Толщина оптоволокна: Как устроен оптоволоконный кабель

Содержание

Оптическое волокно (оптоволокно)

Волоконно-оптические линии связи (ВОЛС) давно занимают одну из лидирующих позиций на рынке телекоммуникаций. Имея ряд преимуществ перед другими способами передачи информации (витая пара, коаксиальный кабель, беспроводная связь…), ВОЛС широко используются в телекоммуникационных сетях разных уровней, а также в промышленности, энергетике, медицине, системах безопасности, высокопроизводительных вычислительных системах и во многих других областях.

Передача информации в ВОЛС осуществляется по оптическому волокну (optical fiber). Для того чтобы грамотно подойти к вопросу использования ВОЛС, важно хорошо понимать, что из себя представляет оптическое волокно как среда передачи данных, каковы его основные свойства и характеристики, какие бывают разновидности оптических волокон. Именно этим базовым вопросам теории волоконно-оптической связи и посвящена данная статья.

 

Структура оптического волокна

Оптическое волокно (оптоволокно) – это волновод с круглым поперечным сечением очень малого диаметра (сравним с толщиной человеческого волоса), по которому передается электромагнитное излучение оптического диапазона. Длины волн оптического излучения занимают область электромагнитного спектра от 100 нм до 1 мм, однако в ВОЛС обычно используется ближний инфракрасный (ИК) диапазон (760-1600 нм) и реже – видимый (380-760 нм). Оптическое волокно состоит из сердцевины (ядра) и оптической оболочки, изготовленных из материалов, прозрачных для оптического излучения (рис. 1).

Рис. 1. Конструкция оптического волокна

 

Свет распространяется по оптоволокну благодаря явлению полного внутреннего отражения. Показатель преломления сердцевины, обычно имеющий величину от 1,4 до 1,5, всегда немного больше, чем показатель преломления оптической оболочки (разница порядка 1%). Поэтому световые волны, распространяющиеся в сердцевине под углом, не превышающим некоторое критическое значение, претерпевают полное внутреннее отражение от оптической оболочки (рис. 2). Это следует из закона преломления Снеллиуса. Путем многократных переотражений от оболочки эти волны распространяются по оптическому волокну.

Рис. 2. Полное внутреннее отражение в оптическом волокне

 

На первых метрах оптической линии связи часть световых волн гасят друг друга вследствие явления интерференции. Световые волны, которые продолжают распространяться в оптоволокне на значительные расстояния, называются пространственными

модами оптического излучения. Понятие моды описывается математически при помощи уравнений Максвелла для электромагнитных волн, однако в случае оптического излучения под модами удобно понимать траектории распространения разрешенных световых волн (обозначены черными линиями на рис. 2). Понятие моды является одним из основных в теории волоконно-оптической связи.

 

Основные характеристики оптического волокна

Способность оптического волокна передавать информационный сигнал описывается при помощи ряда геометрических и оптических параметров и характеристик, из которых наиболее важными являются затухание и дисперсия.

1. Геометрические параметры.

Помимо соотношения диаметров сердцевины и оболочки, большое значение для процесса передачи сигнала имеют и другие геометрические параметры оптоволокна, например:

  • некруглость (эллиптичность) сердцевины и оболочки, определяемая как разность максимального и минимального диаметров сердцевины (оболочки), деленная на номинальный радиус, выражается в процентах;
  • неконцентричность сердцевины и оболочки – расстояние между центрами сердцевины и оболочки (рис. 3).

Рис 3. Некруглость и неконцентричность сердцевины и оболочки

 

Геометрические параметры стандартизированы для разных типов оптического волокна. Благодаря совершенствованию технологии производства значения некруглости и неконцентричности удается свести к минимуму, так что влияние неточности геометрии оптоволокна на его оптические свойства оказывается несущественным.

 

2. Числовая апертура.

Числовая апертура (NA) – это синус максимального угла падения луча света на торец волокна, при котором выполняется условие полного внутреннего отражения (рис. 4). Этот параметр определяет количество мод, распространяющихся в оптическом волокне. Также величина числовой апертуры влияет на точность, с которой должна производиться стыковка оптических волокон друг с другом и с другими компонентами линии.

Рис 4. Числовая апертура

 

3. Профиль показателя преломления.

