и мог обращаться к памяти до 220 = 1 Мбайт памяти. Первый мегабайт был разделен на 16 областей по 64 Кбайт. Первые десять областей отводились для использования пользовательскими программами (при этом сама операционная система могла обращаться ко всему мегабайту памяти) и называлась основная память. Оставшиеся 6 областей объёмом 384 Кбайт (Upper Memory Area, UMA, верхняя память) резервировались для системных нужд и дополнительных устройств. В первых компьютерах здесь размещались BIOS и его расширения, память видеоадаптера и драйверы устройств. В существующих реализациях IBM PC часть верхней памяти использовалась для CGA/EGA, другая — оставалась неиспользованной. В начале 1980-х годов память в 640 Кбайт была вполне достаточна для нужд обычного пользователя, однако потребность в ОЗУ новых приложений росла быстрее, что привело к необходимости использовать резервные области верхней памяти различными способами, обходящими запрет на доступ прикладных программ к верхней памяти. В результате это привело к тому, что в 1 Мбайт доступной памяти появились зарезервированные «дыры», которые использовались различными аппаратными устройствами. Устранение подобных «дыр» было технически труднореализуемо и не поддерживалось бы существующими версиями DOS и прикладных программ. Позднее был разработан универсальный метод, позволяющий обращаться в участкам верхней памяти (Upper memory blocks, UMB).

Для обеспечения обратной совместимости с существующими приложениями ограничение в 640 Кбайт сохранилось в последующих реализациях стандарта IBM PC, даже после того, как архитектура Intel 8086/8088 была заменена на более современный Intel 80286, позволявший адресовать уже 16 Мбайт памяти в защищённом режиме. Данное ограничение было вызвано тем, что процессор 80286 мог работать как в новом защищённом, так и в старом реальном режиме, обеспечивающим совместимость со старой архитектурой: в реальном режиме невозможно адресовать память с разрядностью выше 20 бит (или 220 = 1 Мбайт). Последующие процессоры, совместимые с архитектурой IBM PC, реализовывали эту совместимость и далее. Даже на современных компьютерах до сих пор существует зарезервированная область памяти между 640 и 1024 Кбайтами памяти[1][2], хотя для большинства современных операционных систем он незаметен, так как в них доступ к ОЗУ реализован через виртуальную память, скрывающую за собой настоящее распределение памяти и не зависящую от неё[3].

Барьер в 640 Кбайт актуален только для 16-битных программ, работающих под DOS. На работу 32- и 64-битных операционных систем (Microsoft Windows 4.x, NT, GNU/Linux и т. п.) барьер в 640 Кбайт практически не оказывает влияния.

  1. ↑ White Paper: A Tour beyond BIOS Memory Map Design in UEFI BIOS (неопр.) (недоступная ссылка). Intel Corporation (февраль 2015). Дата обращения 3 декабря 2018. Архивировано 30 сентября 2015 года.
  2. ↑ Windows Internals. — 6th. — Microsoft Press, 2012. — Vol. Part 2. — P. 322. — «Note the gap in the memory address range from page 9F000 to page 100000…».
  3. ↑ Programming Applications for Microsoft Windows (англ.). — P. 435 ff..
  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 15 изд. — М.: «Вильямс», 2004. — С. 427—438. — ISBN 0-7897-2974-1.

Внутренняя память компьютера

Рассмотрим память компьютера, которая по отношению к процессору является внутренней. Внутренняя память компьютера — это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством. Информация во внутренней памяти не сохраняется при выключении питания. Такая память в свою очередь также различается по типам:

Оперативная память или ОЗУ

Оперативная память (RAMRandom Access Memory) — это массив кристаллических ячеек, способных хранить данные. Иными словами, в ОЗУ хранится информация, с которой ведется работа в данный момент времени.

В ячейку можно записать только 0 или 1, т.е. 1 бит информации. Такая ячейка так и называется — «бит». Это наименьшая частица памяти компьютера и в связи с этим память имеет битовую структуру, которая определяет такое свойство оперативной памяти, как дискретность .

