Процессор выполняет какую функцию: Центральный процессор — Википедия – это… Устройство, характеристики, основные функции и назначение центрального процессора компьютера

Содержание

Виды процессоров. Что такое Кэш процессора? Функции процессора.

   Процессор (от англ.: Processor) — одна из основополагающих составляющих компьютера, функции которого состоят в реализации разнообразных математических подсчетов и синхронизация взаимодействия частей структуры компьютера. Процессоры есть как в обычных ПК, так и в разнообразных приборах, используемых в быту и промышленности, например, в современных стиральных машинах, устройствах печати и других. Кроме этого, так называемые, программные процессоры, к примеру, текстовый микропроцессор(англ.: word proccesor), представляющий из себя средство анализа текстов. В данной статье будут рассматриваться виды процессоров, некоторые их характеристики, основные функции.

Виды процессоров

Сегодня существует не один десяток видов процессоров, используемых для разрешения разных общих и узких целей.

Сегодняшний компьютер состоит из одного и более Центральных микропроцессоров и Графического микропроцессора. ЦП — особенно часто встречающееся название. Нередко под процессором понимается только 

Центральный микропроцессор. В англоговорящей среде цп обозначают, как CPU или Ctntral proccecing Unit, то есть в точном переводе — центральный блок обработки. Система, работающая с более чем одним центральным микропроцессором и использующее общее пространство адресов, является многопроцессорной.

Графический микропроцессор (ГП) в иностранной среде обозначен Graphics Proccesing Unit (GPU). Он имеет узкую специализацию, работает с графическими данными. Часто ЦП и ГП объединяют словом процессор, но в определенном контексте можно распознать вид процессора, о котором говорится.

Физический микропроцессор (Physics Processing Unit) необходим для арифметических операций при проектировании разнообразных физических моделей, таких как, например, динамические расчеты следствия взаимодействия тел.

Микропроцессор цифровых сигналов (Digital signal processor (DSP)) — специальный процессор, необходимый для работы с цифровым сигналом (как правило, в режиме реальном времени).

Сетевой микропроцессор (network processor)  — микропроцессор, который обычно располагается в сетевых устройствах, выполняет процедуры, необходимые при сетевой передаче данных. Обычно сетевой микропроцессор располагается в сетевых платах, коммутаторах и т.д.

Звуковые сигнальные микропроцессоры (Audio signal processor) применяются в ультрасовременной звуковой аппаратуре, они используются для работы со звуками и музыкой, к примеру, для имитации эха.

Что такое Кэш процессора?

Кэш-память ( кэш процессора) — это оперативное запоминающее устройство (ОЗУ), с помощью которого компьютер может получить доступ к микропроцессору быстрее, чем к памяти RAM. Кэш процессора обычно интегрирован непосредственно в чип процессора или на отдельной микросхеме, которая имеет отдельную шину соединения с процессором.

Основной целью кэша процессора является хранение программных инструкций, на которые часто ссылается программное обеспечение во время работы. Быстрый доступ к этим инструкциям увеличивает общую скорость выполнения программы.

Когда микропроцессор обрабатывает данные, он проверяет сначала кэш-память; если он находит инструкции там (после предыдущего считывания данных), то не нужно делать более длительное считывание данных из основной памяти.

Большинство программ используют очень мало ресурсов, если они были открыты и работают в течение какого-то времени, главным образом потому, что часто используемые инструкции, как правило, кэшируются. Это объясняет, почему при измерениях производительность системы в компьютерах с медленным процессором, но большим КЭШем, как правило, больше, чем производительность системы в компьютерах с быстрым процессором, но с меньшим размером КЭШа.

Многоуровневое кэширование стало популярным в серверных и настольных процессорах, так как оно более эффективно. Чем  реже производится доступ к определенным инструкциям, тем ниже уровень кэша процессора, в который записывается эта инструкция.

Уровень 1 (L1) кэша работает  очень быстро, но относительно мал по объему данных, и, как правило, встроен в чип процессора (CPU).

Уровень 2 (L2) является более емким, чем L1; он может быть расположен на центральном процессоре или на отдельном чипе.

Уровень 3 (L3), кэш, как правило, специализированная память, которая работает, чтобы улучшить производительность L1 и L2.

Четыре основные функции центрального процессора

Процессор обрабатывает инструкции, которые он получает в процессе декодирования данных. При обработке этих данных, процессор выполняет четыре основных шага:

Выборка. Каждая команда сохраняется в памяти и имеет свой собственный адрес. Процессор запоминает этот адрес из программного счетчика, который отвечает за отслеживание того, какую инструкцию ЦП должен выполнить следующей.

Расшифровка. Все программы, которые должны быть выполнены, будут переведены на язык Ассемблер. Код Ассемблера выполнен в бинарных инструкциях, которые понятны процессору. Этот шаг называется декодированием.

Выполнение.  При выполнении инструкции, процессор может сделать одно из трех действий: передать инструкцию в АЛУ(арифметико-логическое устройство), переместить данные из одного места памяти в другое, или перейти к другому адресу.

Исполнение. Процессор должен передать результаты после выполнения инструкции, эти выходные данные записываются в память.

Facebook

Twitter

Мой мир

Вконтакте

Одноклассники

Google+

Как работает и за что отвечает процессор

Принцип работы современного компьютерного процессора

Центральный процессор является основным и самым главным элементом системы. Благодаря нему выполняются все задачи связанные с передачей данных, исполнением команд, логическими и арифметическими действиями. Большинство пользователей знают, что такое ЦП, но не разбираются в принципе его работы. В этой статье мы постараемся просто и понятно объяснить, как работает и за что отвечает CPU в компьютере.

Как работает компьютерный процессор

Перед тем, как разобрать основные принципы работы CPU, желательно ознакомиться с его компонентами, ведь это не просто прямоугольная пластина, монтируемая в материнскую плату, это сложное устройство, образующееся из многих элементов. Более подробно с устройством ЦП вы можете ознакомиться в нашей статье, а сейчас давайте приступим к разбору главной темы статьи.

