Термопасты обзор: тестирование термопаст на ГП Pascal / Корпуса, БП и охлаждение – Delicious Pasta: обзор ещё 17 термопаст из каталога ДНС | Периферия | Обзоры

Пучок китайских термопаст. Обзор на процессорах разных поколений. | Периферия | Обзоры

Всем привет.

Я люблю давать советы в ветке Помощь Эксперта, потому что для меня этот сервис как тренировочная комната для принятия простого и верного решения. Часто читаю другие ответы, ведь обогатить свой багаж знаний никогда не лишнее. Все довольно часто советуют менять термопасту в ноутбуках и компьютерах по поводу и без.

Обзоров и тестов различных термоинтерфейсов полно в интернете, достаточно в гугл вбить обзор термопаст. Процессоры и видеокарты меняются, а прослойка между радиатором и кристаллом неизменна. По сути мне этот обзор нужен, чтобы ответить себе на вопрос: » Есть ли хорошие (а главное дешевые) термопасты? Особенно на них нельзя экономить в ноутбуках, которых, как мне кажется, уже больше чем стационарных ПК раза в два. В осмотре примут участие 7 термопаст: Arctic Cooling MX-4 и MX-2, Stars — 700, ZP, HT-SR760, HC-171, Laird TGrease 980.

Для чего нужна термопаста?

Как бы не старались производители охлаждений, но две металлические поверхности не могут соприкоснуться идеально между собой и вследствие чего появляется воздушная прослойка. Термопроводность воздуха крайне низкая: дома между рамами окна он защищает нас от холода, а вот в компьютере нам воздух мешает отдавать тепло от крышки процессора или кристала микросхемы металлическому радиатору. От этого случается перегрев и выход из строя микросхемы будет гарантирован. Вот как раз для устранения воздушных мешков и нужна термопаста. А так как у пасты есть свое (пусть и небольшое) термосопротивление, ее нужно намазывать максимально тонким слоем, но по всей поверхности микросхемы или кристалла.

Термины.

Термопроводность — Thermal conductivity теплопроводность измеряется в ваттах на метр кельвин. W/mK. Этот показатель практически единственный, которым оперируют при выборе термопасты до тестирования. Но разброс теплопроводности большой у паст и не отображает ее точное качество.

Термическое сопротивление — Thermal resistance размерность ºC-in2/W. Вторая не менее важная величина отображающая свойства термопасты. Обе величины не постоянны и зависят от нескольких параметров: температура, толщина слоя и пр.

Arctic Cooling MX-4

Arctic Cooling MX-4 самая дорогая термопаста лежит у меня сейчас на столе и она мне нужна для сравнения как с эталоном качества. В большинстве случаев ее называют самой лучшей и она очень доступна в российской рознице. Термопаста китайского производства, но швейцарской разработки. Производитель выделяет ее эмблемой TOP-PRODUKT намекая на то, что она самая лучшая в ихней линейке.

Теплопроводность: 8,5 W/mK

Термическое сопротивление

вес 4гр.

Паста серая, однородная, ближе к жидкому состояние. Намазывается очень легко.

(увеличить)

Arctic Cooling MX-2

Arctic Cooling MX-2 младший брат mx-4, но она более дешевая и поэтому более популярная в «народе». Термопаста китайского производства, но разработка швейцарская.

Теплопроводность: 5.6W/mK

Термическое сопротивление

Вес 4гр.

Внешне, паста серая, однородная, и кажется слегка жиже чем MX-4. Намазывается очень легко.

ZP

Дальше пойдут истинно китайские термопасты. В России их достать трудно и интерес они могут вызвать у любитпелей E-Bay аукциона. ZP термопаста (производитель STARS). Более информации я не нашел. По цене она самая дешевая.

Теплопроводность: 1.22 W/mK

Термическое сопротивление: 0.201ºC-in2/W

Вес: 0.5гр.

Внешне паста белая, неоднородная, распадается на силиконовую основу и жидкость. Внешне похожа на сметану из порошкового молока низкого качества . Намазывается крайне плохо, не липнет к кристаллу микросхемы.

(увеличить)

STARS-700

STARS-700 термопаста китайского производства. От предыдущей отличается наличием в составе 20% metal oxide (оксид какого-то метала). И она опять же из разряда дешевых.

Теплопроводность: 1.93W/mK

Термическое сопротивление: 0.120ºC-in2/W

Вес: 0.5гр

Внешне паста похожа на серебрянку, однородная, не жидкая. Намазывается очень легко. Оставляет после себя следы на пальцах и плохо смывается.

(увеличить)

HC-171

HC-171 производитель CHBNYX китайского производства. Опять из разряда дешевых паст. Информации в интернете по ней мало, поэтому информацию я взял здесь.

Теплопроводность:1.93 W/m-k

Термическое сопротивление: 0.201ºC-in2/W

Вес: 0.5гр

Внешне похожа на STARS-700, такая же «серебрянка», однородная не жидкая. Намазывается легко, но похуже чем stars-700, за счет того, что более густая. Оставляет после себя следы на пальцах и плохо смывается.

(увеличить)

HT-SR760

HT-SR760 производитель Shenzhen Huitianxin Technology Co., LTD китайского производства и в отличие от предыдущих китайцев имеет свой сайт с огромной линейкой различных термоинтерфейсов. На мой взгляд из многолетнего опыта использования кучи термопаст HT-SR760 самая оптимальная. Я еще пользуюсь замечательным термоклеем этой же фирмы HT-909, в тест не могу включить его, потому что процесс приклеивания может быть не обратим. HT-SR760 находится в группе дешевых термопаст.

Теплопроводность: 3.0W/mK

Термическое сопротивление: 0.123ºC-in2/W

Вес: 20гр

Внешне выглядит как «серебрянка», однородная. Намазывается очень легко. Оставляет после себя следы на пальцах и их трудно смыть.

(увеличить)

Laird Tgrease 980

Laird Tgrease 980 не поставляется в шприцах, а только в банках по 1кг. Такой объем мне надо расходовать полгода и более, поэтому китайцы мне фасуют в шприцы по 3гр (1мл). Термопаста родом опять же из китая, но уже американской разработки и ее уже нельзя назвать дешевой. Фирма Laird также известна своими высококачественными терморезинками.

Теплопроводность: 3.1W/mK

Термическое сопротивление: 0.01 ºC-in2/W

Вес: 3гр.

Внешне паста серая, однородная, ближе к жидкому состоянию. Намазывается очень легко.

(увеличить)

Тестовая платформа на основе материнской платы от ноутбука ASUS N73SV. Материнка будет находиться на столе отдельно отноутбука. Операционная система Windows 7 64bit. Замеры температуры проводились программой AIDA 64 (процессор) + Furmark 1.10 (видеокарта). Программы запускались одновременно. Время теста 8 минут. Тесты проводились 2 раза с интервалом 10-15 минут при выключенном стенде. В зачет шла самая высокая температура. Так как в ноутбуке общий радиатор на проц и видеокарту, то показания обоих были равны и бралось одно значение.

Результаты вывел в виде диаграммы:

Что можно сказать? Действительно, большинством любимый Arctic cooling показал свою прекрасную работоспособность в ноутбуках и рекомендую не экономить и ее покупать. Или сэкономить и приобрести Laird Tgrease 980, выбор будет также хорошим и ноутбук будет очень эффективно охлаждаться.

Область применения термопасты ограничивается не только ноутбуком, компьютерные комплектующие также нуждаются в ней. Пошерстив свои закрома, нашел самые горячие устройства имеющиеся.

Следующий тестовый аппарат: AMD FX-8120, Radeon 6970. Собран на материнской плате ASUS A578LE. Кулер — неизвестной мне марки, но он полностью из меди и вес его 450гр. По предварительным тестам его вполне хватит для опытов.

Замер температуры проводился программой AIDA64 (процессор), Furmark 1.10 (видеокарта). Тестирование проводилось в 2х режимах: настройки по умолчанию и режим разгона. Процессор разгонялся до 4000Мгц (только на этой частоте стабильность будет полная без поднятия напряжения), а видеокарта разгонялась программой AMD Overdrive частоты видеоядра с 750 до 950 и видеопамять с 1050 до 1250. Тест проводился 20 минут одновременным запуском 2х программ. 2 раза. Брались максимальные значения показателей. Для процессора и видеокарты значения фиксировались отдельно. Результат занесен в две диаграммы.

Отдельно для процессора.

Отдельно для видеокарты.