Оперативную память в компьютере размещают на стандар­тных панельках, называемых модулями. Модули вставляются в соответс­твующие разъемы на материнской плате. Такая конструкция облегчает процесс замены или наращивания памяти. Количество модулей зависит от нужного вам объема ОЗУ. Важнейшей характеристикой модулей оперативной памяти является быстродействие, которое зависит от максимально возможной частоты операций записи или считывания информации из ячеек памяти. Современные модули памяти обеспечивают частоту до 800 МГц, а их информационная емкость достигает 2 Гб. Hynix разработала модули памяти DDR2-800 объемом в 2 Гб

Рис.1 Модуль памяти

Мы знаем, что ОЗУ энергозависима, поэтому в целях сохранения, хранимой в ней информации необходимо подзаряжать ячейки этой памяти, этот процесс называется регенерация ОЗУ. Иными словами под регенерацией понимается восстановление заряда ячеек.

Различают динамическую память (DRAM) и статическую память (SRAM).

Память типа DRAM

DRAM (Dynamic Random Access Memory, динамическая оперативная память с произвольным доступом) — тип памяти, содержимое которой может сохраняться только в том случае, если оно будет обновляться через короткие интервалы времени. Динамическому ОЗУ нужна регенерация. DRAM применяется для производства модулей оперативной памяти.

Основное преимущество этого типа памяти состоит в том, что ее ячейки упакованы очень плотно, т.е. в небольшую микросхему можно упаковать много битов, а значит, на их основе можно построить память большей емкости. Ячейки памяти в микросхеме DRAM — это крошечные конденсаторы, которые удерживают заряды.

Память типа sram

SRAM (Static RAM, статическая память) – после записи данных в ячейки статической памяти они могут сохранять свое значение сколько угодно (в отличие от динамической памяти). SRAM имеет более высокое быстродействие, чем динамическая оперативная память, и может работать на той же частоте, что и современные процессоры. Время доступа SRAM не более 2 нс, это означает, что такая память может работать синхронно с процессорами на частоте 500 МГц или выше. Все это определило использование ее в качестве буферной кэш-памяти.

Подведём итоги сравнения оперативной памяти:

Память DRAM:

Преимущества:

  • малое число элементов на одну ячейку, откуда высокая плотность упаковки, большой объем памяти на одном кристалле;

Недостатки:

  • необходимость периодического перезаряда элементов памяти, а это: уменьшает быстродействие, усложняет схемы обслуживания памяти;

Память SRAM:

Преимущества:

Недостатки:

  • в связи с дороговизной память типа SRAM используется, в основном только как КЭШ L1 и L21

  • маленькая плотность упаковки

Постоянная память или ПЗУ

Первую свою команду процессор находит в памяти, которая в отличие от магнитных и оптических дисков является внутренней и, в отличие от ОЗУ, энергонезависимой, т.е. хранит информацию постоянно, даже после выключения компьютера.

Такая память действительно существует и называется ПЗУ (ROMRead Only Memory, память только для чтения) — постоянное запоминающее устройство. Микросхема ПЗУ устанавливается так, что ее память занимает нужные адреса. Поэтому процессор, когда начинает свою работу, в постоянную память, заготовленную для него заранее. Из ПЗУ можно только читать информацию.

В постоянной памяти хранятся программы, необходимые для запуска компьютера и «зашитые» в нее при изготовлении. Основное назначение этих программ состоит в том, чтобы проверить состав и работоспособной компьютерной системы сразу после включения.

Итак, в ПЗУ хранится информации об устройствах компьютера, т.е. параметры и характеристики монитора, жесткого диска, мыши и т.д. для того, чтобы при включении компьютера, прежде чем начать работу, можно было убедиться, что все они работоспособны.

Необходима такая память, в которую можно было бы записывать информацию (в отличие от ПЗУ) и которая была бы энергонезависимой (отличие от ОЗУ). И такая память действительно существует и по технологии изготовления называется она CMOS.