Подробнее: Устройство современного процессора компьютера

Выполняемые операции

Операция представляет собой одно или несколько действий, которые обрабатываются и выполняются компьютерными устройствами, в том числе и процессором. Сами операции делятся на несколько классов:

Внешний вид процессора

  1. Ввод и вывод. К компьютеру обязательно подключено несколько внешних устройств, например, клавиатура и мышь. Они напрямую связаны с процессором и для них выделена отдельная операция. Она выполняет передачу данных между CPU и периферийными девайсами, а также вызывает определенные действия с целью записи информации в память или ее вывода на внешнюю аппаратуру.
  2. Системные операции отвечают за остановку работы софта, организовывают обработку данных, ну и, кроме всего, отвечают за стабильную работу системы ПК.
  3. Операции записи и загрузки. Передача данных между процессором и памятью осуществляется с помощью посылочных операций. Быстродействие обеспечивается одновременной запись или загрузкой групп команд или данных.
  4. Арифметически-логические. Такой тип операций вычисляет значения функций, отвечает за обработку чисел, преобразование их в различные системы исчисления.
  5. Переходы. Благодаря переходам скорость работы системы значительно увеличивается, ведь они позволяют передать управление любой команде программы, самостоятельно определяя наиболее подходящие условия перехода.

Все операции должны работать одновременно, поскольку во время активности системы за раз запущено несколько программ. Это выполняется благодаря чередованию обработки данных процессором, что позволяет ставить приоритет операциям и выполнять их параллельно.

Выполнение команд

Обработка команды делится на две составные части – операционную и операндную. Операционная составляющая показывает всей системе то, над чем она должна работать в данный момент, а операндная делает то же самое, только отдельно с процессором. Выполнением команд занимаются ядра, а действия осуществляются последовательно. Сначала происходит выработка, потом дешифрование, само выполнение команды, запрос памяти и сохранение готового результата.

Обработка команд процессором

Благодаря применению кэш-памяти выполнение команд происходит быстрее, поскольку не нужно постоянно обращаться к ОЗУ, а данные хранятся на определенных уровнях. Каждый уровень кэш-памяти отличается объемом данных и скоростью выгрузки и записи, что влияет на быстродействие систем.

Взаимодействия с памятью

ПЗУ (Постоянное запоминающее устройство) может хранить в себе только неизменяемую информацию, а вот ОЗУ (Оперативная память) используется для хранения программного кода, промежуточных данных. С этими двумя видами памяти взаимодействует процессор, запрашивая и передавая информацию. Взаимодействие происходит с использованием подключенных внешних устройств, шин адресов, управления и различных контролеров. Схематически все процессы изображены на рисунке ниже.

Взаимодействия процессора с памятью

Если разобраться о важности ОЗУ и ПЗУ, то без первой и вовсе можно было бы обойтись, если бы постоянное запоминающее устройство имело намного больше памяти, что пока реализовать практически невозможно. Без ПЗУ система работать не сможет, она даже не запустится, поскольку сначала происходит тестирование оборудования с помощью команд БИОСа.

Читайте также:
Как выбрать оперативную память для компьютера
Расшифровка сигналов BIOS

Работа процессора

Стандартные средства Windows позволяют отследить нагрузку на процессор, посмотреть все выполняемые задачи и процессы. Осуществляется это через «Диспетчер задач», который вызывается горячими клавишами Ctrl + Shift + Esc.

Мониторинг работы процессора через диспетчер задач

В разделе «Быстродействие» отображается хронология нагрузки на CPU, количество потоков и исполняемых процессов. Кроме этого показана невыгружаемая и выгружаемая память ядра. В окне «Мониторинг ресурсов» присутствует более подробная информация о каждом процессе, отображаются рабочие службы и связанные модули.

Сегодня мы доступно и подробно рассмотрели принцип работы современного компьютерного процессора. Разобрались с операциями и командами, важностью каждого элемента в составе ЦП. Надеемся, данная информация полезна для вас и вы узнали что-то новое.

Читайте также: Выбираем процессор для компьютера

Мониторинг работы процессора через диспетчер задачМы рады, что смогли помочь Вам в решении проблемы.
Мониторинг работы процессора через диспетчер задачОпишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

Какие функции выполняет центральный процессор.

Стр 1 из 3Следующая ⇒

Центральный процессор

Какие функции выполняет центральный процессор.

Центральный процессор компьютера занимается вычислением и обработкой различных данных. А если по-простому говорить, то например, когда идет загрузка операционной системы, процессор занимается обработкой файлов, которые потом загружаются в оперативную память, запускает необходимые процессы и система загружается.

Можно сказать, что процессор постоянно что-то вычисляет (даже если мы видим, что он не загружен). Каждый процесс занимает определенную долю процессорных ресурсов (может составлять доли процента от загрузки процессора). Открытие файлов (например: просмотр картинок, видео, прослушивание музыки), программ и совершение других операций осуществляет процессор.

При игре в компьютерные игры, процессор также частично обрабатывает поступающие данные из игрового приложения и передает их видеокарте, которая в свою очередь обрабатывает полученные графические данные и отсылает уже готовое изображение на монитор.

Центральный процессор выполняет арифметические действия, логические операции и осуществляет управление всем компьютером. Команды, адресованные ЦП для автоматизации процесса обработки входных данных, объединяются в блоки и хранятся в памяти компьютера или на диске. Эти блоки называются программами. Таким образом, входные данные, введенные в память компьютера пользователем, обрабатываются центральным процессором по заранее составленной программе. Результаты обработки сохраняются в памяти компьютера.

Что определяет разрядность процессора

Разрядность процессора – это величина, которая определяет размер машинного слова, то есть количество информации, которой процессор обменивается информацией с оперативной памятью.

Когда говорят о разрядности процессора х64, это значит, что он имеет 64-разрядную шину данных, и 64 бита он обрабатывает за один такт.

Разрядность процессора определяет размер обработки данных за один такт, которыми процессор обменивается с оперативной памятью.

Если размер данных за такт равен 1 байту, то процессор называют восьмиразрядным (8 bit), если размер 2 байта процессор шестнадцатиразрядный (16 bit), если размер равен 4 байтам, то процессор тридцатидвухразрядный (32 bit), если размер равен 8 байтам, то процессор шестидесяти четырех разрядный (64 bit).

Назовите основные характеристики процессора

Основными характеристиками процессоров, по которым их принято разделять на современном рынке, являются:

  • фирма производитель
  • серия
  • количество вычислительных ядер
  • тип установочного разъема (сокет)
  • тактовая частота.

Производитель (бренд). На сегодняшний день все центральные процессоры для настольных компьютеров и ноутбуков разделены на два больших лагеря под марками Intel и AMD, которые вместе покрывают около 92% общего мирового рынка микропроцессоров. Несмотря на то, что из них доля Intelсоставляет примерно 80%, эти две компании уже много лет с переменным успехом конкурируют между собой, пытаясь завлечь покупателей под свои знамена.

