Таблица поколения пк: История вычислительной техники — Википедия – Поколения компьютеров | Batalygina.com

Содержание

Поколения компьютеров | Batalygina.com

Такие компьютеры, как Эниак и Юнивак, представляли собой лишь первые модели ЭВМ. Их возможности поражали воображение. Тем не менее через некоторое время появились еще более совершенные ЭВМ . В течении десяти лет после создания Юнивака были изготовлены и введены в эксплуатацию в США 5000 компьютеров с хранимой программой. Еще через шесть лет количество компьютеров в США увеличилось в четверо.

Второе поколение ЭВМ — машины на транзисторах

Гигантские компьютеры на электронных лампах 50-х годов составили первое поколение. Благодаря развитию техники появились новые и более совершенные электронные схемы. Усовершенствование электронных схем в свою очередь привело к созданию следующих поколений ЭВМ, каждое из которых становилось более совершенным, чем предыдущее.

Второе поколение компьютеров появилось около 1960 года, когда на смену электронным лампам пришли транзисторы. Изобретенные в 1948 году транзисторы оказались способные выполнять все те функции, которые до этого выполняли электронные лампы. Но при этом они занимали существенно меньший объем и потребляли значительно меньше электроэнергии.

Транзисторные приемники стали особенно популярны в конце 50-х годов. Благодаря крошечному транзистору такие приемники имели намного меньшие габариты и вес, чем приемники на электронных лампах. Именно такими же преимуществами обладали и компьютеры на транзисторах. К этому следует добавить, что транзисторы дешевле, выделяют меньше тепла и более надежны, чем электронные лампы. Таким образом, с появлением транзисторов стало возможным не только уменьшить габариты компьютеров, но и сделать их более надежными и дешевыми.  Самой удивительной способностью транзистора является то, что он один способен трудиться за 40 электронных ламп и при этом работать с большей скоростью, чем они. В результате быстродействие машин второго поколения возросло в 10 раз, объем их памяти также увеличился.

Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации. Магнитную ленту, впервые примененную в ЭВМ Юнивак, начали использовать как для ввода, так и для вывода информации. А в середине 60-х годов получило распространение хранение информации на дисках.

Третье поколение ЭВМ — машины на интегральных схемах

Подобно тому как появление транзисторов привело к созданию второго поколения компьютеров, появление интегральных схем ознаменовало собой новый этап в развитии вычислительной техники — рождение машин третьего поколения. Интегральная схема, которую называют также кристаллом, представляет собой миниатюрную электронную схему, вытравленную на поверхности кремниевого кристалла площадью около 10 мм 2.

Первые интегральные схемы (ИС) появились в 1964 году. Сначала они использовались в космической военной технике. Сейчас их можно обнаружить где угодно, включая автомобиль и бытовые приборы.

Появление интегральных схем означало подленную революцию в вычислительной технике. Ведь одна интегральная схема способна заменить тысячи транзисторов, каждый из которых в свою очередь уже заменил 40 эллектронных ламп. Другими словами, один крошечный, но сложный кристалл обладает такими же вычислительными возможностями, как 30-тонный Эниак.

Снижение габаритов ЭВМ можно проиллюстрировать следующим образом: в 1950 году в объеме машины, равном 1 куб. футу (0,028 м3), умещались 1000 электрических цепей, в 1960 году — 100 тысяч, в 1970 году — 10 миллионов, а сегодня миллиарды.

Ко всем достоинствам ЭВМ третьего поколения добавилось еще и то, что их производство оказалось дешевле, чем производство машин второго поколению Благодаря этому многие организации смогли приобрести и освоить такие машины. А это в свою очередь привело к росту спроса на универсальные ЭВМ, предназначенные для решения самых различных задач. Большинство созданных до этого машин являлись специализированными машинами, на которых можно было решать задачи какого-то одного типа.

Четвертое поколение ЭВМ — машины на больших интегральных схемах

В начале 70-х годов была предпринята попытка выяснить, можно ли на одном кремниевом кристалле разместить больше одной интегральной схемы. Развитие микроэлектроники привело к созданию возможности размещать на одном-единственном кристалле тысячи интегральных схем, Так, уже в 1980 году ЦП небольшой ЭВМ оказалось возможным разместить на кристалле площадью всего в четверть квадратного дюйма (1,61см2). Началась эпоха микрокомпьютеров.Быстродействие микро-ЭВМ в 10 раз превышало быстродействие третьего поколения на интегральных схемах, в 1000 раз — быстродействие ЭВМ второго поколения на транзисторах и в 10 000 аз — быстродействие ЭВМ первого поколения на электронных лампах.

Почти 55 лет назад компьютеры типа Юнивак  стоили около 2,5 млн. долларов. Каждые два года стоимость ЭВМ снижалась примерно в два раза.

Таблица характеристик

Характеристика Поколения
Первое Второе Третье Четвертое
Годы применения 1946 — 1960 1960-1964 1964-1970 1970-
Основной элемент Электронная лампа Транзистор Интегральная схема Большая интегральная схема
Количество ЭВМ в  мире Сотни Тысячи Десятки тысяч Миллионы
Ко-во электрических цепей в кубическом футе(1.62см3) 1000 100000 10млн Миллиарды
Размеры Очень большие(ENIAC, EDSAC, UNIVAC) Значительно меньше Миникомпьютеры Микрокомпьютеры
Быстродействие 1 (условно) 10 1000 100000
Носитель информации Магнитная лента Диск Гибкий диск

Основные даты в истории развития компьютеров

Около 3000г. до нашей эры — счеты в Китае.

1642г. — первая механическая суммирующая машина Паскаля.