Результаты тестирования термопасты на компьютере оказались неожиданными. На процессоре отработали все, а вот на видяхе- нет. Часто срабатывала защита от перегрева, вплоть до выключения компьютера. В диаграмму внесены показания 94 градуса на видеокарте, после этой температуры комп просто вырубался. HT-SR760 показала самые худшие результаты и противопоказана для «горячих» систем. На процессоре сильных расхождений в показателях температуры не получилось, тут скорей всего связанно с тем, что 4000Мгц для этого проца пустяк, а мне больше и не надо было. Удивили меня показания Tgrease 980: температура на видеокарте получилась ожидаемая и картина похожа на замеры в ноутбуке, а вот в проце показания у нее на порядок выше чем у Arctic cooling. Объяснить этот показатель я не могу. И особенно неясно, почему MX4 «проиграл» MX2 в температуре процессора. Я дополнительно делал замеры и по разному наносил на поверхность, но результат все равно не менялся.

Было время, когда КПТ8 была единственной доступной термопастой. А что бы разжиться другой, приходилось подменять при сборке комплектную на русскую. При этом никто не задумывался о термопроводимости термоинтерфейсов, ведь если был перегрев, то просто менялось охлаждение и то, только на процессоре, а видеокарты с пассивным охлаждением были тогда не ради тишины — им больше и не требовалось. Сейчас покупают и ремонтируют в основном только ноутбуки, в которых-то и охлаждение-то не заменишь, максимум- смена термопасты.

И так, год 2003 — подъем процессоров АМД. Тогда они первыми достигли планку 1000Мгц, первыми стали давать процессорам модели (PR-рейтинг), а не название модели по его частоте. Так появились Athlon XP. С того времени и начались жаркие споры о АМД и Интел. И самым обсуждаемым видеороликом был этот, не в соцсетях конечно. У меня в музее остался комплект Athlon XP 1600+ (ядро Palomino) и материнка GA-7VRX (VIA KT333). Тогда эти процессоры имели главную особенность — были горячими, быстрыми, но, к сожалению, без защиты от перегрева и частенько «горели» от рук неопытных пользователей. (Intel c ядром Willamete был их полной противоположностью). Еще одна «знаменитость» тех времен — это сохранившийся у меня вентилятор TT Volcano 6 Cu с 5000 оборотами (!) ( Volcano 6CU+ 7000 оборотов) очень шумная СО.

Тестовая система: Процессор Athlon XP 1600+ , материнка GA-7VRX, охлаждение TT Volcano 6 Cu. Система собрана на столе. Замер проводился программой AIDA64 в течении 15 минут фиксировалась максимальная температура процессора.

Результаты измерений занесены на диаграмму.

Ну что можно сказать? Качество термопасты проявляется всегда независимо от времени производства комплектующих. Да, в то время мне было бы приятно пользоваться качественным термоинтерфейсом, но особо нужды в этом не было.

Итог получился почти тот, какой я и ожидал. Неожиданностью только стала HT-SR760: она для меня была всегда дешевым «середнячком», которую использовал в десктопных компьютерах, но сейчас мне придется подыскать замену. Еще неожиданным для меня стало отсутствие разницы в показаниях между MX-4 и MX-2. Рекомендую покупать Arctic Cooling. Ну а я так и останусь на проверенной годами своей любимой Laird Tgrease 980, которая справляется с любой «печкой» да и стоит, к слову сказать, дешевле.

З.Ы. Альтернативным итогом может стать эта композиция.

Сравнительное тестирование термоинтерфейсов Thermal Grizzly:

Термопасты Aeronaut, Hydronaut и Kryonaut, а также жидкометаллический Conductonaut
Термоинтерфейсы являются самым слабым звеном в передаче тепла от компонента к радиатору. Наша цель — устранить это слабое место. В течение нескольких лет у нас была идея сделать это с помощью высокоэффективных термоинтерфейсов.
Айке Салов, компьютерный специалист и основатель компании Thermal Grizzly

В нашем сравнительном тестировании приняли участие четыре термоинтерфейса Thermal Grizzly: термопасты Aeronaut, Hydronaut и Kryonaut, а также термоинтерфейс Conductonaut — жидкометаллический термокомпаунд на основе эвтектического сплава. Их эффективность сравнивалась между собой; кроме того, выборка участников тестирования была расширена за счет нескольких популярных термопаст, представленных на российском рынке.

Содержание:

Паспортные характеристики

ПроизводительThermal Grizzly
НазваниеAeronautHydronautKryonautConductonaut
Коэффициент теплопроводности, Вт/(м·К)8,511,812,573
Вязкость, Па·с110—160140—190130—1700,0021
Плотность, г/см³2,62,63,76,24
Рабочая температура, °С, мин./макс.−150/+200−200/+350−200/+350+10/+140
Описание на сайте производителяAeronautHydronautKryonautConductonaut

Описание

Для термопаст Aeronaut, Hydronaut и Kryonaut указано значение удельной электропроводности 0 пСм/м (согласно DIN 51412-1) — если по-простому, эти термоинтерфейсы электрический ток не проводят, то есть являются изоляторами. Напротив, Conductonaut представляет собой сплав металлов, поэтому должен характеризоваться высоким значением удельной электропроводности, то есть хорошо проводить электрический ток. На сайте производителя для термопаст Aeronaut и Hydronaut указаны варианты фасовки 1,5 мл/3,9 г или 3 мл/7,8 г, для Kryonaut 1,5 мл/5,55 г или 3 мл/11,1 г, а для Conductonaut — 1 г. Однако на всех пакетиках, доставшихся нам на тестирование, количество содержимого было указано как 1 г. Термоинтерфейсы упакованы в небольшие пакетики, изготовленные из плотного пластика с фольгированной прослойкой. Пакетики черные и непрозрачные. В верхней части пакетиков есть просечка для развешивания на витрине/стеллаже. Ниже боковыми насечками обозначено место отрыва, при этом аккуратное вскрытие пакета по этим насечкам не повреждает многоразовую застежку-клипсу. Собственно сами пакетики все одинаковые. На фронтальной и задней поверхностях ярко-оранжевым по черному нанесены логотип, адрес в Сети и слоган производителя. На фронтальной поверхности небольшая круглая бумажная наклейка указывает, что именно содержится в пакетике.

На задней поверхности пакетика наклейка побольше подробнее описывает продукт.

Сайт компании Thermal Grizzly представлен в том числе и версией на русском языке. На страницах этого сайта подробно описаны все участники данного тестирования, а в разделе поддержки можно найти ссылки на PDF-файлы с описанием и руководствами.

Aeronaut

Вот, что производитель пишет про эту термопасту:

Термопаста Aeronaut — идеальный, высокоэффективный продукт для неискушённых пользователей. Отличная защита охлаждаемой поверхности и хорошая теплопроводность делают Aeronaut идеальным выбором для пользователей, которые хотят оптимизировать свою систему охлаждения или ищут более эффективную альтернативу термопасте, идущей в комплекте с их оборудованием.
  • Очень хорошая теплопроводность
  • Длительный срок службы
  • Не высыхает
  • Не электропроводная
Количество металлических элементов в формуле Aeronaut ниже в сравнении с другими нашими продуктами, тем не менее, она обеспечивает очень хорошую теплопроводность. В наших лабораторных тестах Aeronaut показал высокую степень износостойкости при высоких температурах, и также вёл себя как защитник поверхности. При удалении термопасты Aeronaut на поверхности компонентов появляется гораздо меньшее количество микроцарапин по сравнению с другими термопастами.

В пакетике находится небольшой шприц с многоразовой пластиковой крышечкой. Шприц и крышка затянуты в пластик, что исключает случайное выдавливание термопасты. Кроме того, в комплект входят инструкция (на русском и английском языках) и пластиковый шпатель (лопаточка). Комплект одинаковый для всех трех термопаст, поэтому далее не описывается.