Серия – является одной из ключевых характеристик центрального процессора. Как правило, оба производителя разделяют свою продукцию на несколько групп по их быстродействию, ориентации на разные категории пользователей и различные сегменты рынка. Каждая из таких групп составляет семейство или серию со своим отличительным названием, по которому можно понять не только ценовую нишу продукта, но и в общем, его функциональные возможности.

На сегодняшний день в основе продукции компании Intelлежат пять основных семейств –Pentium (Dual-Core), Celeron (Dual-Core), Core i3, Core i5и Core i7. Первые три нацелены на бюджетные домашние и офисные решения, два последних лежат в основе производительных систем.

Скалярная и мультискалярная архитектура микропроцессора.

Типы команд микропроцессоров


В ходе эволюционного развития архитектур процессоров в состав системы команд вводились и, в силу преемственности программного обеспечения, закреплялись сложные команды, которые по мнению разработчиков соответствовали решаемым задачам. Мерой этого соответствия чаще всего был объем двоичного кода программы, так как минимизация длины

программы была равнозначна минимизации времени исполнения. Команды бывают разных типов: «регистр, регистр -> регистр», «память, память -> память», «регистр -> память» и др. Сложные команды модифицируют содержимое групп регистров и ячеек памяти, и для их реализации при приемлемых затратах оборудования, как правило, применяется микропрограммирование.

Команды называются скалярными, если входные операнды и результат являются числами (скалярами).

Команды называются векторными, если входные операнды и, возможно, результат являются вектором (массивом) чисел, а для преобразования данных массива (вектора) используется одна векторная команда. Примером векторной команды служит команда, при выполнении которой умножаются два очередных элемента двух массивов, далее произведение суммируется с содержимым некоторого заданного регистра, после чего модифицируются адреса памяти для доступа к двум очередным элементам массивов. Указанная последовательность действий повторяется заданное число раз по счетчику, определенному в теле команды.

Само появление векторных команд обусловлено стремлением ускорить обработку массивов данных за счет исключения затрат времени на выборку и дешифрацию команд обработки, одинаковых для всех компонент входных массивов.

Однако использование векторных команд требует подготовки программистом векторизованного кода программ, что, вообще говоря, эквивалентно разработке параллельных программ.

При сохранении последовательных программ для ускорения обработки применяются суперскалярные процессоры, в которых за счет параллельной работы функциональных устройств процессора в одном такте вырабатывается несколько скалярных результатов.

 

Средства аппаратного ускорения работы МП

Характеристика и архитектурные особенности микропроцессора фирмы Intel.

Архитектура микропроцессоров

Под этим термином понимают совокупность и способ объединения узлов микропроцессора, а также его набор команд. Знание этих двух моментов дает возможность грамотно организовать интерфейс аппаратных и программных средств вычислительной системы. Считается, что минимальная архитектура микропроцессора требует наличия арифметико-логического устройства, выполняющего все операции преобразования поступающих данных, и устройства управления, обеспечивающего выполнение команд процессора и работу с внешними устройствами.

Кроме того, в микропроцессоре обязательно используются шины. Шина — это совокупность линий, по которым передаются цифровые сигналы, необходимые для обмена информацией между устройствами. В микропроцессорах фирмы Intel выделяют три шины: шину данных, шину адреса и шину управления. Кроме того, под шиной может подразумеваться стандартный набор линий, объединяющий в себе все эти три группы.

Архитектура микропроцессора i80286

Кристалл 80286 представляет для читателя интерес прежде всего потому, что является, пожалуй, наиболее распространенным микропроцессором из применяющихся в персональных компьютерах. Как и его предшественник — 8086 — он имеет 16-разрядные шины данных и адреса и самым характерным его отличием можно считать, помимо большей тактовой частоты, возможность работы в режиме виртуальной адресации (адресация памяти объемом более 1 Мбайта), речь о котором пойдет ниже.

Регистры

Как и любой процессор, Intel 80286 содержит некоторое количество ячеек памяти быстрого доступа, называемых регистрами. В состав i286 входят три набора по четыре регистра и один специальный регистр — указатель команды.

Регистры общего назначения

Первый набор включает в себя регистры общего назначения или РОН, необходимые для временного хранения тех операндов и результатов вычислений, доступ к которым постоянно повторяется в процессе выполнения программы. Использование РОН в подобных случаях существенно ускоряет работу системы за счет сокращения времени чтения/записи и пересылки данных из ОЗУ. Всего регистров общего назначения четыре, они, разумеется, 16-разрядные, но могут использоваться и как 8-разрядные (однобайтные), при этом их количество удваивается.

Функции всех РОН, в основном, идентичны, но в некоторых случаях архитектура предполагает их строгую специализацию. Например, при выполнении команд обработки строк и циклов, в одном из регистров должно храниться число, равное количеству итераций. Этот регистр выполняет роль счетчика (counter) и носит название CX. Остальные регистры выполняют функции аккумулятора (AX), базы (BX) и ячейки временного хранения данных (DX). Как мы уже знаем, каждый регистр из числа РОН может быть разделен на два однобайтных, один из которых (0-7) называется младшим (Low), а другой (7-15) — старшим (High). В соответствии с этим, каждый 8-разрядный регистр получил свое название: младшие именуются AL, BL, CL, DL, а старшие — AН, BН, CН и DH (рис. 3).

Рис.3. Регистры общего назначения

Перед тем как познакомиться с назначением и функциями остальных наборов регистров, разберемся, каким образом процессору с 16-разрядной шиной адреса удается работать с памятью объемом в 1 Мбайт.

Режим реального адреса

Адресная шина процессора 80286 имеет ширину 16 бит, к тому же известно, что максимальное двоичное число длиной в два байта равно 216 или 64 Кбайт и, если адрес задается таким числом, то, вроде бы, пространство ОЗУ, с которым может работать процессор, не должно превышать 64 Кбайт. С другой стороны, 1 Мбайт памяти можно адресовать с помощью двоичного числа длиной 20 бит (220). Как быть?