CMOS-память

CMOS — это память с невысоким быстродействием и минимальным энергопотреблением от батарейки, расположенной на материнской плате. Заряда батарейки хватает на несколько лет. CMOS используется для хранения информации о составе оборудования компьютера, а также о режимах его работы. Наличие этого вида памяти позволяет отслеживать время и календарь, даже если компьютер выключен. Таким образом, программы записанные в ПЗУ, считывают информацию о составе оборудования компьютера из микросхемы CMOS, после чего выполняют тестирование устройств ПК.

Кэш-память

Cash (запас) обозначает быстродействующую буферную память между процессором и основной памятью. Кэш служит для частичной компенсации разницы в скорости процессора и основной памяти – туда попадают наиболее часто используемые данные. Когда процессор первый раз обращается к ячейке памяти, ее содержимое параллельно копируется в кэш, и в случае повторного обращения в скором времени может быть с гораздо большей скоростью выбрано из кэша [1, С.39-40].

Она увеличивает производительность, поскольку хранит наиболее часто используемые данные и команды «ближе» к процессору, откуда их можно быстрее получить. Кэш-память напрямую влияет на скорость вычислений и помогает процессору работать с более равномерной загрузкой.

Новинки имеют кэш-память емкостью до 32 Мб

Видеопамять

Еще один вид памяти – это видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора. Эта память обычно входит в состав видеоконтроллера – электронной схемы, управляющей выводом изображения на экран. Он обычно выполняется в виде специальной платы, вставляемой в разъем системной шины компьютера, но на многих компьютерах он входит в состав системной (материнской) платы. Видеоконтроллер получает от микропроцессора компьютера команды по формированию изображения, конструирует это изображение в своей служебной памяти — видеопамяти, и одновременно преобразует содержимое видеопамяти в сигнал, подаваемый на монитор-видеосигнал.

В видеопамяти размещаются данные, отображаемые адаптером на экране дисплея. Видеопамять обычно имеет объем 256 Кбайт, на некоторых моделях видеоадаптера объем видеопамяти может быть увеличен до 512 Мбайт.

14. Память компьютера – типы, виды, назначение.

Компьютерная память обеспечивает поддержку одной из наиважнейших функций современного компьютера, — способность длительного хранения информации

Компьютерная память является одним из наиболее главных вопросов устройства компьютера, так как она обеспечивает поддержку одной из наиважнейшей функций современного компьютера, — способность длительного хранения информации.

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память.

Все персональные компьютеры используют три вида памяти: оперативную, постоянную и внешнюю (различные накопители).

Внутренняя память компьютера — это место хранения информации, с которой он работает. Внешняя память (различные накопители) предназначена для долговременного хранения информации

Наиболее знакомы средства машинного хранения данных, используемые в персональных компьютерах: — это модули оперативной памяти, жесткие диски (винчестеры), дискеты (гибкие магнитные диски), CD или DVD диски, а также устройства флэш-памяти.

Компьютерная память бывает двух видов: внутренняя и внешняя.Внутренней памяти: оперативное запоминающее устройство с произвольной выборкой (ОЗУ) и постоянное запоминающее устройство (ПЗУ).Наиболее существенная часть внутренней памяти называется ОЗУ — оперативное запоминающее устройство. Его главное назначение состоит в том, чтобы хранить данные и программы для решаемых в текущий момент задач.Оперативная память. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память. Однако содержащиеся в ней данные сохраняются только пока компьютер включен.

Постоянное запоминающее устройство (ПЗУ), в котором в частности хранится информация, необходимая для первоначальной загрузки компьютера в момент включения питания. Как очевидно из названия, информация в ПЗУ не зависит от состояния компьютера.

Внешняя память обычно располагается вне центральной части компьютера

К внешней памяти относятся различные магнитные носители (ленты, диски), оптические диски. Внешняя память дешевле внутренней, но ее недостаток в том, что она работает медленнее устройств внутренней памяти.