Hydronaut

Описание производителя:

Благодаря своей превосходной теплопроводности Hydronaut может быть использован для оверклокинга, но создан он был специально для систем охлаждения с большой площадью теплосъёмной поверхности — например, систем водяного охлаждения. Кроме того, Hydronaut отличает превосходное соотношение цены и производительности.
  • Подходит для оверклокинга
  • Превосходная теплопроводность
  • Не высыхает
  • Без силикона
  • Не электропроводная
Термопаста Hydronaut обеспечивает оптимальные возможности теплообмена для более масштабных систем охлаждения — например, систем водяного охлаждения. Термопаста Hydronaut имеет бессиликоновый состав. Это делает её очень лёгкой, пластичной и легконаносимой. Hydronaut достигает наилучших результатов при использовании на средне- и более масштабных системах охлаждения. Этот продукт является ROHS-совместимым — для требовательных пользователей.
Kryonaut

Описание производителя:

Термопаста Kryonaut разработана специально для самых требовательных систем и готова оправдать даже самые высокие ожидания оверклокерского сообщества. Kryonaut также настоятельно рекомендуется как топовый продукт для критически важных систем охлаждения в промышленности.
  • Разработано для оверклокинга
  • Превосходная теплопроводность
  • Не высыхает
  • Высокая стабильность
  • Не электропроводная
«Kryo» — по-гречески означает «холод» — входит в состав слова «криоинженерия». Очевидно, что эта термопаста создана специально для применения в условиях низких температур — для истинных «Крионавтов» среди экстремальных оверклокеров. Kryonaut использует специальную структуру, которая останавливает процесс высыхания при температуре до 80° Цельсия. Эта структура также отвечает за то, чтобы частицы наноалюминия и оксида цинка, входящие в состав пасты, оптимально смешивались, чтобы компенсировать неровности компонента (т.е. процессора) и радиатора, что гарантирует эффективную передачу тепла.
Conductonaut

Описание производителя:

Наш термоинтерфейс Conductonaut создан на основе жидкометаллических сплавов и предназначен для случаев, когда требуется наивысшая эффективность. Conductonaut рекомендован опытным пользователям, которые ищут максимально эффективный продукт с самой лучшей теплопроводностью при работе в температурном диапазоне выше 8 °C.
  • Сверхвысокая теплопроводность
  • Повышенное содержание индия
  • Удобное нанесение с помощью синтетической иглы
Thermal Grizzly Conductonaut — жидкометаллический термокомпаунд на основе эвтектического сплава. Наша специальная смесь из таких металлов как олово, галлий и индий, Conductonaut отличается высочайшей теплопроводностью и превосходной стабильностью.

В пакетике с надписью Conductonaut находится небольшой шприц с многоразовой пластиковой крышечкой, аппликатор с тонким носиком, две ватные палочки, две салфетки, пропитанные спиртом, инструкция (на русском и английском языках) и грозная предупредительная листовка с надписью о том, что Conductonaut нельзя использовать с алюминиевыми радиаторами.

Дело в том, что галлий, входящий в состав Conductonaut, способствует быстрому разрушению и окислению алюминия. Поэтому, по крайней мере, подошва радиатора, контактирующая с крышкой процессора, и на которою наносится Conductonaut, ни в коем случае не должна быть из алюминия или его сплавов. То есть для применения Conductonaut нужно выбирать кулеры с медной подошвой-теплосъемником.

Тестирование

Чтобы не ограничиваться сравнением только продукции Thermal Grizzly самой с собой, мы расширили выборку для тестирования рядом термопаст, заявленные характеристики которых представлены в таблице ниже.

НазваниеКПТ-8АлСил-3Arctic MX-4Cooler Master IC Essential E1Cooler Master MasterGel Maker
Коэффициент теплопроводности, Вт/(м·К)0,7-0,81,8-2,08,5>4,5>11
Вязкость, Па·с90—150???87??????
Плотность, г/см³2,6—3,0???2,52,52,6
Рабочая температура, °С, мин./макс.−60/+200−30/????????????
Описание на сайте производителя??????Arctic MX-4IC Essential E1MasterGel Maker

Для тестирования термоинтерфейсов мы использовали стенд, в состав которого входили процессор Intel Core i7-6900K, установленный на материнской плате ASRock X99 Taichi, а также активный кулер с ровной медной подошвой, шестью тепловыми трубками и алюминиевыми ребрами охлаждения. Для имитации работы в сложных условиях вентилятор кулера работал на пониженных оборотах, что достигалось снижением напряжения питания до 5 В. Для лучшего выравнивания температуры мы в дополнение к вентиляторам кондиционера, по возможности поддерживающего температуру в 24 °C, применяли бытовой вентилятор, работающий на минимальной скорости и направленный с расстояния в примерно 1,3 м на стенд. Чтобы учесть неизбежные колебания температуры окружающего стенд воздуха, мы для каждого измерения из температуры процессора вычитали реальную температуру воздуха. Скорость вращения вентилятора на кулере по невыясненным причинам варьировалась в пределах от 600 до 650 об/мин. Чтобы нивелировать связанное с этим изменение теплового сопротивления, вводилась поправка, рассчитанная на основании экспериментальных данных зависимости теплового сопротивления от скорости вращения вентилятора кулера. Указанная поправка достигала значения в 1 °С по абсолютной величине. После нанесения термоинтерфейса и установки кулера стенд прогревался с максимальной загрузкой процессора тестом Stress FPU из программы AIDA64 в течении 30 минут. Затем за 30 секунд работы все в том же режиме определялись средние значения температуры 8 ядер процессора, температуры в помещении и скорости вращения вентилятора на кулере. В качестве температуры процессора бралось среднее от средних значений по ядрам. Заявленное значение TDP для указанного процессора составляет 140 Вт, в случае используемой нагрузки потребление составило 131 Вт по 12 В на разъем CPU на матплате. Зависимость потребления по этому и разъему ATX от нагрузки и ее характера дает повод предположить, что нагруженный CPU в подавляющей степени питается именно от разъема CPU/12 В на матплате.

Особо стоит обсудить способ нанесения термоинтерфейса. Для паст Thermal Grizzly производитель предлагает три способа, описанные в руководстве:

  1. Равномерное распределение по крышке процессора.
  2. Капля в центре.
  3. Нанесение в форме буквы Х.

В случае двух последних способов предполагается, что «давление радиатора равномерно распределит термопасту по поверхности теплорассеивателя». Предварительное тестирование показало, что первый способ продемонстрировал худшие результаты по снижению температуры процессора и воспроизводимости, также он наиболее трудоемкий из всех трех. Решено было остановится на втором способе, тем более, что по нашей оценке крепление используемого кулера обеспечивало очень сильный и равномерный прижим подошвы к крышке процессора.

Количества термопасты в имевшейся фасовке Thermal Grizzly при таком способе нанесения хватает на два раза; чуть уменьшив расход, можно растянуть на три раза, но вряд ли на больше. Характер распределения термопасты на подошве снятого после тестирования кулера и на крышке процессора свидетельствовал, что термоинтерфейс действительно распределялся равномерно и тонким слоем. При отрыве подошвы от крышки процессора слой все же разрушался, и, в зависимости от вязкости термопасты, образовывались структуры с валиками (низкая вязкость) или разрывами (высокая вязкость).

Отметим, что уже после проведения тестов во время обсуждения результатов с представителями компании Thermal Grizzly мы выяснили, что Thermal Grizzly настоятельно рекомендует первый способ — равномерное распределение по крышке процессора, — так как считается, что он дает лучшие результаты. Соответственно, в руководствах, размещенных на сайте Thermal Grizzly на момент написания статьи, указывается только этот способ с применением специального аппликатора или лопаточки (пластиковой карточки).

В случае жидкометаллического Conductonaut нанесение выполнялось по инструкции производителя. Отметим, что несмотря на тщательную очистку поверхностей подошвы кулера и крышки процессора, сплав Conductonaut первоначально их плохо смачивал, оставался шарообразной капелькой, и только несколько десятков секунд активного размазывания ватной палочкой могло заставить Conductonaut распределиться тонким слоем по этим плоскостям. После контакта с Conductonaut медная подошва кулера взамен красно-медного приобрела бесцветно-металлический цвет. Восстановить медный цвет удалось только механическим удалением слоя в доли миллиметра с помощью наждачной бумаги. Похожие изменения претерпела и поверхность крышки процессора, но, похоже, проникновение сплава Conductonaut в данном случае было не столь глубоким. Предупредим, что выдавливать Conductonaut нужно очень осторожно, так как поршень чуть заедает, а сплав очень жидкий. С нашей точки зрения, производителю следовало бы подумать об оснащении шприца с Conductonaut винтовым движком для поршня. В любом случае, наносить Conductonaut лучше на подошву кулера и на изъятый из гнезда процессор в окружении, которому не повредит жидкий, проводящий и хорошо растворяющий металлы похожий на ртуть Conductonaut.

Для более наглядного представления результатов в качестве точки отсчета мы выбрали температуру процессора (вернее, скорректированную разницу между температурой процессора, доходившей до почти 90 °С, и средней температурой воздуха в помещении), полученную при использовании КПТ-8. На представленной диаграмме показано, насколько температура процессора (в условиях нашего теста, конечно) ниже при применении других, отличных от КПТ-8 термоинтерфейсов.