Можно, например, воспользоваться двойным адресом, ведь в повседневной жизни нам приходится постоянно сталкиваться с многоступенчатыми адресами: мы пишем на почтовом конверте сначала название города, потом — улицы, дома и т.д. (Предположим на мгновенье, что все квартиры в СССР пронумерованы последовательно, каково придется почте в такой ситуации?) Разработчики 80286 решили проблему подобным же образом: полный адрес ячейки памяти состоит из комбинации двух 16-разрядных чисел, причем одно из них предназначили для адресации внутри некоторой области ОЗУ размером 64 К байта, а второе — для локализации этой области во всем пространстве ОЗУ. Область, внутри которой происходит адресация, называется сегментом, а адрес внутри сегмента — внутрисегментным смещением. Адрес, локализующий положение сегмента в оперативной памяти, содержится в одном из специальных сегментных регистров процессора, но он тоже 16-разрядный. Для того, чтобы при помощи этого адреса можно было перекрыть все пространство ОЗУ, со стороны младшего байта его дополняют четырьмя нулями. Например, если содержимое сегментного регистра: 0001.1101.1000.1111 (или 1D8F16) то адрес начала соответствующего сегмента будет равен: 0001.1101.1000.1111.0000 (или 1D8F016). Таким образом можно искусственно разделить всю память на сегменты, начинающиеся по адресам, кратным 1610. Предположим, что внутрисегментное смещение нашей ячейки задано числом 1001.1011.0010.0101 или 9В2516, в этом случае ее реальный адрес будет равен сумме адреса сегмента и внутрисегментного смещения: 1D8F016+9B2516 = 2701516 (рис. 4).

Рис.4. Формирование адресов байта или слова

Выполняемая программа может обращаться к любому из четырех сегментов, именуемых: текущий сегмент кода (то есть программы), текущий сегмент данных, текущий сегмент стека и текущий дополнительный сегмент.

Теперь вернемся к регистрам.

Сегментные регистры

Если мы вспомним, что программа в любой момент может обратиться к одному из четырех сегментов: к текущему сегменту кода, данных, стека или к дополнительному (сегменту данных), то нас вряд ли удивит, что в состав процессора входят четыре 16-разрядных регистра, являющихся указателями адресов текущих Сегментов. Их функции строго дифференцированы, а потому каждый регистр имеет свою «профессию»: CS определяет сегмент кода, DS — сегмент данных, SS — сегмент стека и ES — дополнительный сегмент (рис. 6).

Рис.6. Сегментные регистры

Теперь для того, чтобы, к примеру, произвести выборку слова данных из стека, программе достаточно обратиться к регистрам SS и SP, сложить находящиеся в них числа по уже известному нам правилу и в качестве результата получить реальный адрес вершины стека.

Флажки

Не знаю как для вас, а для нас более привычно звучит термин «слово состояния», ведь, собственно говоря, совокупность значений флажков и определяет состояние процессора во время его работы. В самом общем случае слово состояния — это двоичное число, каждый бит которого отражает строго определенный параметр состояния устройства. Что касается 80286, то здесь биты слова состояния называются флажками, всего их девять, причем шесть из них регистрируют состояние процессора, а три — применяются для управления его работой (рис. 7).

Рис.7. Указатель команды и флажки

К флажкам состояния относятся: флажок переноса CF (имеет значение равное 1 при переносе из старшего бита) флажок вспомогательного переноса AF (индицирует перенос из младших 4-х бит) флажок переполнения OF (устанавливается равным единице при выходе знакового результата за границу диапазона) флажок нуля ZF (фиксирует нулевой результат выполнения команды) флажок знака SF (фиксирует отрицательный результат выполнения команды) флажок четности PF (фиксирует четное число единиц в последнем байте, полученном в результате выполнения команды)

К флажкам управления относятся: флажок направления DF (указывает направление прохождения строк в строковых командах) флажок разрешения прерывания IF (разрешает или запрещает прерывание по входу INTR) флажок трассировки TF (переводит процессор в пошаговый режим)

 

Центральный процессор

Какие функции выполняет центральный процессор.

Центральный процессор компьютера занимается вычислением и обработкой различных данных. А если по-простому говорить, то например, когда идет загрузка операционной системы, процессор занимается обработкой файлов, которые потом загружаются в оперативную память, запускает необходимые процессы и система загружается.

Можно сказать, что процессор постоянно что-то вычисляет (даже если мы видим, что он не загружен). Каждый процесс занимает определенную долю процессорных ресурсов (может составлять доли процента от загрузки процессора). Открытие файлов (например: просмотр картинок, видео, прослушивание музыки), программ и совершение других операций осуществляет процессор.

При игре в компьютерные игры, процессор также частично обрабатывает поступающие данные из игрового приложения и передает их видеокарте, которая в свою очередь обрабатывает полученные графические данные и отсылает уже готовое изображение на монитор.

Центральный процессор выполняет арифметические действия, логические операции и осуществляет управление всем компьютером. Команды, адресованные ЦП для автоматизации процесса обработки входных данных, объединяются в блоки и хранятся в памяти компьютера или на диске. Эти блоки называются программами. Таким образом, входные данные, введенные в память компьютера пользователем, обрабатываются центральным процессором по заранее составленной программе. Результаты обработки сохраняются в памяти компьютера.




Центральный процессор и его устройство :: SYL.ru

Процессор — это главная микросхема компьютера. Как правило, она также является одним из самых высокотехнологичных и дорогих компонентов ПК. Несмотря на то что процессор — отдельное устройство, он имеет в своей структуре большое количество компонентов, отвечающих за конкретную функцию. Какова их специфика?

Процессор: функции устройства и история появления

Компонент ПК, который сейчас принято именовать центральным процессором, характеризуется достаточно интересной историей происхождения. Поэтому, для того чтобы понять его специфику, полезно будет исследовать некоторые ключевые факты об эволюции его разработки. Устройство, которое современному пользователю известно как центральный процессор, является результатом многолетнего совершенствования технологий производства вычислительных микросхем.

Центральный процессор

Со временем менялось видение инженерами структуры процессора. В ЭВМ первого и второго поколения соответствующие компоненты состояли из большого количества раздельных блоков, очень несхожих по решаемым задачам. Начиная с третьего поколения компьютеров функции процессора начали рассматриваться в более узком контексте. Инженеры-конструкторы ЭВМ определили, что это должно быть распознавание и интерпретация машинных команд, занесение их в регистры, а также управление другими аппаратными компонентами ПК. Все эти функции стали объединяться в одном устройстве.