Профиль показателя преломления – это зависимость показателя преломления сердцевины от ее поперечного радиуса. Если показатель преломления остается одинаковым во всех точках поперечного сечения сердцевины, такой профиль называется ступенчатым. Среди других профилей наибольшее распространение получил градиентный профиль, при котором показатель преломления плавно увеличивается от оболочки к оси (рис. 5). Помимо этих двух основных, встречаются и более сложные профили.

Рис. 5. Профили показателя преломления

 

4. Затухание (потери).

Затухание – это уменьшение мощности оптического излучения по мере распространения по оптическому волокну (измеряется в дБ/км). Затухание возникает вследствие различных физических процессов, происходящих в материале, из которого изготавливается оптоволокно. Основными механизмами возникновения потерь в оптическом волокне являются поглощение и рассеяние.

а) Поглощение. В результате взаимодействия оптического излучения с частицами (атомами, ионами…) материала сердцевины часть оптической мощности выделяется в виде тепла. Различают собственное поглощение, связанное со свойствами самого материала, и примесное поглощение, возникающее из-за взаимодействия световой волны с различными включениями, содержащимися в материале сердцевины (гидроксильные группы OH

—, ионы металлов…).

б) Рассеяние света, то есть отклонение от исходной траектории распространения, происходит на различных неоднородностях показателя преломления, геометрические размеры которых меньше или сравнимы с длиной волны излучения. Такие неоднородности являются следствием как наличия дефектов структуры волокна (рассеяние Ми), так и свойствами аморфного (некристаллического) вещества, из которого изготавливается волокно (рэлеевское рассеяние). Рэлеевское рассеяние является фундаментальным свойством материала и определяет нижний предел затухания оптического волокна. Существуют и другие виды рассеяния (

Бриллюэна-Мандельштама, Рамана), которые проявляются при уровнях мощности излучения, превышающих те, которые обычно используются в телекоммуникациях.

Величина коэффициента затухания имеют сложную зависимость от длины волны излучения. Пример такой спектральной зависимости приведен на рис. 6. Область длин волн с низким затуханием называется окном прозрачности оптического волокна. Таких окон может быть несколько, и именно на этих длинах волн обычно осуществляется передача информационного сигнала.

Рис. 6. Спектральная зависимость коэффициента затухания

 

Потери мощности в волокне обуславливаются также различными внешними факторами. Так, механические воздействия (изгибы, растяжения, поперечные нагрузки) могут приводить к нарушению условия полного внутреннего отражения на границе сердцевины и оболочки и выходу части излучения из сердцевины. Определенное влияние на величину затухания оказывают условия окружающей среды (температура, влажность, радиационный фон…).

Поскольку приемник оптического излучения имеет некоторый порог чувствительности (минимальную мощность, которую должен иметь сигнал для корректного приема данных), затухание служит ограничивающим фактором для дальности передачи информации по оптическому волокну.

 

5.Дисперсионные свойства.

Помимо расстояния, на которое передается излучение по оптическому волокну, важным параметром является скорость передачи информации. Распространяясь по волокну, оптические импульсы уширяются во времени. При высокой частоте следования импульсов на определенном расстоянии от источника излучения может возникнуть ситуация, когда импульсы начнут перекрываться во времени (то есть следующий импульс придет на выход оптического волокна раньше, чем закончится предыдущий). Это явление носит название межсимвольной интерференции (англ. ISI – InterSymbol Interference, см. рис. 7). Приемник обработает полученный сигнал с ошибками.

Рис. 7. Перекрывание импульсов, вызывающее межсимвольную интерференцию: а) входной сигнал; б) сигнал, прошедший некоторое расстояние

L1 по оптическому волокну; в) сигнал, прошедший расстояние L2>L1.

 

Уширение импульса, или дисперсия, обуславливается зависимостью фазовой скорости распространения света от длины волны излучения, а также другими механизмами (табл. 1).

Таблица 1. Виды дисперсии в оптическом волокне.
Название Краткое описание Параметр
1. Хроматическая дисперсия Любой источник излучает не одну длину волны, а спектр незначительно отличающихся длин волн, которые распространяются с разной скоростью.

Коэффициент хроматической дисперсии, пс/(нм*км).