1694г. — счетная машина Лейбница.

1801г. — Жаккаром изобретены перфорационные карты для ткацких станков.

1830-е годы — Бэбиджем разработан первый программируемый компьютер.

1836 г — изобретен телеграф.

1846г. — изобретена швейная машина.

1860г. — изобретен двигатель внутреннего сгорания.

1867г. — изобретена пишущая машинка.

1876г. — изобретен телефон.

1890г. — счетно — аналитическая машина Холлерита, в которой впервые для расчетов использовано электричество.

1895г. — изобретено радио.

1930г. — первый аналоговый компьютер Буша.

1944г. — первый цифровой компьютер Айкена (Марк I).

1946г. — первый полностью электронный цифровой компьютер Маушли и Эккерта (Эниак).

1948г. — изобретен транзистор.

1949г. — завершена работа над первым компьютером с хранимой программой (Эдзак).

1951г. — первая серийная ЭВМ (Юнивак).

1964г. — появление интегральных схем.

1965г. — первый мини-компьютер.

1969г. — высадка астронавтов на Луну.

1970-е -создание больших интеральных схем.

1977 г. — первый микрокомпьютер Возниака и Джобса, выпущенной фирмой Apple.

1980г. — создан центральный процессор на одном кремниевом кристалле.

1980-е — появились сверхбольшие интегральные схемы.


Источник: «Основы компьютерной грамотности»  1989 г. Б. Кёршан, А.Новембер,Дж Стоун

 

таблица, характеристики и история. Что понимают под термином «поколение ЭВМ»?

Появлению современных компьютеров, которыми мы привыкли пользоваться, предшествовала целая эволюция в развитии вычислительной техники. Согласно распространенной теории, развитие индустрии ЭВМ шло на протяжении нескольких отдельных поколений.

История развития ЭВМ поколения ЭВМ

Современные эксперты склонны считать, что их шесть. Пять из них уже состоялись, еще одно — на подходе. Что именно под термином «поколение ЭВМ» понимают IT-специалисты? Каковы принципиальные различия между отдельными периодами развития вычислительной техники?

Предыстория появления ЭВМ

История развития ЭВМ 5 поколений интересна и увлекательна. Но прежде чем изучить ее, полезно будет узнать факты, касающиеся того, какие технологические решения предшествовали разработке ЭВМ.

Люди всегда стремились к совершенствованию процедур, связанных с подсчетами, вычислениями. Историками установлено, что инструменты для работы с цифрами, имеющие механическую природу, были изобретены еще в Древнем Египте и других государствах античности. В средние века европейские изобретатели могли конструировать механизмы, с помощью которых, в частности, могла вычисляться периодичность лунных приливов.

Прообразом современных ЭВМ некоторые эксперты считают изобретенную в начале 19 века машину Бэббиджа, обладавшую функциями программирования вычислений. В конце 19-начале 20 века появились устройства, в которых стала использоваться электроника. В основном они задействовались в индустрии телефонной и радиосвязи.

В 1915 году переехавший в США немецкий эмигрант Герман Холлерит основал компанию IBM, впоследствии ставшую одним из самых узнаваемых брендов IT-индустрии. В числе самых сенсационных изобретений Германа Холлерита стали перфокарты, в течение десятилетий выполнявшие функцию основного носителя информации при пользовании вычислительной техникой. К концу 30-х годов появились технологии, позволившие говорить о начале компьютерной эпохи в развитии человеческой цивилизации. Появились первые ЭВМ, который впоследствии стали классифицироваться как принадлежащие к «первому поколению».

Признаки ЭВМ

Ключевым принципиальным критерием отнесения вычислительного устройства к категории ЭВМ, или компьютера, эксперты называют программируемость. Этим соответствующего типа машины, в частности, отличаются от калькуляторов, какими бы мощными последние ни являлись. Даже если речь идет о программировании на очень низком уровне, когда используются «нули и единицы» — критерий в силе. Соответственно, как только были изобретены машины, быть может, по внешним признакам сильно схожие с калькуляторами, но которые можно было программировать — их стали именовать компьютерами.

Под термином «поколение ЭВМ» понимают, как правило, принадлежность компьютера к конкретной технологической формации. То есть, той базе аппаратных решений, на основе которой ЭВМ работает. При этом, исходя из критериев, предлагаемых IT-экспертами, деление компьютеров на поколения далеко не условное (хотя, конечно, есть и переходные формы компьютеров, которые сложно однозначно отнести к какой-либо конкретной категории).

Завершив теоретический экскурс, мы можем начать изучать поколения ЭВМ. Таблица, что ниже, поможет нам ориентироваться в периодизации каждого.

Поколение

Годы

1

1930 — 1950-е

2

1960 — 1970-е

3

1970 — 1980-е

4

Вторая половина 70 — начало 90-х

5

90-е — наше время

6

В разработке

Далее мы рассмотрим технологические особенности компьютеров для каждой категории. Нами будет определена характеристика поколений ЭВМ. Таблица, что мы сейчас составили, будет дополнена другими, в которых будут соотнесены соответствующие категории и технологические параметры.

Отметим важный нюанс — нижеследующие рассуждения касаются, главным образом, эволюции компьютеров, которые сегодня принято относить к персональным. Есть совершенно иные классы ЭВМ — военные, промышленные. Есть так называемые «суперкомпьютеры». Их появление и развитие — отдельная тема.

Первые ЭВМ

В 1938 году германский инженер Конрад Цузе конструирует устройство, названное Z1, а в 42-м выпускает его усовершенствованную версию — Z2. В 1943 году свою вычислительную машину изобретают англичане и называют ее «Колосс». Некоторые эксперты склонны считать английскую и немецкие машины первыми ЭВМ. В 1944-м на базе разведданных из Германии вычислительную машину создают также и американцы. Разработанная в США ЭВМ получила название «Марк I».