Микропроцессоры

По мере развития компьютерной техники в структуру ПК стали внедряться девайсы, получившие название «микропроцессор». Одним из первых устройств такого типа стало изделие Intel 4004, выпущенное американской корпорацией в 1971 году. Микропроцессоры в масштабе одной микросхемы объединили в своей структуре те функции, что мы определили выше. Современные девайсы, в принципе, работают на основе той же самой концепции. Таким образом, центральный процессор ноутбука, ПК, планшета содержит в своей структуре: логическое устройство, регистры, а также модуль управления, отвечающие за конкретные функции. Однако на практике компоненты современных микросхем чаще всего представлены в более сложной совокупности. Изучим данную особенность подробнее.

Структура современных процессоров

Центральный процессор современного ПК, ноутбука или планшета представлен ядром — теперь уже нормой считается, что их несколько, кэш-памятью на различных уровнях, а также контроллерами: ОЗУ, системной шины. Производительность микросхемы соответствующего типа определяется ее ключевыми характеристиками. В какой совокупности они могут быть представлены?

Температура центрального процессора

Наиболее значимые характеристики центрального процессора на современных ПК таковы: тип микроархитектуры (обычно указывается в нанометрах), тактовая частота (в гигагерцах), объем кэш-памяти на каждом уровне (в мегабайтах), энергопотребление (в ваттах), а также наличие или отсутствие графического модуля.

Изучим специфику работы некоторых ключевых модулей центрального процессора подробнее. Начнем с ядра.

Ядро процессора

Центральный процессор современного ПК всегда имеет ядро. В нем содержатся ключевые функциональные блоки микросхемы, посредством которых она выполняет необходимые логические и арифметические функции. Как правило, они представлены в некоторой совокупности элементов. Так, устройство центрального процессора чаще всего предполагает наличие блоков, которые отвечают за решение следующих задач:

— выборка и декодирование инструкций;

— выборка данных;

— выполнение инструкций;

— сохранение результатов вычислений;

— работа с прерываниями.

Характеристики центрального процессора

Также структура микросхем соответствующего типа дополняется управляющим блоком, запоминающим устройством, счетчиком команд, а также набором регистров. Рассмотрим специфику работы соответствующих компонентов подробнее.

Ядро процессора: компоненты

В числе ключевых блоков в ядре центрального процессора — тот, что отвечает за считывание инструкций, которые прописываются в адресе, зафиксированном в счетчике команд. Как правило, в течение одного такта выполняется сразу несколько операций соответствующего типа. Общее количество инструкций, подлежащих считыванию, предопределяется показателем в блоках декодирования. Главный принцип здесь — чтобы при каждом такте отмеченные компоненты были максимально загружены. С целью обеспечения соответствия данному критерию в структуре процессора могут присутствовать вспомогательные аппаратные элементы.

В блоке декодирования обрабатываются инструкции, определяющие алгоритм работы микросхемы в ходе решения тех или иных задач. Обеспечение их функционирования — сложная задача, как считают многие IT-специалисты. Это обусловлено, в частности, тем, что длина инструкции не всегда четко определена. Современные процессоры обычно включают 2 или 4 блока, в которых осуществляется соответствующее декодирование.

Касательно компонентов, отвечающих за выборку данных — их основная задача заключается в обеспечении приема команд из кэш-памяти либо ОЗУ, которые необходимы для обеспечения выполнения инструкций. В ядрах современных процессоров обычно присутствует несколько блоков соответствующего типа.

Управляющие компоненты, присутствующие в микросхеме, также базируются на декодированных инструкциях. Они призваны осуществлять контроль над работой блоков, которые ответственны за выполнение инструкций, а также распределять задачи между ними, контролировать своевременное их выполнение. Управляющие компоненты относятся к категории важнейших в структуре микропроцессоров.

Загрузка центрального процессора

В ядрах микросхем соответствующего типа присутствуют также блоки, отвечающие за корректное выполнение инструкций. В их структуре присутствуют такие элементы, как арифметическое и логическое устройство, а также компонент, отвечающий за вычисления с плавающей точкой.

Есть в составе ядер процессоров блоки, которые контролируют обработку расширения наборов, что установлены для инструкций. Данные алгоритмы, дополняющие основные команды, используются для повышения интенсивности обработки данных, осуществления процедур шифрования или дешифрования файлов. Решение подобных задач требует введения в структуру ядра микросхемы дополнительных регистров, а также наборов инструкций. Современные процессоры включают обычно следующие расширения: MMX (предназначены для кодирования аудио- и видеофайлов), SSE (применяются при распараллеливании вычислений), ATA (задействуется с целью ускорения работы программ и снижения уровня энергопотребления ПК), 3DNow (расширение мультимедийных возможностей компьютера), AES (шифрование данных), а также многие другие стандарты.

В структуре ядер процессора обычно также присутствуют блоки, отвечающие за сохранение результатов в ОЗУ в соответствии с адресом, который содержится в инструкции.

Важное значение имеет компонент ядра, который контролирует работу микросхемы с прерываниями. Данная функция позволяет процессору обеспечивать стабильность работы программ в условиях многозадачности.

Работа центрального процессора также связана с задействованием регистров. Данные компоненты являются аналогом ОЗУ, однако доступ к ним осуществляется в несколько раз быстрее. Объем соответствующего ресурса небольшой — как правило, он не превышает килобайта. Регистры классифицируются на несколько разновидностей. Это могут быть компоненты общего назначения, которые задействуются при выполнении арифметических или логических вычислений. Есть регистры специального назначения, которые могут включать системные данные, используемые процессором в ходе работы.

Частота центрального процессора

В структуре ядра процессора также присутствуют различные вспомогательные компоненты. Какие, например? Это может быть датчик, отслеживающий то, какова текущая температура центрального процессора. Если ее показатели выше установленных норм, то микросхема может направить сигнал модулям, отвечающим за работу вентиляторов — и они начнут вращаться быстрее. Есть в структуре ядра предсказатель переходов — компонент, который призван определять, какие именно команды будут выполняться после завершения определенных циклов операций, совершаемых микросхемой. Пример другого важного компонента — счетчик команд. Данный модуль фиксирует адрес соответствующего алгоритма, который передается микросхеме в момент начала выполнения им того или иного такта.

Такова структура ядра, которое входит в центральный процессор компьютера. Изучим теперь подробнее некоторые ключевые характеристики микросхем соответствующего типа. А именно: техпроцесс, тактовая частота, объем кэш-памяти, а также энергопотребление.

Развитие компьютерной техники принято связывать с появлением по мере совершенствования вычислительных технологий новых поколений ЭВМ. При этом, не считая показателей производительности, одним из критериев отнесения компьютера к тому или иному поколению может считаться его абсолютный размер. Самые первые ЭВМ были сопоставимы по величине с многоэтажным домом. Компьютеры второго поколения были сопоставимы по величине, к примеру, с диваном или пианино. ЭВМ следующего уровня уже были вплотную приближены к тем, что привычны для нас сейчас. В свою очередь, современные ПК — это компьютеры четвертого поколения.