Существуют диски CD-ROM — диски с однократной записью, стереть или перезаписать их невозможно.

Позже были изобретены перезаписываемые лазерные диски — CD-RW.

Внешняя память реализуется в виде довольно разнообразных устройств хранения информации и обычно конструктивно оформляется в виде самостоятельных блоков. Сюда, прежде всего, следует отнести накопители на гибких и жестких магнитных дисках (последние несколько жаргонно пользователи часто именуют винчестерами), а также оптические дисководы (устройства для работы с CD ROM).

Виды памяти персонального компьютера

Кэш-память. Основное назначение кэш-памяти в компьютере — служить местом временного хранения обрабатываемых в текущий момент времени кодов программ и данных. То есть ее назначение служить буфером между различными устройствами для хранения и обработки информации

ВIOS (постоянная память). В компьютере имеется также и постоянная память, в которую данные занесены при изготовлении. Как правило, эти данные не могут быть изменены, выполняемые на компьютере программы могут только их считывать.

В компьютере в постоянной памяти хранятся программы для проверки оборудования компьютера, инициирования загрузки ОС и выполнения базовых функций по обслуживанию устройств компьютера. Часто содержимое постоянной памяти называется ВIOS. В ней содержится программа настройки конфигурации компьютера (SЕТИР),она позволяет установить некоторые характеристики устройств компьютера (типы видеоконтроллера, жестких дисков и дисководов для дискет и обслуживанием ввода-вывода.

CMOS (полупостоянная память).

небольшой участок памяти для хранения параметров конфигурации компьютера. Его часто называют CMOS -памятью, поскольку эта память обычно выполняется по технологии, обладающей низким энергопотреблением.

Видеопамять. 

видеопамять, то есть память, используемая для хранения изображения, выводимого на экран монитора.

и постоянная память (ПЗУ). 

Память компьютера делится на внешнюю (основную): гибкий и жесткий диски, CDDVD-ROM, CD DVD-RW,CD DVD-R и внутреннюю.

«Оперативная память»

Тюменский государственный нефтегазовый университет

Кафедра автоматизации и управления

Методические указания к лабораторной работе №1.4

Тюмень 2005

Цель работы: Изучение типов оперативной памяти.

Оперативная память: основные понятия

Оперативная память это рабочая область для процессора компьютера. В ней во время работы хранятся программы и данные. Оперативная память часто рассматривается как временное хранилище, потому что данные и программы в ней сохраняются только при включенном компьютере или до нажатия кнопки сброса (reset). Перед выключением или нажатием кнопки сброса все данные, подвергнутые изменениям во время работы, необходимо сохранить на запоминающем устройстве, которое может хранить информацию постоянно (обычно это жесткий диск). При новом включении питания сохраненная информация вновь может быть загружена в память.

Устройства оперативной памяти иногда называют запоминающими устройствами с произвольным доступом. Это означает, что обращение к данным, хранящимся в оперативной памяти, не зависит от порядка их расположения в ней. Когда говорят о памяти компьютера, обычно подразумевают оперативную память, прежде всего микросхемы памяти или модули, в которых хранятся активные программы и данные, используемые процессором. Однако иногда термин память относится также к внешним запоминающим устройствам, таким, как диски и накопители на магнитной ленте.

За несколько лет определение RAM (Random Access Memory) превратилось из обычной аббревиатуры в термин, обозначающий основное рабочее пространство памяти, создаваемое микросхемами динамической оперативной памяти (Dynamic RAM  DRAM) и используемое процессором для выполнения программ. Одним из свойств микросхем DRAM (и, следовательно, оперативной памяти в целом) является динамическое хранение данных, что означает, во-первых, возможность многократной записи информации в оперативную память, а во-вторых, необходимость постоянного обновления данных (т. е., в сущности, их перезапись) примерно каждые 15 мс. Также существует так называемая статическая оперативная память (Static RAM  SRAM), не требующая постоянного обновления данных. Следует заметить, что данные сохраняются в оперативной памяти только при включенном питании.