В 1946 году американские инженеры делают небольшую революцию в области конструирования вычислительной техники, создав ламповый компьютер ЭНИАК, в 1000 раз более производительный, чем «Марк I». Следующей известной американской разработкой стала созданная в 1951 году ЭВМ, названная УНИАК. Ее основная особенность в том, что она первой из ЭВМ стала использоваться как коммерческий продукт.

К тому моменту, к слову, свой компьютер уже успели изобрести советские инженеры, работающие в Академии наук Украины. Наша разработка получила название МЭСМ. Ее производительность, по оценке экспертов, была самой высокой среди ЭВМ, собранных в Европе.

Технологические особенности первого поколения ЭВМ

Собственно, исходя из каких критерий определяется первое поколение развития ЭВМ? Таковым IT-специалисты считают, прежде всего, компонентную базу в виде вакуумных ламп. Машины первого поколения к тому же обладали рядом характерных внешних признаков — огромный размер, очень большое энергопотребление.

Под термином поколение ЭВМ понимают

Вычислительная их мощность также была относительно скромна, она составляла несколько тысяч герц. Вместе с тем ЭВМ первого поколения содержали многое, что есть в современных компьютерах. В частности, это машинный код, позволяющий программировать команды, а также запись данных в память (с помощью перфокарт и электростатических трубок).

Поколения ЭВМ таблица

ЭВМ первого поколения требовали высочайшей квалификации человека, их использующего. Требовалось не только владение профильными навыками (выражающимися в работе с перфокартами, знании машинного кода и т.д.), но, как правило, также и инженерные знания в области электроники.

В ЭВМ первого поколения, как мы уже сказали, уже была оперативная память. Правда, ее объем был исключительно скромным, он выражался в сотнях, в лучшем случае — в тысячах байт. Первые модули ОЗУ для ЭВМ с трудом можно было классифицировать как электронный компонент. Они представляли собой наполненные ртутью емкости в виде трубок. Кристаллы памяти фиксировались на определенных их участках, и тем самым данные сохранялись. Однако достаточно скоро после изобретения первых ЭВМ появилась более совершенная память на базе ферритовых сердечников.

Второе поколение ЭВМ

Какова дальнейшая история развития ЭВМ? Поколения ЭВМ стали развиваться далее. В 60-х годах получают распространение компьютеры, использующие уже не только вакуумные лампы, но также и полупроводники. Значительно повысилась тактовая частота микросхем — обычным делом считался показатель в 100 тыс. герц и выше. Появились первые магнитные диски как альтернатива перфокартам. В 1964 году компания IBM выпустила уникальный продукт — отдельный компьютерный монитор с достаточно приличными характеристиками — 12-дюймовой диагональю, разрешением 1024 на 1024 точек, а также частотой развертки в 40 Гц.

Поколение номер три

Чем примечательно третье поколение ЭВМ? Прежде всего, переводом компьютеров с ламп и полупроводников на интегральные схемы, которые, не считая ЭВМ, стали использоваться во множестве других электронных устройств.

Впервые возможности интегральных схем были показаны миру стараниями инженера Джека Килби и компании Texas Instruments в 1959 году. Джек создал небольшую конструкцию, выполненную на пластинке из металла германия, которая, как предполагалось, заменит собой сложные полупроводниковые конструкции. В свою очередь, компания Texas Instruments создала компьютер, собранный на базе подобных пластинок. Самое примечательное, что он был в 150 раз меньше, чем аналогичной производительности полупроводниковая ЭВМ. Технология интегральных схем получила дальнейшее развитие. Большую роль в этом сыграли исследования Роберта Нойса.

Эти аппаратные компоненты позволили, прежде всего, значительно уменьшить габариты ЭВМ. В результате произошло существенное повышение производительности компьютеров. Третье поколение ЭВМ характеризовалось выпуском ЭВМ с тактовой частотой, выражаемой уже в мегагерцах. Уменьшилось также и энергопотребление компьютеров.

Стали более совершенными технологии записи данных и обработки их в модулях ОЗУ. Что касается оперативной памяти, ферритовые элементы стали более емкими, технологически совершенными. Появились сначала прототипы, а затем и первые версии дискет, используемые как внешний носитель данных. В архитектуре ПК появилась кэш-память.Стандартной средой взаимодействия пользователя и компьютера стало окно дисплея.

Происходило дальнейшее совершенствование программных компонентов. Появились полноценные операционные системы, стало разрабатываться самое разнообразное прикладное ПО, были внедрены концепции многозадачности в работу ЭВМ. В рамках ЭВМ третьего поколения появляются такие программы, как системы управления базами данных, а также ПО для автоматизации проектных работ. Появляется все больше языков программирования и сред, в рамках которых осуществляется создание ПО.

Особенности четвертого поколения

Четвертое поколение ЭВМ характеризуется появлением интегральных схем, относящихся к классу больших, а также так называемых сверхбольших. В архитектуре ПК появилась ведущая микросхема — процессор. ЭВМ по своей конфигурации стали ближе к рядовым гражданам. Пользование ими стало возможным при минимальной квалификационной подготовке, в то время как работа с ЭВМ предыдущих поколений требовала профессиональных навыков. Модули ОЗУ стали выпускаться не на основе ферритовых элементов, а на базе CMOS-микросхем. К четвертому поколению ЭВМ принято относить и первый компьютер Apple, собранный в 1976 году Стивом Джобсом и Стефаном Возняком. Многие IT-эксперты считают, что Apple — первый в мире персональный компьютер.