Может быть положительным (спектральные составляющие с большей длиной волны двигаются быстрее) и отрицательным (наоборот). Существует длина волны с нулевой дисперсией.
а) Материальная хроматическая дисперсия Связана со свойствами материала (зависимость показателя преломления от длины волны излучения)
б) Волноводная хроматическая дисперсия Связана с наличием волноводной структуры (профиль показателя преломления)
2. Межмодовая дисперсия Моды распространяются по разным траекториям, поэтому возникает задержка во времени их распространения.

Ширина полосы пропускания (bandwidth), МГц*км.

Эта величина определяет максимальную частоту следования импульсов, при которой не происходит межсимвольной интерференции (сигнал передается без существенных искажений). Пропускная способность канала (Мбит/с) может численно отличаться от ширины полосы пропускания (МГц*км) в зависимости от способа кодирования информации.
3. Поляризационная модовая дисперсия, PMD Мода имеет две взаимно перпендикулярные составляющие (поляризационные моды), которые могут распространяться с различными скоростями.

Коэффициент PMD, пс/√км.

Временная задержка из-за PMD, нормируемая на 1 км.

 

Таким образом, дисперсия в оптическом волокне отрицательно сказывается как на дальности, так и на скорости передачи информации.

 

Разновидности и классификация оптических волокон

Рассмотренные свойства являются общими для всех оптических волокон. Однако описанные параметры и характеристики могут существенно отличаться и оказывать различное влияние на процесс передачи информации в зависимости от особенностей производства оптоволокна.

Фундаментальным является деление оптическим волокон по следующим критериям.

  1. Материал. Основным материалом для изготовления сердцевины и оболочки оптического волокна является кварцевое стекло различного состава. Однако используется большое количество других прозрачных материалов, в частности, полимерные соединения.
  2. Количество распространяющихся мод. В зависимости от геометрических размеров сердцевины и оболочки и величины показателя преломления в оптическом волокне может распространяться только одна (основная) или же большое количество пространственных мод. Поэтому все оптические волокна делят на два больших класса: одномодовые и многомодовые (рис. 8).

Рис. 8. Многомодовое и одномодовое волокно

 

На основании этих факторов можно выделить четыре основных класса оптических волокон, получивших распространение в телекоммуникациях:

  1. Кварцевое многомодовое волокно.
  2. Кварцевое одномодовое волокно.
  3. Пластиковое, или полимерное, оптическое волокно (POF).
  4. Кварцевое волокно с полимерной оболочкой (HCS).

Каждому из этих классов посвящена отдельная статья на нашем сайте. Внутри каждого из этих классов также существует своя классификация.

 

Производство оптических волокон

Процесс изготовления оптического волокна крайне сложен и требует большой точности. Технологический процесс проходит в два этапа: 1) создание заготовки, представляющей собой стержень из выбранного материала со сформированным профилем показателя преломления, и 2) вытягивание волокна в вытяжной башне, сопровождающееся покрытием защитной оболочкой. Существует большое количество различных технологий создания заготовки оптического волокна, разработка и совершенствование которых происходит постоянно.

 

Волоконно-оптические кабели

Практическое использование оптического волокна в качестве среды передачи информации невозможно без дополнительного упрочнения и защиты. Волоконно-оптическим кабелем называется конструкция, включающая в себя одно или множество оптических волокон, а также различные защитные покрытия, несущие и упрочняющие элементы, влагозащитные материалы. По причине большого разнообразия областей применения оптоволокна производители выпускают огромное количество самых разных волоконно-оптических кабелей, отличающихся конструкцией, размерами, используемыми материалами и стоимостью (рис. 9).

Рис.9. Волоконно-оптические кабели

кварцевые и не только / Блог компании ЭФО / Хабр

Время от времени на Хабре появляются различные статьи на тему волоконно-оптических линий связи (ВОЛС), что неудивительно, поскольку оптическая связь сегодня является одним из основных способов передачи информации. Оптические линии связи успешно конкурируют с традиционными медными линиями и беспроводными технологиями. Именно оптическому волокну мы во многом обязаны резким увеличением объема и скорости передаваемой по всему миру информации за последние годы и, в частности, развитием Интернета. Более того, с каждым годом оптическое волокно становится все ближе к потребителю и осваивает все новые сферы применения.