Термин оперативная память часто обозначает не только микросхемы, которые составляют устройства памяти в системе, но включает и такие понятия, как логическое отображение и размещение. Логическое отображение  это способ представления адресов памяти на фактически установленных микросхемах. Размещение  это расположение информации (данных и команд) определенного типа по конкретным адресам памяти системы.

Во время выполнения программы в оперативной памяти хранятся ее данные. Микросхемы оперативной памяти (RAM) иногда называют энергозависимой памятью: после выключения компьютера данные, хранимые в них, будут потеряны, если они предварительно не были сохранены на диске или другом устройстве внешней памяти. Чтобы избежать этого, некоторые приложения автоматически делают резервные копии данных.

Файлы компьютерной программы при ее запуске загружаются в оперативную память, в которой хранятся во время работы с указанной программой. Процессор выполняет программно-реализованные команды, содержащиеся в памяти, и сохраняет их результаты.

Оперативная память хранит коды нажатых клавиш при работе с текстовым редактором, а также величины математических операций. При выполнении команды Сохранить (Save) содержимое оперативной памяти сохраняется в виде файла на жестком диске.

Физически оперативная память в системе представляет собой набор микросхем или модулей, содержащих микросхемы, которые обычно подключаются к системной плате. Эти микросхемы или модули могут иметь различные характеристики и, чтобы функционировать правильно, должны быть совместимы с системой, в которую устанавливаются.

В современных компьютерах используются запоминающие устройства трех основных типов.

ROM (Read Only Memory). Постоянное запоминающее устройство  ПЗУ, не способное выполнять операцию записи данных.

DRAM (Dynamic Random Access Memory). Динамическое запоминающее устройство с произвольным порядком выборки.

SRAM (Static RAM). Статическая оперативная память.

Основная память — это… Что такое Основная память?


Основная память

Основная область памяти (Основная память, англ. Conventional memory) занимает первые 640 Кбайт оперативной памяти в IBM PC-совместимых компьютерах. В эту область загружается таблица векторов прерываний (занимает 1 Кбайт), некоторые данные из BIOS (например, буфер клавиатуры), различные 16-битные программы

Барьер 640 Кбайт

Для IBM PC-совместимых компьютеров 1 Мбайт был пределом памяти, который мог адресовать процессор. CPU Intel 8088 имеет 20 адресных линий и мог обращаться к памяти до 220 = 1 Мбайт памяти. Первый мегабайт был разделен на несколько областей. Первая часть в 640 Кбайт была отведена под использование программ операционная система могла обращаться ко всему мегабайту памяти) и называлась основная память. В 1981 году (момент создания первого IBM PC) году память в 640 Кбайт была вполне достаточна для нужд обычного пользователя. Память свыше 640 Кбайт использовалась аппаратной частью компьютера и называлась Upper Memory Area (UMA).

Использование основной памяти

Барьер в 640 Кбайт актуален только для 16-битных программ, работающих под DOS. На работу 32- и 64-битных операционных систем (Microsoft Windows 4.x, NT, Linux и т. п.) барьер в 640 Кбайт практически не оказывает влияния.

См. также

Литература

  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 15 изд. — М.: «Вильямс», 2004. — С. 427—438. — ISBN 0-7897-2974-1

Wikimedia Foundation. 2010.