Третье поколение ЭВМ

Четвертое поколение ЭВМ также совпало с началом популяризации Интернета. В этот же период появился самый известный сегодня бренд софт-индустрии — Microsoft. Возникли первые версии операционных систем, которые мы знаем сегодня — Windows, MacOS. Компьютеры стали активно распространяться по всему миру.

Пятое поколение

Период расцвета четвертого поколения компьютеров — середина-конец 80-х годов. Но уже в начале 90-х на рынке IT-технологий начали происходить процессы, позволившие начать отсчет новому поколению ЭВМ. Речь идет о значительных шагах вперед, прежде всего, в инженерно-технических наработках, связанных с процессорами. Появились микросхемы с архитектурой, относимой к типу параллельно-векторной.

Четвертое поколение ЭВМ

Пятое поколение ЭВМ — это невероятные темпы роста производительности машин из года в год. Если в начале 90-х тактовая частота микропроцессоров в несколько десятков мегагерц считалась хорошим показателем, то к началу 2000-х никто не удивлялся гигагерцам. Компьютеры, которыми мы пользуемся сейчас, как полагают IT-эксперты, — это также пятое поколение ЭВМ. То есть, технологический задел начала 90-х актуален до сих пор.

Пятое поколение ЭВМ

ПК, относящиеся к пятому поколению, стали не просто вычислительными машинами, а полноценными мультимедийными инструментами. На них стало возможно монтировать фильмы, работать с изображениями, записывать и обрабатывать звук, создавать инженерные проекты, запускать реалистичные 3D-игры.

Характеристики шестого поколения

В обозримом будущем, считают аналитики, мы вправе ожидать, что появится 6 поколение ЭВМ. Оно будет характеризоваться использованием нейронных элементов в архитектуре микросхем, использованием процессоров в рамках распределенной сети.

История развития ЭВМ 5 поколений

Производительность компьютеров в следующем поколении будет измеряться, вероятно, уже не в гигагерцах, а в принципиально иного типа единицах исчисления.

Сравнение характеристик

Мы изучили поколения ЭВМ. Таблица ниже позволит нам ориентироваться в соотнесении компьютеров, принадлежащих к той или иной категории, и технологической базы, на которой основано их функционирование. Зависимости следующие:

Поколение

Технологическая база

1

Вакуумные лампы

2

Полупроводники

3

Интегральные схемы

4

Большие и сверхбольшие схемы

5

Параллельно-векторные технологии

6

Нейронные принципы

Полезной может оказаться также визуализация соотнесения производительности и конкретного поколения ЭВМ. Таблица, которую мы сейчас составим, отразит и эту закономерность. Берем за основу такой параметр как тактовая частота.

Поколение

Тактовая частота выполнения операций

1

Несколько килогерц

2

Сотни КГц

3

Мегагерцы

4

Десятки МГц

5

Сотни МГц, Гигагерцы

6

Критерии измерения прорабатываются

Таким образом, мы визуализировали ключевые технологические особенности для каждого поколения ЭВМ. Таблица, любая из представленных нами, поможет нам соотносить соответствующие параметры и конкретную категорию компьютеров применительно к тому или иному этапу развития вычислительной техники.

Поколения компьютеров

До середины 80-х годов процесс эволюции вычислительной техники принято делить на поколения.

1-е поколение (1945-1954 гг.) – время становления машин с фон-неймановской архитектурой. Машины этого поколения работали на ламповой элементарной базе, из-за чего поглощали огромное количество энергии и были очень ненадежны. С их помощью решались научные задачи. Программы для этих машин можно было составлять не на машинном языке, а на языке ассемблера.

2-е поколение (1955-1964 гг.). Смену поколений определило изобретение в 1948 г. транзисторов, которые смогли заменить в компьютерах электронные лампы. Компьютеры, основанные на транзисторах, были в сотни раз меньше ламповых компьютеров такой же производительности. Единственная часть компьютера, где транзисторы не смогли заменить электронные лампы – это блоки памяти, но там вместо ламп стали использовать изобретенные к тому времени схемы памяти на магнитных сердечниках. Появились языки высокого уровня Fortran, Algol, Cobol. Для эффективного управления ресурсами машины стали использоваться операционные системы.

3-е поколение (1965-1970 гг.). Смена поколений обусловлена использованием вместо транзисторов в различных узлах ЭВМ интегральные микросхемы различной степени интеграции. В 1958 г. Джек Килби придумал, как на одной пластине полупроводника получить несколько транзисторов. В 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел более совершенный метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В дальнейшем количество транзисторов, которые удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год. В том же году был сделан еще один важный шаг на пути к персональному компьютеру – Маршиан Эдвард Хофф из фирмы Intel сконструировал интегральную схему, аналогичную по своим функциям центральному процессору большой ЭВМ. Так появился первый микропроцессор. Микросхемы позволяли разместить десятки элементов на одной пластине размером в несколько сантиметров. Это не только повысило производительность ЭВМ, но и снизило их габариты и стоимость. Появились сравнительно недорогие и малогабаритные мини-ЭВМ. Увеличение мощности сделало возможным одновременное выполнение нескольких программ на одной ЭВМ. Создаются пакеты прикладных программ. Создаются семейства ЭВМ, то есть машины становятся совместимыми снизу вверх на программно-аппаратном уровне. Примерами таких семейств была серия IBM System 360 и наш отечественный аналог – ЕС ЭВМ.