Мы уверены, что каждый уважающий себя IT-специалист должен иметь хотя бы общее представление о ВОЛС, независимо от того, чем конкретно он занимается. Предлагаемая вашему вниманию статья посвящена разновидностям и классификации оптических волокон. Конечно, сейчас можно легко найти очень много разной информации на эту тему. Но, как вы увидите дальше, и нам есть что рассказать. Тем более что на Хабре пока тема оптического волокна освещена, как нам кажется, в недостаточной степени.


Компания «ЭФО» занимается поставками импортных электронных компонентов на российский рынок с 1991 года. Последние 15 лет (с 2001 г.) наша программа поставок включает волоконно-оптические и оптоэлектронные компоненты. Исторически сложилось, что основными нашими клиентами являются представители разных отраслей промышленности.

«ЭФО» имеет несколько специализированных сайтов под разные группы продукции. Оптической связи посвящен сайт infiber.ru, которым занимаются сотрудники Отдела волоконно-оптических компонентов. Сайт содержит каталог волоконно-оптической продукции, которую мы поставляем. Также здесь публикуются новости производителей и статьи, написанные сотрудниками отдела. Наш сайт создан недавно, но активно развивается.


Как уже упоминалось, в этой статье мы хотели рассказать не столько о самом оптическом волокне, сколько о его разновидностях и классификации. Большинство читателей, скорее всего, знает разницу между одномодом и многомодом, но мы хотим дать более детальную информацию, чтобы Вы могли легко ориентироваться в многообразии современных волокон и их свойствах и не испытывали затруднений с вопросами, которые возникают в практической работе, например:


  • Что означает OM4 в спецификации к оптическому волокну и чем оно отличается от OM1, OM2 и OM3?
  • Какие материалы используются при производстве волокон и кабелей? Что такое пластиковое оптическое волокно?
  • Где следует использовать волокно со смещенной дисперсией и в каких случаях дисперсия должна быть нулевой?
  • Что означают аббревиатуры POF и HCS (PCS)?

Опыт общения с заказчиками показывает, что эти и другие вещи, связанные с классификацией волокон, известны далеко не всем (напомним, наши клиенты в основном работают в промышленности и чаще всего являются специалистами каждый в своей области). Поэтому считаем, что подобная информация будет крайне полезной. Очень надеемся, что одной статьей наше совместное обсуждение темы ВОЛС на Хабре не закончится.

Немного забегая вперед, отметим, что одной из главных особенностей этой статьи мы считаем знакомство читателей с волокнами POF и HCS, поскольку 1) эти волокна набирают все большую популярность в промышленности и других сферах и 2) в отличие от традиционных кварцевых волокон они не так хорошо освещены в русскоязычном интернете.

И последнее. Недавно мы разместили на нашем сайте пять статей, в которых более подробно рассказывается об оптическом волокне и его основных типах. Кому информации, изложенной ниже, окажется недостаточно, добро пожаловать к нам на сайт!


Исходя из поставленной задачи (представить классификацию оптических волокон), мы не хотели бы сильно углубляться в теоретические основы волоконно-оптической связи. Но для того чтобы информация была понятна широкому кругу читателей, начнем все-таки с того, что представляет собой оптическое волокно, каким образом по нему передается сигнал и каковы его некоторые основные характеристики.

Оптическое волокно (оптоволокно) – это волновод с круглым поперечным сечением, по которому передается электромагнитное излучение оптического диапазона (обычно ближний ИК и видимый свет). Оптическое волокно состоит из двух основных частей: сердцевины и оптической оболочки. Диаметр этой структуры сравним с толщиной человеческого волоса. Сверху на оптоволокно наносится защитное акриловое покрытие. Для дальнейшей защиты используются различные упрочняющие и защитные элементы. Конструкция, содержащая одно или несколько оптических волокон и различные защитные элементы, покрытые общей оболочкой, называется волоконно-оптическим кабелем.


Информационный сигнал передается по оптическому волокну в виде модулированного светового излучения. Благодаря явлению полного внутреннего отражения (вспомните школьный курс геометрической оптики), свет, попавший в оптоволокно, распространяется по нему на большие расстояния. Сердцевина и оптическая оболочка волокна изготавливаются из материалов с незначительно отличающимися показателями преломления (показатель преломления сердцевины больше). Поэтому световые волны, попавшие в сердцевину под углами, меньшими некоторого критического значения, многократно переотражаются от оболочки. Если при этом выполняются условия для распространения в волноводе (свет – это не только поток частиц, но и электромагнитная волна), то такие световые волны, называемые модами, распространяются на значительные расстояния.