  • Основная общеобразовательная школа города Мариинского Посада
  • Основная теорема римановой геометрии

Смотреть что такое «Основная память» в других словарях:

  • основная память — Оперативная память центрального процессора или ее часть, представляющая единое пространство памяти. [ГОСТ 15971 90] основная память Первые 640 Кб оперативного запоминающего устройства в IBM PC совместимых компьютерах. [http://www.morepc.ru/dict/] …   Справочник технического переводчика

  • Основная память — 23. Основная память Main storage Оперативная память центрального процессора или ее часть, представляющая единое пространство памяти Источник: ГОСТ 15971 90: Системы обработки информации. Термины и определения оригинал документа …   Словарь-справочник терминов нормативно-технической документации

  • основная память — pagrindinė atmintis statusas T sritis automatika atitikmenys: angl. main storage vok. Hauptspeicher, m rus. основная память, f pranc. mémoire principale, f …   Automatikos terminų žodynas

  • Основная память — 1. Оперативная память центрального процессора или ее часть, представляющая единое пространство памяти Употребляется в документе: ГОСТ 15971 90 Системы обработки информации. Термины и определения …   Телекоммуникационный словарь

  • физическая оперативная (основная) память — — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] Тематики информационные технологии в целом EN real storage …   Справочник технического переводчика

  • Основная область памяти — (Основная память, англ. Conventional memory) занимает первые 640 Кбайт оперативной памяти в IBM PC совместимых компьютерах. В эту область загружается таблица векторов прерываний (занимает 1 Кбайт), некоторые данные из BIOS (например, буфер… …   Википедия

  • основная — 3.2 основная общеобразовательная школа: Школа, организуемая как самостоятельное общеобразовательное учреждение с 1 по 9 класс включительно. Источник: ТСН 31 328 2004: Общеобразовательные школы. Республика Саха (Якутия) Смотри также родственные… …   Словарь-справочник терминов нормативно-технической документации

  • ПАМЯТЬ — способность когнитивной системы живых существ кодировать и сохранять информацию при участии, как правило, высших когнитивных процессов. Первые попытки научного исследования человеческой П. берут свое начало с работы нем. психолога Г. Эббингаузе… …   Философская энциклопедия

  • память эхоическая —      (память эхоическая) гипотетическая подсистема памяти, обеспечивающая удержание в течение очень короткого времени (обычно менее одной секунды) продуктов сенсорной переработки информации, поступающей в органы чувств. В зависимости от вида… …   Большая психологическая энциклопедия

  • Память о гетмане Мазепе —     …   Википедия

Книги

  • Память, Шкляревская Светлана Моисеевна. Основная цель пособия — развить память и математические способности ребёнка. При выполнении заданий по математике, упор делается на тренировку памяти: зрительной, слуховой, образной и… Подробнее  Купить за 189 руб
  • Память (изд. 2019 г. ), С. М. Шкляревская. Основная цель пособия развить память и математические способности ребёнка. При выполнении заданий по математике, упор делается на тренировку памяти: зрительной, слуховой, образной и… Подробнее  Купить за 165 грн (только Украина)
  • Память, Шкляревская Светлана Моисеевна. Основная цель пособия — развить память и математические способности ребёнка. При выполнении заданий по математике упор делается на тренировку памяти: зрительной, слуховой, образной и… Подробнее  Купить за 144 руб
Другие книги по запросу «Основная память» >>

Оперативная память — это… Что такое Оперативная память?

Модули ОЗУ для ПК Простейшая схема взаимодействия оперативной памяти с ЦП

Операти́вная па́мять (англ. Random Access Memory, память с произвольным доступом; комп. жарг. Память, Оперативка, Мозги) — энергозависимая часть системы компьютерной памяти, в которой временно хранятся данные и команды, необходимые процессору для выполнения им операции. Обязательным условием является адресуемость (каждое машинное слово имеет индивидуальный адрес) памяти[источник не указан 128 дней].

Обмен данными между процессором и оперативной памятью производится:

  1. непосредственно,
  2. либо через сверхбыструю память, 0-го уровня — регистры в АЛУ, либо при наличии кэша — через него.

Содержащиеся в оперативной памяти данные доступны только тогда, когда на модули памяти подаётся напряжение, то есть, компьютер включён. Пропадание на модулях памяти питания, даже кратковременное, приводит к искажению либо полному уничтожению данных в ОЗУ.