4-е поколение (1970-1984 гг.). В 70-е годы активно ведутся работы по созданию больших и сверхбольших интегральных схем (БИС и СБИС), которые позволили разместить на одном кристалле десятки тысяч элементов. Это повлекло дальнейшее снижение размеров и стоимости ЭВМ. В начале 70-х годов фирмой Intel был выпущен микропроцессор i4004, который представлял собой 4-разрядное параллельное вычислительной устройство, мог производить четыре основные арифметические операции и применялся поначалу только в карманных калькуляторах. Если до этого в мире вычислительной техники были только три направления (суперЭВМ, большие ЭВМ и мини-ЭВМ), то теперь к ним прибавилось еще одно – микропроцессорное. В общем случае под процессором понимают функциональный блок ЭВМ, предназначенный для логической и арифметической обработки информации на основе принципа микропрограммного управления. По аппаратной реализации процессоры можно разделить на микропроцессоры (полностью интегрирующие все функции процессора) и процессоры с малой и средней интеграцией. Конструктивно это выражается в том, что микропроцессоры реализуют все функции процессора на одном кристалле, а процессоры других типов реализуют их путем соединения большого количества микросхем. В 1972 г. был разработан 8-разрядный микропроцессор i8008. Этот микропроцессор имел довольно развитую систему команд и умел делить числа. Именно он был использован при создании персонального компьютера Альтаир, для которого Билл Гейтс написал один из своих первых интерпретаторов языка Basic. Именно с этого момента следует вести отсчет 5-го поколения.

5-е поколение можно назвать микропроцессорным. В 1976 г. фирма Intel закончила разработку 16-разрядного микропроцессора i8086. В 1982 г. был создан i80286, который представлял собой улучшенный вариант i8086. Первые компьютеры на базе этого микропроцессора появились в 1984 г. В 1985 году фирма Intel представила первый 32-разрядный микропроцессор i80386. Вскоре появился и i80486. C 1993 г. стали выпускаться микропроцессоры Intel Pentium. Вскоре появились и микропроцессоры Pentium Pro, Pentium II, Pentium III, Pentium IV.

Поколения ЭВМ

Компьютерная грамотность предполагает наличие представления о пяти поколениях ЭВМ, которое Вы получите после ознакомления с данной статьей.

Когда говорят о поколениях, то в первую очередь говорят об историческом портрете электронно-вычислительных машин (ЭВМ).

Содержание:
1. Первое поколение ЭВМ
2. ЭВМ второго поколения

3. Третье поколение
4. ЭВМ четвертого поколения
5. Пятое поколение

Фотографии в фотоальбоме по истечении определенного срока показывают, как изменился во времени один и тот же человек. Точно так же поколения ЭВМ представляют серию портретов вычислительной техники на разных этапах ее развития.

Всю историю развития электронно-вычислительной техники принято делить на поколения. Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники. Это всегда приводило к росту быстродействия и увеличению объема памяти. Кроме этого, как правило, происходили изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

ЭВМ первого поколения

электровакуумные лампыОни были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.

Например, одна из первых ЭВМ – ENIAC представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.

Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.

ЭВМ второго поколения

Транзисторы

Транзисторы

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.

В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.

В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.

ЭВМ третьего поколения

Это поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).

Микросхемы

Микросхемы

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.

Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.

Микропроцессор

Микропроцессор

В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.

Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память.

Соединив микропроцессор с устройствами ввода-вывода и внешней памяти,  получили новый тип компьютера: микро-ЭВМ.

ЭВМ четвертого поколения

Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.

Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.

ЭВМ пятого поколения

Они будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта.

Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:

  • 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
  • 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
  • 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
  • 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).

Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.

Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.

P.S. Статья закончилась, но можно еще прочитать:

1. Аналитическая машина Бэббиджа

2. Леди Ада Лавлейс и первая компьютерная программа

3. Может ли компьютер быть умнее человека?

4. Пять возможностей сотовых телефонов, которых не хватает в наши дни

5. Виртуальная интерактивность: что такое VR, MR, AR и их отличия


Получайте актуальные статьи по компьютерной грамотности прямо на ваш почтовый ящик.
Уже более 3.000 подписчиков

.

Важно: необходимо подтвердить свою подписку! В своей почте откройте письмо для активации и кликните по указанной там ссылке. Если письма нет, проверьте папку Спам.

Автор: Надежда Широбокова

19 мая 2010

5 поколение компьютеров. Компьютер будущего: описание

Первые электронно-вычислительные машины (ЭВМ), или компьютеры, были созданы в 30-40-х годах XX века. Их появление, собственно говоря, и знаменовало начало современного этапа развития информационных технологий. На данный момент повсеместно используется 5 поколение компьютеров, однако деление вычислительных систем на поколения весьма условно.

5 поколение компьютеров

Первое поколение ЭВМ

Началом создания электронных вычислительных машин принято считать разработки немецких электронщиков, использовавших для вычислений электромеханические реле. Затем технологический прорыв совершили американцы, заменившие реле электронными вакуумными лампами.

  • Первые вычислительные машины на электромеханических реле в 1938-41 годах были созданы в Германии (модели Z1/Z2), затем технологию переняли англичане.
  • Первый суперкомпьютер «Марк I», размерами превосходивший половину футбольного поля, был создан усилиями IBM в США (1944 г.).
  • Первый универсальный ламповый компьютер ENIAC, сконструированный американским инженером-электронщиком Джоном Эккертом (Eckert) и американским физиком Джоном Моучли (Mauchly), предназначенный в первую очередь для решения задач баллистики, имел почти 20 000 электронных ламп и 1500 реле. Монстр потреблял до 150 кВт энергии.