Снижение температуры процессора в зависимости от примененных термоинтерфейсов

Отметим, что, согласно нашей оценке, из-за погрешностей проведенного эксперимента разницу в менее чем 1 °С можно не учитывать. В результате очень условно испытанные термоинтерфейсы можно разделить на пять групп, в порядке увеличения эффективности:

  1. КПТ-8
  2. АлСил-3
  3. Thermal Grizzly Hydronaut, Cooler Master IC Essential E1, Arctic MX-4 и Thermal Grizzly Aeronaut
  4. Thermal Grizzly Kryonaut и Cooler Master MasterGel Maker
  5. Thermal Grizzly Conductonaut

Выводы

Безоговорочным победителем стал жидкометаллический термокомпаунд Thermal Grizzly Conductonaut. Однако использовать его можно только с медными теплосъемниками, при нанесении придется соблюдать особую аккуратность и осторожность, а внешний вид подошвы кулера и крышки процессора претерпит изменения после взаимодействия с этим жидким металлом. И все же отрыв почти в пять градусов от ближайшего конкурента впечатляет. Термопаста Thermal Grizzly Kryonaut демонстрирует отличные в своем классе результаты, следом идут термопасты Aeronaut и Hydronaut. К достоинствам протестированной продукции Thermal Grizzly стоит отнести хорошую комплектацию, удобные многоразовые пакеты и отличную локализацию для русскоязычного потребителя.

В заключение предлагаем посмотреть наш видеообзор сравнения термоинтерфейсов Thermal Grizzly:

Термоинтерфейсы Thermal Grizzly предоставлены на тестирование производителем

Выбор из доступной термопасты | Периферия | Обзоры

Введение

Совсем недавно я писал обзоры про термоинтерфейсы и немного подумав, решил написать новый, с относительно, как я считаю доступным по цене контингентом участников. Хотя термопаста Z9 не такая доступная, просто была в качестве полной оценки линейки термопаст фирмы DEEPCOOL.

Термоинтерфейсы

DEEPCOOL Z3

Thermal Conductivity W/(mK)>1.134

Operation Temperature: -50-300C

Thermal Imperdance:

Dielectric Constant A> 5.1

Viscosity: 73

Color: Silver

Net weight: 1.5g

Ingredients.

-Silicone Compounds 50%

-Carbon Compounds 20%

-Metal Oxide Compounds 30%

Стоимость (в т.ч. за грамм): 90р. (60р.)

В комплекте идёт карточка из картона с глянцевой поверхностью для нанесения термопасты.

Вот так выглядит карточка для нанесения термопасты с обратной стороны имеет инструкцию по нанесению.

Хочу также отметить что шприц в котором упаковывается термопаста невероятно большой для своих 1.5 грамм интерфейса, наверное маркетологи постарались и ещё упаковка на защёлках что очень удобно не надо искать ножницы чтобы открыть.

DEEPCOOL Z5

Thermal Conductivity W/(mK)>1.46

Operation Temperature: -50-300C

Thermal Imperdance

Dielectric Constant A> 6

Viscosity: 76

Color: Silver

Net weight: 3g

Ingredients.

-Silicone Compounds 40%

-Carbon Compounds 20%

-Metal Oxide Compounds 30%

-Silver Oxide Compounds 10%

Стоимость (в т.ч. за грамм): 120р. (40р.)

В комплекте идёт лопаточка для нанесения термоинтерфейса.

DEEPCOOL Z9

Thermal Conductivity W/(mK)>4

Operation Temperature: -40-200C

Thermal Imperdance

Dielectric Constant A> 18.050

Viscosity: 89.19

Color: Silver

Net weight: 3g

Ingredients.

-Silicone Compounds 20%

-Carbon Compounds 10%

-Metal Oxide Compounds 50%

-Silver Oxide Compounds 20%

Стоимость (в т.ч. за грамм): 240р. (80р.)

В комплекте идёт лопаточка для нанесения термоинтерфейса.

Evercool COMPOUND

Thermal Conductivity W/(mK)>3.8

Work Temperature: -50-180C

Thermal Resistance: 0.0017

Color: Grey

Net weight: 3g

Стоимость (в т.ч. за грамм): 120р. (40р.) совсем недавно подешевела до 90р., хотя для меня красная её цена 10р.

В комплекте идёт лопаточка для нанесения термоинтерфейса с логотипом производителя.

КПТ-8

В прошлый раз мне на эту термопасту денег не хватило, а теперь она даже подешевела что радует. Кстати продавец в магазине повредил тюбик и заклеил рану зелёным скотчем) Кстати когда паста лежала пару дней через скотч просочилась маслянистая жидкость напоминающая силикон.

Вот какие характеристики приводит Википедия:

-Белого цвета.

-Рабочий интервал температур: от −60 до +180 °C.

-Плотность: 2,6—3,0 г/см³.

-Удельное объёмное электрическое сопротивление: не менее 1012 Ом·см

-Напряжение пробоя для слоя 1 мм и частоте 50 Гц: не менее 2 МВ/м.

-Относительная диэлектрическая проницаемость (не более):

50 Гц — 6,0;

1 МГц — 4,0;

10 МГц — 4,8.

Пенетрация: 150.

-Электрическая прочность: 2,0—5,0 кВ/мм.

-Тангенс угла диэлектрических потерь при частоте 10 МГц: не более 0,005.

-Динамическая вязкость при 20 °C: 130—180 Па·с.

-Радиационная стойкость: допустимая интегральная доза облучения — 1,25 × 108 Рад.

-Коэффициент теплопроводности, Вт/(м·К), не менее:

−50 °C — 1,0;

20 °C — 0,7;

100 °C — 0,65.

Вес нетто: 125гр.

Стоимость (в т.ч. за грамм): 190р. (1р.52копейки) это чудо господа))

Вот как выглядят термоинтерфейсы на плоской поверхности:

Как видно Z3 и Z5 одинаковы по консистенции, а вот Z9 отличается по цвету, так и по консистенции она более маслянистая. EVERCOOL имеет серый цвет и очень жидкую консистенцию что не очень радует, а вот КПТ-8 имеет белый цвет и консистенцию будто масляный крем с торта и очень хорошо наносится что сильно радует.

Тестирование

Тестовый стенд:

Корпус: SILVERSTONE TEMJIN TJ11B-W, МП: ASUS LGA2011 Rampage IV Extreme X79 8xDDR3-2400 5xPCI-E3.0 8ch BT 4xSATA 4xSATA3 RAID 8xUSB3 eSATA BT E-ATX, Процессор: Intel Core i7-3820 3.6GHz (TB up to 3.9GHz) 10Mb 4xDDR3-1866 TDP-130w LGA2011 BOX, Видеокарта: PCI-E GigaByte GeForce GTX 670 2048MB 256bit GDDR5 DVI HDMI DisplayPort, Память: DDR3 4096MBx4 PC17000 2133MHz Kingston HyperX Intel XMP CL11-11-10-30 , БП: Chieftec 850W, 4x8pinPCI-E 8xSATA CabMan Active PFC 14cm fan, Жёсткий: SATA-3 2Tb Seagate 7200 SV35 Cache 64MB, Вентиляторы: ZALMAN ZM-F3BL 120*120*25 1800rpm, DEEPCOOL Wind Blade 120х120х25, 1300RPM. Кулер: Prolimatech Armageddon

Процессор работал на частоте 4375Mhz.

Тест проводился с помощью OCCT 4.3.1

Комнатная температура в помещении была постоянной и находилась на уровне 22C.

DEEPCOOL Z3

DEEPCOOL Z5

DEEPCOOL Z9

Evercool COMPOUND

КПТ-8

Результаты тестирования:

Ядро 0

Ядро 1

Ядро 2

Ядро 3

Выводы:

Меня очень сильно поразила картина связанная с термоинтерфейсами DEEPCOOL самая младшая из линейки термопаста Z3 не только имеет отличную упаковку и комплектацию, но и она становится лидером в тесте что меня сильно удивило, её преимущество доходит до 2-3 градусов на ядре 2 и ядре 3, а вот на ядрах 0 и 1 она не сильно обгоняет Z5, а Z9 достаточно серьёзно проигрывает на всех ядрах.

Второе место занимает Deepcool Z5 как паста с самой низкой ценой за грамм и эффективностью.

Главное разочарование для меня это DEEPCOOL Z9 слишком дорога и проигрывает своим более дешёвым собратьям, ну и что што в ней содержится 20% оксида серебра видно он не идёт на пользу если Z3 без него отлично справляется со своим назначением.

Третье место мне хочется присудить моему неожиданному открытию это нашей пасте КПТ-8. Она не только очень дешёвая, но и вполне эффективно справлялась на ядрах 1, 2,3 уверенно обошла EVERCOOL на 1-4 градуса что очень достойно и даже на 2 и 3 ядре идёт вровень с Z9.