Плата центрального процессора

Собственно, к чему все это? Дело в том, что в ходе эволюции ЭВМ сформировалось неофициальное правило: чем более технологично устройство, тем меньшими габаритами при той же производительности, а то и при большей — оно обладает. Оно в полной мере действует и в отношении рассматриваемой характеристики центрального процессора, а именно, техпроцесса его изготовления. В данном случае имеет значение расстояние между единичными кремниевыми кристаллами, формирующими структуру микросхемы. Чем оно меньше — тем больше плотность соответствующих элементов, которые размещает на себе плата центрального процессора. Тем более производительным он, соответственно, может считаться. Современные процессоры выполняются по техпроцессу 90-14 нм. Данный показатель имеет тенденцию к постепенному уменьшению.

Тактовая частота

Тактовая частота центрального процессора — один из ключевых показателей его производительности. Она определяет то, сколько операций в секунду может совершать микросхема. Чем их больше — тем более производителен процессор и компьютер в целом. Можно отметить, что данный параметр характеризует, прежде всего, ядро как самостоятельный модуль центрального процессора. То есть, если соответствующих компонентов на микросхеме несколько, то каждое из них будет работать с отдельной частотой. Некоторые IT-специалисты считают допустимым суммировать данные характеристики по всем ядрам. Что это значит? Если, например, на процессоре установлено 4 ядра с частотой 1 ГГц, то суммарный показатель производительности ПК, если следовать этой методологии, будет составлять 4 ГГц.

Компоненты частоты

Рассматриваемый показатель формируется из двух компонентов. Во-первых, это частота системной шины — измеряется она обычно в сотнях мегагерц. Во-вторых, это коэффициент, на который соответствующий показатель умножается. В некоторых случаях производители процессоров дают пользователям возможность регулировать оба параметра. При этом, если выставить в достаточной мере высокие значения для системной шины и множителя, можно ощутимо увеличить производительность микросхемы. Именно таким образом осуществляется разгон процессора. Правда, его задействовать нужно осторожно.

Работа центрального процессора

Дело в том, что при разгоне может значительно увеличиться температура центрального процессора. Если на ПК не будет установлено соответствующей системы охлаждения, то это может привести к выходу микросхемы из строя.

Объем кэш-памяти

Современные процессоры оснащены модулями кэш-памяти. Основное их предназначение — временное размещение данных, как правило, представленных совокупностью особых команд и алгоритмов — тех, что задействуются в работе микросхемы наиболее часто. Что это дает на практике? Прежде всего то, что загрузка центрального процессора может быть уменьшена за счет того, что те самые команды и алгоритмы будут находиться в оперативном доступе. Микросхема, получив из кэш-памяти готовые инструкции, не тратит время на их выработку с нуля. В итоге работа компьютера идет быстрее.

Главная характеристика кэш-памяти — объем. Чем он больше, тем, соответственно, вместительнее данный модуль с точки зрения расположения тех самых инструкций и алгоритмов, задействуемых процессором. Тем больше вероятность, что микросхема будет всякий раз находить среди них нужные для себя и работать быстрее. Кэш-память на современных процессорах делится чаще всего на три уровня. Первый работает на базе наиболее быстрых и высокотехнологичных микросхем, остальные — медленнее. Объем кэш-памяти первого уровня на современных процессорах составляет порядка 128-256 КБ, второго — 1-8 МБ, третьего — может превышать 20 МБ.

Энергопотребление

Другой значимый параметр микросхемы — энергопотребление. Питание центрального процессора может предполагать значительное расходование электроэнергии. Современные модели микросхем потребляют порядка 40-50 Вт. В некоторых случаях данный параметр имеет экономическое значение — например, если речь идет об оснащении больших предприятий несколькими сотнями или тысячами компьютеров. Но не менее значимым фактором энергопотребление выступает в части адаптации процессоров к использованию на мобильных устройствах — ноутбуках, планшетах, смартфонах. Чем соответствующий показатель меньше, тем дольше будет автономная работа девайса.

Какую функцию выполняет процессор у ПК?

Процессор, как и видеокарта выполняют функцию активного обогревателя в системном блоке.

Это сердце компьютера. Он выполняет основные функции.

Вычислительную.

Центра́льный проце́ссор (ЦП; CPU — англ. céntral prócessing únit, дословно — центральное вычислительное устройство) — исполнитель машинных инструкций, часть аппаратного обеспечения компьютера или программируемого логического контроллера, отвечающая за выполнение арифметических операций, заданных программами операционной системы, и координирующий работу всех устройств компьютера основные функции любого процессора следующие: выборка (чтение) выполняемых команд; ввод (чтение) данных из памяти или устройства ввода/вывода; вывод (запись) данных в память или в устройства ввода/вывода; обработка данных (операндов) , в том числе арифметические операции над ними; адресация памяти, то есть задание адреса памяти, с которым будет производиться обмен; обработка прерываний и режима прямого доступа.

Вычисления и управление всеми элементами пк. Обмен информацией между компонентами пк через него идет.

Центральный процессор компьютера занимается вычислением и обработкой различных данных. А если по-простому говорить, то например, когда идет загрузка операционной системы, процессор занимается обработкой файлов, которые потом загружаются в оперативную память, запускает необходимые процессы и система загружается. Можно сказать, что процессор постоянно что-то вычисляет (даже если мы видим, что он не загружен). Каждый процесс занимает определенную долю процессорных ресурсов (может составлять доли процента от загрузки процессора). Открытие файлов (например: просмотр картинок, видео, прослушивание музыки), программ и совершение других операций осуществляет процессор. При игре в компьютерные игры, процессор также частично обрабатывает поступающие данные из игрового приложения и передает их видеокарте, которая в свою очередь обрабатывает полученные графические данные и отсылает уже готовое изображение на монитор.

он 0 и 1 складывает вычитает и тд

Как работает процессор: краткая суть функцианальности cpu

 

Рад встрече с вами, мои дорогие читатели. Надеюсь, вы полны сил и серьезно настроены выяснить, как работает процессор. Этот сложный вопрос мне приходится слышать все чаще и чаще, и сегодня я попытаюсь все понятно объяснить.