Второе поколение ЭВМ

Особенностью следующего поколения развития компьютеров является переход с вакуумных ламп на изобретенные в 1948 году транзисторы. Первый транзисторный электронно-вычислительный центр NCR-304 собран в США фирмой NCR в 1954 году, однако широкое распространение подобные компьютеры получили к 1960 году.

Поколения развития компьютеров

Третье поколение ЭВМ

Базировалось на интегральных схемах (начало 1960-х). Иногда интегральную схему называют микросхемой, или чипом (chip в переводе с английского – «щепка»). C 1965 года был начат выпуск одной из лучших машин третьего поколения IBM/360, семейство этих машин состояло из семи моделей. Кстати, 5 поколение компьютеров принципиально не очень отличается от старичка IBM и является скорее эволюцией ЭВМ, чем революцией.

Четвертое поколение

Возникновение четвертого поколения ЭВМ связано с усовершенствованием интегральных схем. В 1950 году американец К. Ларк-Горовиц (Lark-Horovitz) заострил внимание на возможности нейтронного легирования химического элемента германия. Этот метод в начале 60-х начали применять к кремнию: на его сверхчистых пластинах начали производить методом интегральной технологии так называемые большие интегральные схемы (БИС), затем – сверхбольшие интегральные схемы (СБИС):

  • БИС содержит 1000-10 000 элементов в кристалле полупроводника (обычно на поверхности кристалла).
  • СБИС содержит свыше 10 000 элементов.

Возникновение БИС и СБИС сделало возможным появление микропроцессоров.

Компьютеры пятого поколения

Пятое поколение ЭВМ

По большому счету компьютеры пятого поколения и четвертого имеют столько общих признаков, что многие специалисты объединяют их в одно поколение. Принято считать, что к пятому относятся компактные персональные ЭВМ, предназначенные для работы одного-двух пользователей. Первый ПК «Альтаир 8800» фирмы MITS (Micro Instrumentation and Telemetry Systems) увидел свет в 1975 году. Годом позже свои «персоналки» Apple I (1976) и Apple II (1977) представила Apple Computer. После выхода культового ПК IBM PC в 1981 году персональные компьютеры окончательно покорили мир.

Альтернативная точка зрения

Споры о том, корректно ли признавать 5 поколение компьютеров как нечто революционно новое, ведутся давно. Если разделять поколения ЭВМ по элементной базе, то выясняется, что даже между третьим и четвертым поколениями грань весьма тонкая, но здесь можно говорить хотя бы о появлении микропроцессоров.

Сам термин «компьютеры пятого поколения» в настоящий момент является неопределенным и применяется во многих смыслах. Некоторые специалисты считают точкой отсчета создание двухъядерного ПК в 2005 году.

Компьютер будущего

Смартфон вместо ЭВМ?

Аналитики часто рассуждают, каким будет персональный компьютер будущего – не суперкомпьютер для масштабных задач, а именно ПК. Нынешний этап развития информационно-коммуникационных технологий характеризуется чрезвычайно быстрым и почти одновременным развитием компьютерных сетей (особую роль сыграло возникновение всемирной сети Internet, на основе которой работает Всемирная паутина – World Wide Web) и мобильной связи. Причем современный смартфон вобрал в себя, по сути дела, все функции персонального компьютера.

Как сетевые компьютерные технологии, так и технологии мобильной радиосвязи постоянно совершенствуется, поэтому грядущие перемены в краткосрочной перспективе серьезные аналитики видят в минимализации устройств без потери производительности. Если в настоящее время преобладают настольные (стационарные) ПК, которые постепенно вытесняются ноутбуками, лэптопами, ультрабуками и планшетными компьютерами, то вскоре всех их могут заменить компьютеры нового поколения на базе модернизированных смартфонов.

Особую роль здесь должно сыграть появление гибких дисплеев, которые уже производятся в США и Японии с 2008 года. Кстати, гибкие гаджеты, которые складываются, как книга, либо их дисплеи сворачиваются в трубочку, уже созданы (в статье вы видите их фото).

Фото компьютеры будущего

Компьютеры будущего

Главные надежды в этом направлении связаны с оптическими (фотонными) ЭВМ. Идея оптических (фотонных) вычислений – вычислений, производимых с помощью фотонов, которые сгенерированы лазерами или диодами, – имеет достаточно давнюю историю. Преимущества очевидны: используя фотоны (движущиеся со скоростью света), возможно достигнуть несравнимо более высоких скоростей передачи сигнала, чем используя электроны (как в нынешних компьютерах).

Это станет принципиальным прорывом в сфере hardware и позволит создать революционно новое (настоящее) 5 поколение компьютеров. Идея фотонной ЭВМ стала обретать материальную силу после того, как в Массачусетском технологическом институте (США) в 1969 году была предсказана, а в 1976 наблюдалась на опыте оптическая метастабильность. Для приборов, работающих на основе этого явления, требуется полупроводник, прозрачный в одной области спектра и непрозрачный в другой, с резко нелинейной оптической характеристикой (например, антимонид индия). Логические схемы на таких оптических элементах могут работать со скоростью 1000 млрд логических операций в секунду.

В июле 2014 года в Институте Вейцмана (Израиль) создан фотонный маршрутизатор – устройство, основанное на одном-единственном атоме, способном переключаться из одного квантового состояния в другое, и позволяющее направлять единичные кванты света по заданному маршруту. Фотонный маршрутизатор – ключевой элемент, который позволит создать первый фотонный компьютер будущего.

Программная среда

В сфере brainware возможные прорывы связаны с развитием математики – теории автоматов и тесно связанной с ней теории алгоритмов, теории вычислимости и теории вычислительной сложности. Теория автоматов и теория алгоритмов – разделы классической математической логики, в которых внимание сфокусировано на вопросе о том, что можно автоматизировать или вычислить.