Так что люди не ведитесь на красивую упаковку EVERCOOL и что там есть лопатка для нанесения, неужели вы дома не сможете найти старую пластиковую карту или глянцевую картонку, а то в отзывах пишут что покупают пастк ради мазилки, но она этого не стоит)))

Большое тестирование термопаст

Вследствие прогресса современной микроэлектроники стремительно увеличивается быстродействие центральных процессоров, других узлов современного компьютера. Зачастую рост вычислительных мощностей сопровождается увеличением тепловыделения того или иного компонента ПК.
Стоит признать, что сегодня полупроводниковая технология столкнулась с проблемой теплоотвода от кристаллов самых мощных чипов. Так, центральные процессоры и ядра топовых видеокарт являются теми представителями сегмента потребительской микроэлектронной техники, где тепловыделение на один квадратный сантиметр приближается к отметке в 100 Ватт. Для особо мощных чипов данный показатель дополнительно увеличивается.
Как оказалось, отводить тепло с такой маленькой площади очень непросто… И пока невозможно кардинально уменьшить тепловыделение упомянутых компонентов, не прибегая к очень дорогостоящим исследованиям в области технологий полупроводников и наноструктур.

 

Конечно, производители принимают адекватные меры – улучшали и продолжают улучшать охлаждение тех или иных узлов компьютера, продвигают в массы водяное охлаждение, разрабатывают новые конструкции воздушных СО. Яркий пример выражения этого движения на практике – нынешняя «эпоха суперкулеров», которая буквально захлестнула прилавки магазинов и умы большинства пользователей шедеврами технического искусства из меди, алюминия и тепловых трубок.
Качественная система охлаждения – залог низких температур компонентов ПК, тишины в работе, возможности разгона системы. Однако в данном случае необходимо помнить о том, что «бочку меда» можно легко испортить «ложкой дегтя».
Схематично отвод тепла от греющегося компонента (например, центрального процессора) можно отобразить так: «процессор – термоинтерфейс – система охлаждения» (кстати, теплорассеивающая крышка современного CPU контактирует с ядром через еще один тонкий слой все того же термоинтерфейса, но этот момент мы в данном материале упустим, т.к. на характеристики данного фактора пользователь повлиять не может). О связывающем компоненте, в качестве которого может выступать пропитанная различными веществами тканевая наклейка, небольшой лист фольги, паста, мазь, жидкость, большинство пользователей забывают, или же используют «то, что было в коробке» — бесплатную субстанцию, поставляемую вместе с приобретенной системой охлаждения. А многие новички ведь вообще не подозревают о существовании термоинтерфейсов и об их применении в современных компьютерах!
Оправдан ли такой подход к, казалось бы, мелочам? Далеко не всегда, поэтому сегодняшний материал призван продемонстрировать важность рассматриваемой темы и обратить внимание читателей на один из немаловажных аспектов охлаждения компонентов ПК – влияние используемых термоинтерфейсов на качество теплоотвода.
Наша цель – исследование различных веществ, которые энтузиасты применяют для того, чтобы добиться максимально эффективной теплопередачи от кристалла процессора, графического ядра, чипсета материнской платы к основанию кулера или водоблока. Тем самым обеспечивается дополнительный «запас прочности» при разгоне, или же попросту снижаются общие температурные показатели компонентов и облегчается режим работы того или иного узла ПК.

Теплопередача: немного теории

 

Для тех, кто забыл или не знает, что такое термоинтерфейс, приведем максимально понятное большинству определение: это та самая прослойка, состоящая из какого-либо специального вещества, которая существует между процессором и основанием воздушного кулера или водоблока.
Как Вы понимаете, поверхности самого чипа и его охладителя не идеальны в плане абсолютной ровности. В условиях массового промышленного производства часто невозможно обеспечить очень высокую чистоту поверхности, и ее геомметрическую плоскость. Даже на визуально очень ровных основаниях остаются целые участки микрогеометрии с неидеальным контактом, которые без применения термоинтерфейсов оказываются заполненными молекулами воздуха. Это могут быть миниатюрные выемки, выпуклости или микроцарапины, которые не видны невооруженным глазом.

Передача тепла меду контактирующими поверхностями осуществляется посредством кондукции. Данный термин обозначает процесс обмена кинетической энергией между молекулами веществ совместно с диффузией электронов в металлах. Передача тепла кондукцией будет иметь место при условии контакта тел с разностью температур. Во всех случаях поток тепла будет направлен в сторону падения градиента абсолютных значений. Следовательно, основная часть тепловой энергии идет по направлению от чипа к его охладителю.
Конвекция и лучеиспускание по отдельности не способны отвести огромные тепловые потоки на малой площади микрочипа, и лишь частично принимают участие в общем теплообмене.

Если немного затронуть теоретическую физику, то следует вспомнить, что теплопроводность металлов определяется колебаниями кристаллической решетки и движением свободных электронов (так называемый «электронный газ»).
С повышением температур у всех металлов электропроводность, и, как следствие, теплопроводность убывают (эти два явления взаимосвязаны и одно без другого не происходит). С понижением температур, наоборот, теплопроводность растет.
Наличие свободных электронов определяет высокую электропроводность металлов.
Зная это, становится ясно, почему при изготовлении деталей охлаждающих устройств широко применяются алюминий, медь, серебро и их сплавы. Эти распространенные металлы обладают самой высокой электро- и теплопроводностью из всех, известных массовой промышленности. К тому же им сравнительно легко придать необходимую форму путем соответствующей обработки. Приводим краткие характеристики теплопроводности наиболее доступных металлов и некоторых интересных материалов, которые применяются в тех или иных отраслях промышленности:

 


Но вернемся к нашим «баранам»: у нас есть две поверхности, — кристалла чипа и основания системы охлаждения, которой поручено его охлаждать. Термоинтерфейс вытесняет воздух, и образует между ними пленку, состоящую из вещества с низким тепловым сопротивлением.
Различные пасты также позволяют механически разъединить источник тепла и его охладитель, что необходимо в случае замены какого-либо компонента ПК.
Если крепежные элементы для радиаторов не предусмотрены, или же необходима более жесткая фиксация устройств теплоотвода, то применяют термоклеи и специальные наклейки. В данной статье эти виды интерфейсов не рассматриваются, однако, исходя из данных, приведенных в одном из наших более ранних материалов, можно приблизительно оценить эффективность и другие характеристики некоторых продуктов подобного плана.

Надеемся, по теоретической части вопросов у читателей не осталось, поэтому будем двигаться дальше.

Методика проведения теста

При выборе пасты-эталона мы исходили из следующих соображений:

  • массовой доступности тестового образца;
  • высокой эффективности;
  • удобства нанесения и смывания;
  • невысокой стоимости.

Думаем, Вы уже догадались, что речь идет о довольно старом шедевре отечественной химической промышленности — пасте КПТ-8. Залогом тотальной популярности для огромного количества пользователей является отличное соотношение «цена/качество» данного продукта.
Но не всех удовлетворяют параметры указанной пасты. Среди тех, кто интенсивно использует ПК, есть так называемые «гонщики», энтузиасты. Они жаждут славы и рекордов, форсируют режимы работы железа всеми доступными способами, выжимая тем самым мегагерцы, попугай-силы, и, как следствие, создавая более сложные условия работы различных компонентов ПК, неизменно приводящие к повышенному тепловыделению. Понятно, что в состоянии рекордной производительности система будет работать очень нестабильно. В этом случае решающее значение будет иметь каждый градус и каждый лишний ватт отведенного тепла.
В таких условиях к любому компоненту и звену системы охлаждения предъявляются повышенные требования, а к термоинтерфейсу – порой даже исключительные, ведь ничто так не ухудшит теплоотвод, как некачественная термопаста.
Как мы уже говорили, мощные микропроцессоры современных ПК, пожалуй, являются тем единственным сегментом потребительской микроэлектронной техники, где тепловыделение кристалла зачастую достигает более 100 Ватт на один квадратный сантиметр. Как оказалось, отводить тепло с такой маленькой площади очень непросто, поэтому многие фирмы занимаются исследованием и разработкой устройств и веществ, предназначенных для эффективного отвода тепла именно с центральных процессоров и ядер видеокарт.

В рамках одного неплохого теста на ПК все кажется предельно ясным и понятным. Однако, просматривая и сравнивая значительное количество обзоров и статей, опубликованных в сети, мы порой находили противоречивые данные исследований и неоднозначные выводы, сделанные их авторами.
Практически во всех случаях прямо или косвенно делался упор на процессор, на котором производилось тестирование, и применяемую систему охлаждения.
Это побудило Тестовую лабораторию Modlabs.net собрать все доступные нам термопасты и провести собственное независимое расследование с применением специального тестового стенда.
Ознакомившись с результатами исследования характеристик термопаст, проведенных на CPU, можно заметить, что в подавляющем большинстве случаев ощутить разницу между образцами со схожими характеристиками сложно. Многое зависит от архитектуры и TDP процессора. C ростом тепловыделения нагревателя разница между исследуемыми термопастами становится все более очевидной.