Вообще-то это целая наука, на изучение которой уходит несколько курсов высшего учебного заведения. Но если вы мобилизуете уже имеющиеся у вас знания и примете некоторые условности, то сможете понять принципы функционирования этого «черного ящика».

 

Чем занимается проц?

Чтобы понять, как работает ЦПУ, нужно кратко уяснить, что он делает.

  • Используя данные с жесткого диска или из сети, выполняет программу и выдает конечный результат в виде файла или картинки, отображаемой на мониторе;
  • В процессе этого обеспечивается взаимодействие с устройствами ПК посредством операционной системы и определенных инструкций (драйверов).

Например, процессор сам производит сложные расчеты, занося промежуточные и конечные результаты в оперативную память. Так же параллельно дает команды видеокарте визуализировать их.

  • CPU работает с оцифрованными данными, представленным в виде двоичного кода. Фактически с ними он выполняет арифметические и логические операции. Если вы имели дело с простыми программками или алгоритмами, то это как раз оно.


Вот здесь обычно начинаются сложности в дальнейшем понимании процесса. Ведь всем известно, что CPU– это небольшая пластина, представляющая кристалл кремния, на который что-то там наносят. И он становиться центром компьютерного разума.

Но как работает эта схема?

«Не зная прошлого, невозможно понять подлинный смысл настоящего и цели будущего». (М. Горький)

Давайте вернемся к истории создания вычислительных машин, первыми из которых были, конечно, счеты. По сути, они выполняли функции ячеек памяти, помогающие человеку выполнять арифметические операции.

Потом появились механические устройства, выполняющие сложение и вычитание.

В XVII веке известный математик Лейбниц не только создал арифмометр, способный еще делить и умножать, но и открыл преимущества двоичной системы вычислений, что в последующем упростило работу создателям первых компьютеров.

Джордж Буль в XIX веке предложил систему логических операций И, ИЛИ, НЕ и их производные элементы (алгебру логики).

Не мене важное событие произошло в 1937 году, кода Клод Шеннон, исследуя цифровые цепи, смог создать вычислитель двоичных систем на основе электронных реле.

Все эти идеи объединил немецкий изобретатель Конрад Цузе.

Он в 1941 году создал устройство Z3, по праву считающееся прообразом современных компьютеров. В нем телефонные реле были объединены в модули, которые с помощью логических операций выполняли действия и математические вычисления с двоичными данными.

Спустя три года Цузе усовершенствовал свое детище, но главное, он предложил первый язык программирования «Планкалкюль».

 

Прогресс не стоит на месте

С тех пор вычислительные принципы практически не менялись. Все силы разработчиков были брошены на увеличение быстродействия вычислительной системы. Также на уменьшение ее размеров и на снижение нагрева при работе.

Сначала реле были заменены ламповыми приборами.

А в 1957 год компания NCR из США поразила мир компактной ЭВМ на полупроводниковых транзисторах. Через пару лет Несколькими изобретателями были заложены основы технологии объединения электронных схем на одном кристалле.

 

На что способны миллиарды транзисторов?

Надеюсь, что с этими знаниями вам легче будет представить себе работу процессора.

Итак, что же представляет собой современный ЦПУ?

Это действительно кристалл кремния. На его поверхности путем фототравления нанесена сложнейшая структуру из проводников и огромного количества полупроводниковых транзисторов.

  • в 2004 году их число на кристалле было чуть больше 500 миллионов;
  • 2006-й год – 1 миллиард;
  • в 2008 – 2 миллиарда транзисторов.

Темпы роста увеличения плотности транзисторов немного упали, что обусловлено возможностями технологии их нанесения.

Сейчас для этого используется многоядерность и нанотехнология (актуальна 14 нм, ожидают от производителей 10 нм).

Вот пример процессора 2017 года.

Intel SKL Core i9-7000X заявлены около 6,5–7 миллиардов транзисторов. Но если честно транзисторы сейчас никто не считает.

Всех интересует тактовая частота, число ядер и разрядность (64 или 32 бита) и энергопотребление.

 

Структура ЦПУ и распределение функциональных «обязанностей»

Разговор о количестве транзисторов я повел к тому, чтобы вы оценили растущую вычислительную мощность процессоров. Из полупроводниковых элементов состоят все рабочие компоненты CPU и нам пора выяснить, что они собой представляют и как взаимодействуют.

  • Вычислительное ядро, которых может быть несколько. Состоит из Устройства управления, направляющего данные и команды в виде сигналов в соответствии с полученными инструкциями и Арифметико-логического устройства, непосредственно занимающегося вычислением и реализацией условий сложных алгоритмов.
  • За преобразование цифровых данных из памяти компьютера в поток сигналов, понятных процессору отвечает дешифратор.
  • При этом данные разбиваются на блоки по 8, 16, 32 или 64 бита, которые содержатся в специальных ячейках, именуемых регистрами.Они выполнены по схеме триггера. Их максимальный размер означает разрядность процессора. И вместе с тактовой частотой обработки данных этот параметр определяет его производительность. Каждый регистр имеет свое назначение, так, например, A, B и C предназначены для обрабатываемых данных. ESP – их адрес в ОЗУ, Z – для последней операции сравнения, EIP – сообщает об адресации следующей инструкции в оперативке. Связка регистров и ядра – базовый элемент процессора.

  • Важным компонентом CPU является многоуровневая кэш память, подгружающая информацию из ОЗУ. Непосредственно с ядром связана сверхбыстрая но самая маленькая L1, потом идет промежуточная L2, и на внешнем уровне находится большая по объему, но менее скоростная L В любом случае получение данных из нее происходит намного быстрее, чем из оперативки.
  • Взаимодействие ЦПУ с другими компонентами ПК на физическом уровне происходит посредством шин, контакты от которых выводятся на сокет процессора на материнской плате. Они так же имеют разрядность соответствующую размеру основных реестров. Шина данных работает с ОЗУ, шина синхронизации – с генератором частотных импульсов. Адресная шина общается с другими устройствами, а шина перезапуска – обнуляет текущее состояние CPU.

Иногда на одном кристалле с ЦПУ располагают вспомогательный графический процессор, заточенный под выполнение специализированных задач и берущий значительную часть нагрузки на себя.

 

Команды, которые слышит процессор

Что же заставляет процессор корректно и эффективно работать с кодами, написанными порой на разных языках программирования. Языки то может и разные, но все они состоят из простых операций, предусматривающих:

  • математические и логические операции с данными;
  • их перемещение;
  • сравнение;
  • действие при выполнении условия;
  • переадресацию.