К теории алгоритмов примыкает теория вычислимости (теория рекурсивных функций). Теория вычислительной сложности (или теория сложности вычислений) – еще один раздел дискретной математики, тесно связанный с информатикой. Основной вопрос этой теории: «Какое количество ресурсов необходимо для вычислений (если проблема вычислимости решена)?» Для многочисленных приложений особую роль приобретает развитие теории графов.

Компьютеры нового поколения

Искусственный интеллект (IE)

В научно-фантастических фильмах и литературе будущее поколение ЭВМ часто представляется как некий искусственный разум, решающий за людей большинство задач, а в некоторых случаях («Матрица», «Терминатор») подчиняющий человечество. Такие фильмы и печатные произведения заставляют задуматься, нужен ли обществу IE, подогревая интерес впечатляющими видеокадрами и фото.

Компьютеры будущего действительно планируется наделить элементами продвинутого искусственного интеллекта, однако они ничего общего не будут иметь со «страшилками» голливудских блокбастеров. Для решения задач искусственного интеллекта, в частности для создания интеллектуальных систем поддержки принятия решений (ИСППР), все шире применяются нетрадиционные разделы математики, такие как теория нечетких множеств и нечеткая логика, а также теория возможностей и теория вероятностей.

Выводы

Современные вычислительные системы и информационные технологии находят и будут находить все более широкое применение в самых разных областях человеческого бытия – в науке и технике, в образовании и культуре, в производстве, на транспорте и в сфере обслуживания. Они формируют стиль жизни современного человека, его культуру, восприятие мира и образ действий. Однако развитие этих технологий несет в себе немало опасностей. Поэтому дальнейшее совершенствование информационно-коммуникационных средств должно идти рука об руку с гуманизацией общества.

История развития вычислительной техники. Поколения ЭВМ (компьютеров)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока:

  1. познакомить с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями
  2. дать представление о связи развития ЭВМ с развитием человеческого общества,
  3. познакомить с основными особенностями ЭВМ разных поколений.
  4. Развитие познавательного интереса, умение использовать дополнительную литературу

Тип урока: изучение нового материала

Вид: урок-лекция

Программно-дидактическое обеспечение: ПК, слайды презентации с изображением основных устройств, портретов изобретателей и ученых.

План урока:

  1. Организационный момент
  2. Актуализация новых знаний
  3. Предыстория компьютеров
  4. Поколения ЭВМ (компьютеров)
  5. Будущее компьютеров
  6. Закрепление новых знаний
  7. Подведение итогов урока
  8. Домашнее задание

1. Организационный момент

Задача этапа: Подготовить учащихся к работе на уроке. (Проверить готовность класса к уроку, наличие школьных необходимых принадлежностей, посещаемость)

2. Актуализация новых знаний

Задача этапа: Подготовка учащихся к активному усвоению новых знаний, обеспечить мотивацию и принятие учащимися цели учебно – познавательной деятельности. Постановка целей урока.

-Здравствуйте! Как вы думаете, какие технические изобретения особенно изменили способы труда человека?

(Ученики высказывают свои мнения по данному вопросу, по необходимости учитель их корректирует)

Вы правы, действительно, основным техническим устройством, повлиявшим на труд человека, является изобретение компьютеров — электронно – вычислительных машин. Сегодня на уроке, мы с вами узнаем, какие вычислительные устройства предшествовали появлению компьютеров, как изменялись сами компьютеры, последовательность становления компьютера, когда машина предназначенная просто для счёта стала сложным техническим устройством. Тема нашего урока: «История вычислительной техники. Поколения компьютеров». Цель нашего урока: познакомиться с историей развития вычислительной техники, с устройствами, являющимися предшественниками компьютеров и их изобретателями познакомиться с основными особенностями ЭВМ разных поколений.

На уроке мы будем работать с помощью мультимедийной презентации, состоящей из 4-х разделов «Предыстория компьютеров», «Поколения компьютеров», «Галерея учёных», «Компьютерный словарь». В каждом разделе есть подраздел «Проверь себя» — это тест, в котором вы сразу узнаете результат.

3. Предыстория компьютеров

Обратить внимание учеников, что ЭВМ – это электронно-вычислительная машина, другое название «компьютер» или «computer» произошло от английского глагола «compute» – вычислять, поэтому слово «компьютер» можно перевести как «вычислитель». То есть и в слове ЭВМ и в слове компьютер главный смысл это вычисления. Хотя мы с вами хорошо знаем, что современные ЭВМ позволяют не только вычислять, но и создавать и обрабатывать тексты, рисунки, видео, звук. Заглянем в историю…

(параллельно оформляем в тетради таблицу «Предыстория компьютеров»)

«Предыстория компьютеров»

Дата Вычислительное устройство Учёный -Изобретатель Назначение и функции устройства, материал
       
       

Древний человек счетом овладел раньше, чем письменностью. В качестве первого помощника в счете человек избрал свои пальцы. Именно наличие десяти пальцев легло в основу десятичной системы счисления. В разных странах говорят и пишут на разных языках, а считают одинаково. В 5-ом веке до н.э. греки и египтяне использовали для счета – АБАК – устройство, похожее на русские счеты.

Абак – греческое слово и переводится как счетная доска. Идея его устройства заключается в наличии специального вычислительного поля, где по определенным правилам перемещают счетные элементы. Действительно первоначально абак представлял собой доску, покрытую пылью или песком. На ней можно было чертить линии и перекладывать камешки. В Древней Греции абак служил преимущественно для выполнения денежных расчетов. В левой части подсчитывались крупные денежные единицы, а в правой – мелочь. Счет велся в двоично-пятеричной системе счислении. На такой доске было легко складывать и вычитать, добавляя или убирая камешки и перенося их из разряда в разряд.