Энергосберегающие режимы работы материнской платы компьютера позволяют переводить его в режим «сна», что значительно сокращает уровень потребления компьютером электроэнергии. Для сохранения содержимого ОЗУ в таком случае, применяют запись содержимого оперативной памяти в специальный файл (в системе Windows XP он называется hiberfil.sys).

В общем случае, оперативная память содержит данные операционной системы и запущенных на выполнение программ, поэтому от объёма оперативной памяти зависит количество задач, которые одновременно может выполнять компьютер.

Оперативное запоминающее устройство, ОЗУ — техническое устройство, реализующее функции оперативной памяти.

ОЗУ может изготавливаться как отдельный блок или входить в конструкцию, например однокристальной ЭВМ или микроконтроллера.

История

В 1834 году Чарльз Бэббидж начал разработку Аналитической машины. Одна из важных частей этой машины называлась «Склад» (store), и предназначалась для хранения промежуточных результатов вычислений. Результаты запоминались с использованием валов и шестерней.

ЭВМ первого поколения можно считать ещё экспериментальными, поэтому в них использовалось множество разновидностей запоминающих устройств: на ртутных линиях задержки, электронно-лучевых и электростатических трубках. В качестве оперативной памяти использовался также магнитный барабан: он обеспечивал достаточное для компьютеров тех времён быстродействие и использовался в качестве основной памяти для хранения программ и вводимых данных.

Второе поколение требовало более технологичных в производстве схем оперативной памяти. Наиболее распространённым видом памяти в то время стала память на магнитных сердечниках.

Начиная с третьего поколения большинство узлов компьютеров стали выполнять на микросхемах, в том числе и оперативную память. Наибольшее распространение получили два вида ОЗУ: на основе конденсаторов (динамическая память) и триггеров (статическая память). Оба этих вида памяти не способны сохранять данные при отключении питания — для этой цели используется Энергонезависимая память.

ОЗУ современных компьютеров

ОЗУ большинства современных компьютеров представляет собой модули динамической памяти, содержащие полупроводниковые ИС ЗУ, организованные по принципу устройств с произвольным доступом. Память динамического типа дешевле, чем статического, и её плотность выше, что позволяет на том же пространстве кремниевой подложки размещать больше ячеек памяти, но при этом её быстродействие ниже. Статическая, наоборот, более быстрая память, но она и дороже. В связи с этим массовую оперативную память строят на модулях динамической памяти, а память статического типа используется для построения кеш-памяти внутри микропроцессора.

Память динамического типа (англ. DRAM (Dynamic Random Access Memory))

Основная статья: DRAM

Экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов). Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость.

За то, что разряды в ней хранятся не статически, а «стекают» динамически во времени, память на конденсаторах получила своё название динамическая память. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов для восстановления необходимо «регенерировать» через определённый интервал времени. Регенерация выполняется центральным микропроцессором или контроллером памяти, за определённое количество тактов считывания при адресации по строкам. Так как для регенерации памяти периодически приостанавливаются все операции с памятью, это значительно снижает производительность данного вида ОЗУ.

Память статического типа (англ. SRAM (Static Random Access Memory))

ОЗУ, которое не надо регенерировать (и обычно схемотехнически собранное на триггерах), называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти — скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи. Используется для организации сверхбыстрого ОЗУ, критичного к скорости работы.

Логическая структура памяти в IBM PC

В реальном режиме память делится на следующие участки:

См. также

Литература

  • Скотт Мюллер. Глава 6. Оперативная память // Модернизация и ремонт ПК = Upgrading and Repairing PCs. — 17-е изд. — М.: Вильямс, 2007. — С. 499—572. — ISBN 0-7897-3404-4
  • Под. ред. чл.-корр. АН УССР Б. Н. Малиновского. Глава 2.3 БИС ЗУ для построения внутренней памяти // Справочник по персональным ЭВМ. — К.: Тэхника, 1990. — С. 384. — ISBN 5-335-00168-2

Ссылки

Leave a comment