Мы заметили еще один интересный момент. Так, производители на упаковках своих продуктов указывают теплопроводность паст, однако ее недостаточно для того, чтобы по этому показателю определить победителя.
Причина проста — разные методы измерения теплопроводности дают различные ее значения. Даже проведение исследований по единому методу в нескольких лабораториях не исключает получения неточностей в конечных результатах. Например, паста может иметь иной контактный слой во время теста, и это прямо повлияет на цифровое выражение субъективных итогов исследования.
Безусловно, только опытным путем посредством единого _большого_ сравнения по единой методике можно обнаружить действительные отличия между участниками тестирования.

В качестве стабильного источника тепла мы выбрали доказавший свое право на жизнь экспериментальный тестовый стенд MARK Sea Launch.


На данной модификации ядро нагревателя имеет переходник с малой площадью (менее 12х12 мм), что затрудняет теплопередачу от источника тепла к крышке. Верхняя, шлифованная часть нагревателя «эмулирует» теплораспределитель процессора. Ее размеры – 25 x 25 мм, толщина — 2 мм.
При выделяемой мощности, близкой к 100 ваттам, нагреватель становится похож на мощный разогнанный процессор, охлаждать который в реальных условиях было бы очень трудно. Внедренный в сердцевину нагревателя микропроцессорный термодатчик способен регистрировать изменения температуры в десятые доли градуса.

Мощность нагревателя была установлена на значении 100 Вт. Эта величина подходила как нельзя лучше. Приятно, что значения итоговых температур получались примерно такими же, какие имеют место быть на современных процессорах со среднестатистическими СО.

Соответственно для нашего мощного источника тепла потребуется и не мене мощный охладитель, и не исключено, что жидкостный. Но на системе водяного охлаждения проводить тестирование термопаст сложно. Можно ввести ошибку в тест из-за наличия промежуточного теплоносителя (воды), действующего в перерывах между испытаниями как конденсатор. Это значит, что система будет иметь определенную инерцию. Подобные моменты всегда являются неудобным «узким местом» длительных и трудоемких исследований.
При тестировании воздушных кулеров результаты проверки оказываются более стабильными, что подтверждается испытаниями контрольных образцов через большие промежутки времени.
Основой нашей системы охлаждения является радиатор производства компании Noctua, модель NH-U12. Данный образец собран на четырех U-образных тепловых трубках, которые контактируют с медным основанием, и солидных алюминиевых пластинах. Мы решили его немного «разогнать», и оснастили радиатор двумя 120-миллиметровыми промышленными вентиляторами Sunon KD1212-PMS1 производительностью 181 куб.м./час каждый.
Данная конфигурация позволила добиться рекордной продуктивности системы воздушного охлаждения, значительно превосходящей по мощности бюджетные комплекты СВО.
Прижим кулера осуществлялся парой винтов через стандартные отверстия для крепежа socket 939. В процессе испытаний амортизирующие пружины отсутствовали, усилие прижима не регламентировалось. В каждом тесте винты затягивались до предела, что гарантировало образование более тонкого промежуточного слоя термопасты и, как следствие, наиболее правильный итоговый результат.

В помещении, в котором производилось тестирование, температура воздуха находилась на уровне 27,5°С, мониторинг осуществлялся непрерывно. В случае превышения порога данного значения на 1 °С (в любую сторону) стенд автоматически выдавал предупредительный сигнал, и исследование приостанавливалось.

Каждая паста по возможности проверялась не мене двух раз. При этом контактный слой наносился заново, а полученный результат уточнятся.
Для паст, которые демонстрировали неожиданные, подозрительные результаты, или же требуют некоторого времени для полного обретения ими оптимальной кондиции, тест повторялся через несколько дней*.

Просим обратить внимание на диаграммы — они заведомо построены «неправильно» для более четкой демонстрации разницы между протестированными интерфейсами. Так, за начальную взята отметка в 45°С, поэтому не пугайтесь относительно большой визуальной разницы между некоторыми веществами на графиках, отображающих итоговые результаты.

* в течение всего времени исследований в помещении держалась одна и та же температура

Параметры термопаст

Независимо от модели и названия производителя любые образцы хороших паст должны отвечать следующим требованиям:

1) наименьшее тепловое сопротивление;
2) стабильность свойств в довольно широком диапазоне рабочих температур;
3) удобство нанесения и легкость смывания;
4) неизменность свойств с течением времени.

Считаем, что на каждом из них необходимо остановиться более детально.

Наименьшее тепловое сопротивление нанесенного слоя в итоге определит предельную теплопроводность пасты для данной площади контакта. Если значения рабочих температур находятся в разумных рамках и вещество не теряет и не меняет свойств в течение всего времени эксплуатации, то параметр теплопроводности будет единственным и определяющим.

Рабочий диапазон температур
Все качественные термопасты отлично работают в домашнем компьютере при стандартных температурах. Напомним, что в ПК в большинстве случаев мы имеем дело со значениями порядка 30-80°С в месте контакта.
В рамках этого «положительного» диапазона и будет проведено сравнение.
Температуры свыше 100°С по понятным причинам не рассматриваются в принципе. Также все, что ниже нуля вплоть до -200°С — это уже экстрим, который является темой другого разговора. Как поведут себя различные пасты в таком случае, мы не знаем, и опыты в данном направлении сегодня ставить не будем.

Удобство нанесения является очень важным фактором, и если паста с большим трудом наносится тонким слоем на контактные поверхности, или очень плохо смывается, загрязняя все вокруг, то это доставляет определенные проблемы пользователю и однозначно снижает общий балл, даже не смотря на другие высокие параметры.

Стабильность свойств в широком временном диапазоне определяет «живучесть» пасты. Например, мы знаем очень много случаев высыхания или частичного подсыхания некачественных образцов КПТ-8 при ее эксплуатации даже в течение одного месяца! Естественно, термоинтерфейс, который демонстрирует подобные показатели по заданному параметру, в лучшем случае можно использовать лишь для непродолжительных тестов.

Такие характеристики, как электрическая прочность и диэлектрическая проницаемость, удельное объемное электрическое сопротивление и прочие особые показатели для любого пользователя ПК являются по большей части неактуальными.
В процессе знакомства с термопастами мы не станем останавливаться на описании физико-химических свойств, как делают это остальные, а акцентируем внимание только на главных для нас критериях.

Знакомство с термоинтерфейсами: общие впечатления

КПТ-8


Первой мы намажем нашу эталонную пасту, которую с успехом используем во всех тестах. Вы наверняка уже догадались, что речь идет об отечественной КПТ-8. Один из образцов «восьмерки» приобретался на киевском радиорынке. Начинки 10-кубового шприца обычно хватает на длительное время, но мы всегда берем пасту с запасом. Истинный производитель пасты неизвестен, какие-либо опознавательные знаки отсутствуют.
В обычные шприцы паста фасуется из большой емкости, и явно неподалеку от места последующей их продажи.
Данный образец КПТ-8 выдавливается с определенными усилиями, но при частом использовании к этому можно быстро привыкнуть.
На вид паста белая, не содержит никаких вкраплений, довольно густая.
После нанесения для корректного тестирования пасту необходимо размазать по поверхности тонким слоем. Для этих целей хорошо подходит израсходованная карточка для городских таксофонов, или же чистый палец пользователя 🙂
Обычно производители заявляют теплопроводность данного типа пасты в пределах 0,5-0,8 Вт/(м x K) (здесь и далее в характеристике единицы теплопроводности градусы Цельсия заменены на более распространенную единицу – Кельвины). Именно она во всех сравнительных тестах на диаграммах будет присутствовать под обозначением «Эталон».


В тестах также присутствует КПТ-8, но уже из меньшего шприца, на котором красуется красная наклейка с изображением Менделеева и названием содержимого (в народе прозвана «Менделеевской»).
Подобно первому образцу, очень распространена, но приобретается в другом месте радиорынка :).
Наносится и размазывается несколько лучше, чем предыдущая, и не такая густая. От нашего эталона ничем на вид не отличается.

Следующий образец — тоже «восьмерка», с той же «халтурной» наклейкой. Но вот называется уже как кТп-8, — это что-то новенькое! Интересно, может они чем-то отличаются? (забегая вперед, скажем, что ничем). Очевидно, с названием у продавцов-фасовщиков неувязочка вышла :).


О боже, следующий участник тестирования — тоже КПТ-8! Но на этот раз паста действительно особенная. Оригинальность заключается в применении при ее изготовлении оксида бериллия, ВеО. Данный образец в последнее время активно рекламируется в некоторых местах продажи. Правда, ее цена и «упаковка» ничем не отличаются от «Менделеевской».
Забавно, но по поводу использования в качестве теплопроводника оксида бериллия (ВеО) в Сети ходят легенды. Бытуют слухи о том, что это — редкая паста военно-космического целевого назначения с потрясающими характеристиками.