Придя в Древний Рим абак, изменился внешне. Римляне стали изготавливать его из бронзы, слоновой кости или цветного стекла. На доске присутствовали два ряда прорезей, по которым можно было передвигать косточки. Абак превратился в настоящий счетный прибор, позволяющий представлять даже дроби, и был значительно удобнее греческого. Римляне называли это устройство calculare – «камешки». Отсюда произошел латинский глагол calculare – «вычислять», а от него – русское слово «калькулятор».

После падения Римской империи произошел упадок науки и культуры и абак был закрыт на некоторое время. Возродился он и распространился по Европе только в X веке. Абаком пользовались купцы, менялы, ремесленники. Даже спустя шесть столетий абак оставался важнейшим инструментом для выполнения вычислений.

Естественно, что в течение такого большого промежутка времени абак менял свой внешний вид и в XLL-XLLLвв.он приобрел форму так называемого счета

Персональные компьютеры — урок. Информатика, 10 класс.

Современные персональные компьютеры (ПК или РС в английской транскрипции) в соответствии с принятой классификацией надо отнести к ЭВМ четвёртого поколения. Но с учётом быстро развивающегося программного обеспечения, многие авторы публикаций относят их к \(5\)-му поколению.

 

Персональные компьютеры появились на рубеже \(60-70\)-х годов. Американская фирма Intel разработала первый \(4\)-разрядный микропроцессор (МП) \(4004\) для калькулятора.

Он содержал около тысячи транзисторов и мог выполнять \(8000\) операций в секунду.

 

Вскоре была выпущена \(8\)-битная версия данного МП, получившая название \(8008\).

Оба МП всерьёз восприняты не были, поскольку рассчитывались для конкретных применений. Они относятся к МП первого поколения.

 

В конце \(1973\) г. Intel разработала однокристальный \(8\)-разрядный МП 8080, рассчитанный для многоцелевых применений.

Он был сразу замечен компьютерной промышленностью и быстро стал «стандартным».

По стоимости он был доступен даже для любителей. Одни фирмы начали выпускать МП 8080 по лицензиям, другие — предложили его улучшенные варианты.

 

Так, группа инженеров фирмы Intel, образовав собственную фирму Zilog, в \(1976\) г. выпустила МП Z80, сохраняющий базовую архитектуру \(8080\).

 

Фирма Motorola разработала собственный \(8\)-разрядный МП М6800, нашедший впоследствии широкое применение.

 

К \(1980\) году только в США уже было продано более миллиона ПК, и маркетологи предсказывали взрывообразный рост спроса. Свои модели представили десятки компаний. Компьютеры при всей внешней схожести отличались большим разнообразием и были несовместимы друг с другом. Каждый производитель разрабатывал собственную архитектуру ПК. Считалось, что наиболее перспективной архитектурой обладает компьютер PDP-11, разработанный компанией DEC. Технические решения этой компании легли в основу первых отечественных компьютеров «Электроника».

  

   

 

Однако, в конце \(1980\) года совет директоров IBM принял решение создать «машину, которая нужна людям». Стратегическим партнёром в качестве поставщика процессоров была выбрана Intel. Команда разработчиков IBM PC заключила союз и с недоучившимся студентом Гарвардского университета Биллом Гейтсом.

 

Билл Гейтс

 

На существовавшие тогда ПК ставилась популярная операционная система CP/M, созданная компанией Digital Research, или система UCSD компании Softech. Однако эти операционные системы стоили \($450\) и \($550\) соответственно, а Гейтс за свою PC-DOS брал всего лишь \($40\). IBM сделала выбор в пользу дешевизны.

 

\(12\) августа \(1981\) года IBM представила свой ПК, который был спроектирован не хуже, чем изделия тогдашних лидеров рынка — Commodore PET, Atari, Radio Shack и Apple.

  

IBM пошла на неожиданный шаг. Решив утвердить свою архитектуру в качестве стандарта, она открыла техническую документацию. Теперь каждый производитель ПК мог приобрести лицензию у IBM и собирать подобные компьютеры, а производители микропроцессоров — изготавливать элементы для них.

  

Весной \(1983\) г. фирма IBM выпускает модель PC XT с жёстким диском, а также объявляет о создании нового поколения микропроцессоров — 80286. Новый компьютер IBM PC AT (Advanced Technologies), построенный на основе МП 80286, быстро завоевал весь мир и несколько лет оставался наиболее популярным.

  

  

Первые \(32\) — разрядные микропроцессоры появились на мировом рынке в \(1983-1984\) гг., но их широкое использование в высокопроизводительных ПК началось с \(1985\) г. после выпуска фирмами Intel и Motorola микропроцессоров 80386 и М68020 соответственно.

  

В \(1989\) г. был начат выпуск более мощного МП 80486 с быстродействием более \(50\) млн. операций в секунду.

  

Кроме стационарных (так называемых, настольных) ПК широкое распространение получили сегодня переносные ПК. Большую популярность приобретают планшетные компьютеры и смартфоны, объединяющие функции ПК и телефона.

  

 

Компьютер нельзя представить без программного обеспечения. Как архитектура IBM PC стала стандартом для аппаратной части ПК, так и продукция фирмы MicroSoft стала эталоном для программ. Особенно популярны её операционные системы Windows и офисные приложения MS Office.

 

Отправить ответ

avatar
  Подписаться  
Уведомление о