Все эти функции прописаны для CPU в виде набора определенных инструкций.

Некоторые из них так же специально усовершенствованы для решения конкретных задач.

Поскольку компьютер работает не с реальными объектами, а с их математическими моделями, то процессор с помощью имеющихся в нем модулей легко справляется с обработкой цифровой информации и выдает требуемый результат.

Быстродействие процессора, как я уже сказал, зависит от тактовой частоты.

Например, не самый мощный четырех ядерный AMD Ryzen 5 2400G при 3.6GHz будет способен выполнить более 14 миллиардов операций в секунду. Поверьте, этого вполне достаточно для решения большинства компьютерных задач.

Пожалуй, дальше углубляться в работу процессора не стоит, ведь это уже епархия крутых айтишников. Но если есть такое желание, то я уверен, что полученные сегодня знания станут вам отличным подспорьем в боле серьёзном изучении ЦПУ.

На этом я желаю закончить статью и попрощаться с вами, пожелав всем успехов!

 

 

объясните, за что отвечает ПРОЦЕССОР?? ? видюха понятно за графу скажем а проц ??

Центра́льный проце́ссор (ЦП, или центральное процессорное устройство — ЦПУ; англ. central processing unit, сокращенно — CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо микросхема — исполнитель машинных инструкций (кода программ) , главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором. Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложных компьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде. Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографического процесса используемого при производстве (для микропроцессоров) и архитектура. Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах, мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.) . Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.

проц отвечает за ВСЁ а вот видюха только за вывод видео (современные еще немного вычислений умеют делать)

Он управляет этой же видюхой и всем другим.

Обработка данных и вычисления

производительность, кароче мозги это-отвечает за обработку данных и т. д.

Процессор отвечает за все рассчеты в компьютере.

ну а процессор за видюху и всё остальное железо в компе

Процессор (processor, CPU, central processing unit) – производит обработку данных.

за открывание сраниц, музыка, быстрота и т. п. от слова процесс!!

Он как мозг у человека. Короче он выполняет команды и на этом основана работа компьютера.

Процессор грубо — ЭВМ (электронно вычислительная машина) так вот он отвечает за скорость выполнения операций в системе, операций которых ты не видишь но которые происходят. Нажал в игре кнопочку выстрел, а проц считает сколько ты выпустил патронов и какой урон от этого будет в соответствии с дистанцией и экипировкой противника — эт чтоб понятнее было

Организация работы всех микроконтроллеров, вычисления. И много других сложных задач.

Именно он берёт на себя основные функции обработки массивов данных, можно сказать, что процессор это одно из основных устройств компьютера, которое исполняет функции арифметическо-логического устройства

он отвечает и производит различные вычисления, беря данные с жесткого диска, когда призводится набор символов с клавиатуры и использования мыши, и обрабатывает эту информацию выводя эти данные на видеокарту и сохраняя эти данные вычисления на жесткий диск, в отличие от оперативной памяти он производит данные для расчетов (короче пишет циферки например как мы вводим данные в калькулятор и считаем также и он далает а затем принимает эти вычисленные данные и анализирует их на своей системе) этих данных в оперативной памяти, и распределение этих циферок по всей системе.

Центральный микропроцессор — устройство, выполняющее обработку, передачу информации. Он отвечает за скорость выполнения задачи. например в играх более мощный процессор будет выдавать больше framer per second (FPS) (кадров в секунду) . Более быстрый процессор будет выполнять кодирование ьыстрее, чем более слабый. Мощность определяется в первую очередь количеством ядер. Ядро — это процессор. То есть 4 ядерный проц — это как 4 процессора в одном. 8 ядерный — 8 в одном. И не суммируйте ядра. 1 ядро обрабатывает информацию на, к примеру частоте в 2000 МегаГерц. И второе ядро тоже. То есть тут не получается 2х2000. А 2000 на одно ядро, и 2000 МГц на другое. На втором месте идёт тактовая частота. Чем она выше, тем мощнее процессор, в основном — всегда. Но если приложение не поддерживает многопоточность. То есть в этом варианте очень будет важна тактовая частота, так как приложение задечствует всего одно ядро. (остальные будут простаивать) . Ещё производительность зависит от архитектуры (размера транзисторов) . Транзисторы в кристале процессора настолько малы, что на самом маленьком муравье можно будет разместить около миллиона. Они измеряются в нанометрах. Чем меньше они, тем мощнее микропроцессор. (тут не знаю почему, так вот устроено) . Ещё есть кэш память. Это память, в которой хранятся инструкции процессора, то есть каким образом, и как он будет обрабатывать информацию. Чем его больше, тем мощнее процессор. Современный мощный микропроцессор содержит как минимум 4 ядра, Кэша около 6 мегабайт, тактовую частоту около 3300 МегаГерц. (3 ГигаГерц) и размер транзиторов в нём составляет 32 нм. (этаким является Core i5-2500 — современный мощный, идеальный, и недорогой процессор от компании Intel)

подскажите пожалуйста какой процессор лучше <img src=»//otvet.imgsmail.ru/download/21305236_4a3354ee41c1f2b76f26ef1782892efc_120x120.jpg» data-hsrc=»//otvet.imgsmail.ru/download/21305236_4a3354ee41c1f2b76f26ef1782892efc_800.jpg» ><img src=»//otvet.imgsmail.ru/download/21305236_31e21829c9b4e6968031ed30dd58be47_120x120.jpg» data-hsrc=»//otvet.imgsmail.ru/download/21305236_31e21829c9b4e6968031ed30dd58be47_800.jpg» ><img src=»//otvet.imgsmail.ru/download/21305236_8b8f53ba1d7167fc5883cf0d47e67f64_120x120.jpg» data-hsrc=»//otvet.imgsmail.ru/download/21305236_8b8f53ba1d7167fc5883cf0d47e67f64_800.jpg» ><img src=»//otvet.imgsmail.ru/download/21305236_71306770d10ac6c68a7503434dae945a_120x120.jpg» data-hsrc=»//otvet.imgsmail.ru/download/21305236_71306770d10ac6c68a7503434dae945a_800.jpg» ><img src=»//otvet.imgsmail.ru/download/21305236_de4a22bc2bd73bddbd384b2ca6a2a42f_120x120.jpg» data-hsrc=»//otvet.imgsmail.ru/download/21305236_de4a22bc2bd73bddbd384b2ca6a2a42f_800.jpg» >

Leave a comment