В нашем случае перед глазами возникают смутные картины из фантастического фильма «Тень», бериллиевая сфера, древнее зло, и все такое ;).
Как бы там ни было, но в указанном ГОСТе 19-783-74 по поводу оксида бериллия вообще ничего не сказано, собственно как и не сказано о точном составе пасты.
Для тех, кто не знает, напомним, что в традиционной КПТ-8 теплопроводником является мелкодисперсный оксид ЦИНКА. А бериллий?
Поднятая информация аналитической химии данного металла говорит о том, что действительно, оксид бериллия сочетает высокие показатели теплопроводности и низкую электропроводность. Он применяется в специальной керамике и во многих отраслях науки и техники. Вполне возможно, что на основе ВеО можно изготовлять и термопасты.
Кстати, соединения бериллия определенно ядовиты, но степень данного показателя зависит от конкретного соединения. Про токсичность оксида достоверной информации не выявлено, как и собственно самого факта наличия ВеО в рассматриваемой пасте.
Для установления истины необходимо проводить химический анализ пасты, а это уже является определенной проблемой для любой тестовой лаборатории даже больших интернет-ресурсов. Поэтому мы ограничимся только тестом.

АлСил-3


Очень популярная среди отечественных пользователей термопаста. Производится московской фирмой «Джи Эм Информ». В Интернете о рассматриваемом веществе ходит очень много слухов. Видимо, один из поводов для этого — ее максимальная заявленная теплопроводность, которая равна примерно 2 Вт/(м x K), простив 0.8 у КПТ-8. На форумах некоторые пользователи рапортуют об отличных результатах с применением АлСил-3, в отличии от иной отечественной соперницы, а другие же не чувствуют никакой разницы, или же наоборот, больше одобряют «восьмерку». Утверждают, что существуют подделки АлСил-3 на основе зубной пасты*. Также есть предположения, что производитель экспериментирует/экономит, и не всегда гарантирует стабильно высокие характеристики выпускаемой продукции.
* для интереса мы протестировали и зубную пасту, чтобы узнать, можно ли таким способом изготовить подделку; данные исследования смотрите в конце статьи

На тесты к нам попали два образца рассматриваемого вещества — оригинальная, фирменная АлСил-3, выпущенная во втором квартале 2006 года:


И еще один шприц чуть больших размеров с маркировкой АлСил-3:


Визуальное сравнение показало, что пасты из обоих шприцов ничем не отличаются. Вещество в каждом случае имеет характерный серый оттенок. Эта особенность АлСил-3 продиктована наличием в ней нитрида алюминия, который выступает в роли теплопроводника. В составе никаких вкраплений нет. Паста выдавливается просто и размазывается легко. Из двух наших образцов АлСил-3 в большем шприце был выпущен довольно давно, ориентировочно в 2002 году. Тем не менее, в процессе тестирования разницы между пастами не обнаружено.

 

AKT-842


Данный термоинтерфейс поставляется с кулерами компании akasa.
Паста находится в небольшом шприце, имеет белый цвет, по сравнению с нашим эталоном она боле жидкая и легче поддается размазыванию.


Заявленный производителем коэффициент теплопроводности составляет более 7,5 Вт/(м x K). Теоретически это примерно в 7 раз больше, чем у КПТ-8! А что же будет на практике?… Тестирование покажет!

AOS


AOS — очень известный за рубежом производитель термоинтерфейсов.
К нам на тестирование попала силиконовая паста, #54013, упакованная в фирменный шприц.


Имеет белый цвет, наносится легко. Смывается без особых проблем. По консистенции — весьма жидкая.
Задекларированная теплопроводность данного образца составляет 0,73 Вт/(м x K).

Apus–TMG 301


Этот образец мы достали из комплекта кулера XC-801 от компании LEXCOOL.


Паста обладает небольшим сероватым оттенком и напоминает АлСил-3.
Консистенция — довольно жидкая. Указана теплопроводность порядка 4,5 Вт/(м x K).

Arctic Cooling MX-1


Данная паста – один из нетрадиционных продуктов швейцарской компании Arctic Cooling, специализирующейся на производстве тихих и качественных систем охлаждения. Мы уже писали о данном продукте, поэтому не будем останавливаться на деталях.
Субстанция находится в фирменном шприце, который, кстати, несколько месяцев назад изменил свой внешний вид. Паста пепельного цвета. Выдавливается небольшими комками. Для правильного нанесения ее нужно втирать в основание системы охлаждения и крышку процессора. Заметим, что на обе поверхности нужно нанести очень немного пасты, излишки убрать.
Это — «старый» вариант фасовки:


А вот паста в новой упаковке в более тонком и длинном шприце:

 

Arctic Alumina


Данная паста – детище, наверно, самого известного и разрекламированного зарубежного производителя термоинтерфейсов – компании Arctic Silver.


Arctic Alumina изготавливается на основе оксида алюминия. Паста белая, наносится на поверхность легко, так же легко размазывается. Заявленная теплопроводность составляет более 4.0 Вт/(м x K).

Arctic Ceramique


Теплопроводником в пасте является смесь оксида алюминия, оксида цинка и нитрида бора; пропорцию веществ производитель не указывает.


Arctic Ceramique, как и вся тестируемая нами продукция компании Arctic Silver, изготовлена на базе фирменной высокостабильной полисинтетической основы. С нанесением и смыванием продукта проблем не возникло.

Arctic Silver 3


Одна из самых известных паст на основе серебра. Состав представляет собой темно-серое вещество с зеленоватым оттенком.


Производитель указывает содержание приблизительно 70% мелкодисперсного серебра по объему пасты.
Субстанция выдавливается и наносится без проблем, убирается быстро и просто.

Antec Reference


Взглянув на шприц, несложно догадаться, где и кем произведена паста.


Занятно, что на упаковке заявлено уменьшение температуры процессора на величину от 4°C до 15°C благодаря применению данной термопасты. Мы так и не смогли понять, в каком именно случае можно достичь столь выдающихся показателей… Возможно, маркетологи компании-производителя имеют ввиду разницу между установкой кулера без применения какого-либо термоинтерфейса, и с использованием Antec Reference 🙂
Рассматриваемый продукт имеет абсолютно те же характеристики, что и Arctic Silver 3, и проведенные тесты это подтверждают.

Arctic Silver 5


Данный продукт пришел на смену Arctic Silver 3, и имеет улучшенные характеристики. На этот раз указывается наличие в составе пасты уже 88% мелкодисперсного серебра высокой чистоты.


Вещество темно-серого цвета, довольно густой консистенции. Чтобы размазать пасту идеальным тонким слоем, нужно потратить определенное время.
Заявленная теплопроводность данного продукта впечатляет — порядка 8,7 Вт/(м x K).
Многие известные фирмы используют продукцию Arctic Silver под своим брендом, нередко и со своей упаковкой. Например, Arctic Silver 5 именуется как Thermal Grease №2 у фирмы Thermaltake.

Asetek


Данная термопаста идет в комплекте с системой водяного охлаждения Asetek WaterChill KT03A.
Субстанция содержится в плотном пакетике белого цвета, которого хватит на несколько применений.


Паста белая, местами жидкая, но в основном идет небольшими сгустками. Размазывается нормально, смывается легко.

Data Сooler


Данный термоинтерфейс поставляется в пакетиках с кулерами, выпущенными под одноименным брендом.


Паста очень напоминает польскую W.P. — гораздо более жидкая, чем КПТ-8. С нанесением проблем не возникло.

DC-340


Стандартная «силиконовая» термопаста.


За рубежом DC- 340 встречается у многих производителей химической продукции. Наша паста находится в пластиковом тюбике. При выдавливании оказывается, что она весьма густая, тянется, имеет белый цвет. Типовая теплопроводность DC-340 — 0.42 Вт/(м x K).

Fanner 420


Данная термопаста также известна как Evercool 420, а на самом деле перед нами продукт от Stars с тем же цифровым обозначением — 420. Как видите, этот термоинтерфейс является очень популярным среди многих поставщиков.


Паста белого цвета, очень жидкая. Указанная теплопроводность — 2,062 Вт/(м x K).

GeIL GL-TCP1b


Довольно интересный образец. Напомним, что фирма Geil производит оперативную память. Тюбик термопасты когда-то можно было приобрести отдельно, или же найти в комплекте с некоторыми модулями, как бесплатный бонус для покупателя.


Состав очень красивый, если так можно выразиться, золотистого цвета. Производитель указывает наличие в нем 5% меди и 5% серебра (по объему).
Интересно, какой теплопроводностью обладает данный «микс»? На этикетке шприца можно обнаружить значение 1,729 Вт/(м x K), что, скорее всего, похоже на правду. Однако реальную эффективность GeIL GL-TCP1b определит тестирование.
Состав данной пасты жидковат, однороден, наносится пластами, размазывается легко. Эта субстанция удаляется немного легче, чем приснопамятная «серебрянка».

Gigabyte


Данную пасту мы выудили из комплекта СВО Gigabyte 3DGalaxy.


Отметим, что производитель дает далеко не полный шприц, и вещества хватает только для одной-двух установок водоблока на процессор.
Паста белая, весьма жидкая.

Koolance


Данный образец достался нам из комплекта СВО Koolance Exos. Собственно перед нами – Stars 360, имейте это ввиду.


Паста пепельного цвета. Густая, но размазывается сравнительно легко. Заявлена довольно высокая теплопроводность – порядка 4,5 Вт/(м x K).

Noctua


Данный продукт входит в комплект кулеров производства Noctua. Паста находится в мале

применение термопасты «не там где надо».

(шприц был в комплекте с кулером)
Всем приветы! Продолжаю «мусолить» тему термопаст из Китая. Сегодня у нас на тесте один из «ХУ» видов/моделей паст.

Не всем нужны максимально производительные термопасты, как минимум по двум с половиной причинам:

1. Избыточная производительность. Т.е. достаточно будет и самой простой термопасты, чисто заполнить воздушную прослойку, которая, как известно, очень плохой проводник тепла. «Шоб було» и не более.
2. Цена может достигать таких значений, что место применение/конструкция/прибор будет стоить сильно дешевле, чем термоинтерфейс.
2,5. Жаба.

Исходя из этого, всегда есть место где хочется добиться максимального результата и используются лучшие термоинтерфейсы и есть места где нужно просто работать, где самая простая паста, покажет себя средне, а больше и не надо. Т.е. в ноутбуке обычно используют по возможности более хороший и производительный термоинтерфейс, т.к. разлет температур бывает огромен, а способность ноутбуков к перегревам многим известна. И наоборот типичный системный блок, не топовый, не сильно горячий, там хватит и простой свежей термопасты. Тут конечно есть момент, что если выровнять крышку процессора и подошву радиатора, как следует отшлифовать и даже немного отполировать (в общем нужна шабровка), то можно обойтись без пасты вовсе, тогда достаточно будет держать радиатор чистым. Но этот вариант потом рассмотрим.

И сегодня у нас представитель ширпотреба, а именно термопаста HY510. Ранее у нас были другие HY-пасты, а именно 880 и 610, которые были не фонтан. Но тестировали мы их на мини башне от Aerocool, сегодня мы их перетестируем заново и попробуем новую пасту. 510-я кстати шла как комплектная паста для Aigo E3

Паста у нас пришла в простом 1-граммовом шприце длинного типа. На нем указан производитель, теплопроводность и термическое сопротивление. Паста серая, достаточно жидкая, как MX-4 или GD900, мажется и удаляется легко.

Фото шприца и пасты

Характеристики:

Тест проходил на процессоре AMD Phenom II X4 955 3.2 GHz 125W степпинг С3, разогнанного до 3.8 ГГц. Грел с помощью AIDA64 — Stress FPU — 45 минут, ибо он сильнее всего греет камень. Кулер Zalman CNPS10 Performa.

Разница температур между AIDA64 или LinX

В одном из предыдущих обзоров, было высказано, что линкс греет сильнее. Сильнее он греет процессоры Intel, особенно при использовании AVX, но на AMD разницы по сути нет, и AIDA64 мне удобнее.

Стенд открытый. Материнка на столе, соответственно кулеры в вертикальном положении, блок питания отведен, чтобы не мешать своим вентилем. Регулировку оборотов решил убрать, в стресс-тесте все равно выйдут на максимальные обороты. Метод нанесения — капля, прикладываю кулер с прижимом, кручу на месте немного и цепляю скобу/затягиваю винты. Каждая смена кулера, нанесение новой пасты, после чистки ватными дисками и обезжиривания «калошей»/«галошей».

Результаты добавим к уже имеющимся на перформе, где проходил тест GD900-1 и GD007:

Цена за грамм, в крупной таре (если возможна):

Итог:

Хуже и дороже GD900. Больше про нее особо нечего знать и думать. Если попадется по акции ведро задаром, то можно вполне использовать, вместо тех же КПТ-8 и Алсил-3. Иначе нет, иначе GD900. В защиту хочется сказать, что несмотря на скромный показатель теплопроводности, показывает результат заметно лучше, чем Алсил-3, у которой этот показатель по сути такой же, т.е. имеем завышенный у Алсил-3 и настоящий вполне у HY510. Это и есть то самое «неожиданненько»

Всем спасибо.

Бонус

Оттирая очередной раз кулер и процессор от термопасты подумал, а не попробовать ли термопасту в качестве пасты для полировки… Просто крышка процессора например, имеет уже блеск, от всех оттираний паст. В качестве полироля выступала паста HY610. Золотистые пасты лучше полируют, нежели их серые собратья. Тер буквально пару минут, где-то переборщил с нажимом. Суть не в том, что это просто потрясающая паста для полировки, а в том, что больше никуда я ее скорее всего не использую. Могу подарить, так никто не возьмет, либо за пересылку возьмут больше, чем она стоит. Разве что скопом всю пасту, что не нужна )

Понеслась !:

Небольшой медный радиатор оставшийся от какого-то ноутбука:





Немного отполировал боковину радиатора, валявшегося без дела слева — не тронутый, справа — полированный:


Попробовал заполировать царапины на пластиковом окне старого корпуса Termaltake:


Монета — Орел полирован термопастой, решка пастой ГОИ:





Тестирование термопасты ZF-12. Заявка на китайскую топовую пасту.

1. Зачем все эти тесты и эксперименты, если в этом мире уже есть МХ-4 и КПТ-8? А затем, что интересно и хочется рассказать людям. А ещё без тестов, обзоров и экспериментов, многие из тех, кто спрашивает «зачем….?» и не узнали бы, что уже есть.

2. Не забывайте, что каждый тест индивидуален, разные кулеры, разные крышки процов. У меня вот такие результаты, у вас на таком же железе будут другие, т.к. неровность поверхностей не одинакова, звезды и луна не в той фазе и т.д.

3. Насчёт того, что я тестирую слишком по-простому, по-домашнему, т.е. нет контроля слоя термопасты, нет контроля количества термопасты, нет внешнего (термопары) контроля температуры и прочих чересчур правильных условий/вещей.

Допустим при соблюдении всех этих требований, мы получим результат, что паста hy710 из аутсайдера, превратится в топ, и что дальше? Зачем это бесполезное знание, которое никто не сможет применить? Откроет Вася интернет, которому надо поменять пасту, увидит что hy710 круче мх-4, и стоит копейки, и ещё рядом будет инструкция о сорока пунктах, и чтобы добиться таких результатов, ему ОБЯЗАТЕЛЬНО нужно их все соблюсти иначе каюк. И скажет Вася «да ну вас нафиг, возьму GD900 капну немного, прижму и буду счастлив». Потому что Вася дома и сможет повторить мой домашний опыт.

Но это не значит, что я не согласен с теми, кто говорит, что надо то, то, то. Мы тут в домашней уютной обстановке и проводить будем тест, по-домашнему. В нашем распоряжении поддерживать температуру окружающей среды, одинаковый стенд и метод теста, это 90% правильности.

4. Почему не взять нагреватель с заданной мощностью и не греть им? Потому что у меня есть почти халявный стенд, да и он является компьютером. И т.к. я тестирую пасту, которую буду использовать в компьютерах, на них я и буду тестировать. И нет, это не основной мой компьютер, я не разбираю его каждый раз, это именно стенд, ждущий своей работы, максимум — это скинуть кулер и накинуть снова.

5. Где паста «любой известный/популярный бренд»? Мне интересено попробовать и рассказать про неизвестную пасту. Тестов и обзоров популярных паст и так, как грязи, и мое дополнение будет каплей в море. У меня в тесте есть результаты народной MX-4 благодаря ей, можно примерно понять производительность паст Noctua, Gelid и др. Так что извините, я перебираю гамно лопатой, и ищу в нём алмазы.

6. Тест в лоб, а если конкретно нанесли пасту и протестировали может не нравится многим, т.к. они знают, что со временем, термопаста меняется в том плане, что эффективность ее раскрывается или наоборот ухудшается. Но чтобы протестировать термопасту в одинаковых условиях, нужны одинаковые стенды и хотя бы 3-6 месяцев. А термопаст у меня уже более 25… Я охренею или от покупки стендов или от счета за электроэнергию. Так что, вот так вот.

Leave a comment