Помимо разницы между показателями преломления сердцевины и оболочки важную роль играет профиль показателя преломления сердцевины, то есть зависимость величины показателя преломления от радиуса поперечного сечения оптоволокна. Если показатель преломления остается одинаковым во всех точках сечения сердцевины, такой профиль называется ступенчатым, если плавно уменьшается от центральной оси к оболочке, – градиентным. Встречаются и более сложные профили. Профиль показателя преломления оказывает большое влияние на характеристики оптического волокна как среды передачи информации.


Среди большого числа характеристик и параметров, описывающих оптическое волокно как среду передачи данных, отметим наиболее важные – затухание (потери) и дисперсию.

Затухание – это постепенное ослабление мощности оптического сигнала по мере распространения по оптоволокну, вызванное разными физическими процессами. Величина затухания имеет сложную зависимость от длины волны излучения и измеряется в дБ/км. Затухание служит одним из главных факторов, ограничивающих дальность передачи сигнала по оптическому волокну (без ретрансляции).

Дисперсия – это уширение оптического импульса, передаваемого по оптоволокну, во времени. При высокой частоте следования импульсов такое уширение на некотором расстоянии от передатчика приводит к перекрыванию соседних импульсов и ошибочному приему данных. Дисперсия ограничивает как дальность, так и скорость передачи информации.



Рассказав (или напомнив) читателю об этих базовых понятиях, перейдем к тому, ради чего все это излагалось, – к классификации оптических волокон. Существует огромное количество различных оптических волокон, поэтому сразу сделаем оговорку, что мы не будем касаться так называемых специальных волокон, используемых в научных исследованиях и разных специфических применениях, а также волокон, которые пока являются скорее технологиями будущего. Мы сосредоточимся на тех типах оптических волокон, которые уже сегодня широко используются в телекоммуникациях. А таких типа четыре.

Основными критериями, по которым проводится классификация, можно считать следующие два:


  • Материал, из которого изготавливается сердцевина и оптическая оболочка. Оптоволокно может изготавливаться не только из кварцевого стекла, но и из других материалов, в частности из полимеров.
  • Количество распространяющихся мод. В зависимости от геометрических размеров сердцевины и оболочки и величины показателя преломления в оптическом волокне может распространяться только одна или же большое количество пространственных мод. Поэтому все оптические волокна делят на два больших класса: одномодовые и многомодовые.

Таким образом, можно выделить четыре больших класса оптических волокон (ссылки ведут к соответствующим статьям на infiber.ru):


  1. Кварцевое многомодовое волокно.
  2. Кварцевое одномодовое волокно.
  3. Пластиковое, или полимерное, оптическое волокно (POF).
  4. Кварцевое волокно с полимерной оболочкой (HCS).

На рисунке ниже изображены поперечные сечения этих четырех типов волокон (соотношение размеров сохранено).


Поговорим подробнее о каждом из этих типов.


1. Кварцевое многомодовое волокно

Кварцевые волокна являются самым известным и распространенным типом оптических волокон. Поскольку многомодовые и одномодовые кварцевые волокна сильно отличаются по своим характеристикам и применению, удобнее рассмотреть их по отдельности.

Многомодовое кварцевое волокно имеет и сердцевину, и оптическую оболочку из кварцевого стекла. Как правило, такое оптоволокно имеет градиентный профиль показателя преломления. Это необходимо, чтобы снизить влияние межмодовой дисперсии. Как было показано выше, моды распространяются в оптическом волокне по разным траекториям, а значит, время распространения каждой моды также отличается. Это приводит к уширению передаваемого импульса. Градиентный профиль уменьшает разницу во времени распространения мод. За счет плавного изменения показателя преломления моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины. Полностью устранить влияние межмодовой дисперсии невозможно, поэтому многомодовое волокно уступает одномодовому по дальности и скорости передачи информации.


Рабочими для многомодового волокна обычно являются длины волн 850 и 1300 (1310) нм. Типичное затухание на этих длинах волн – 3,5 и 1,5 дБ/км соответственно.

Классификация. Кварцевое многомодовое волокно было первым типом волокна, которое стало широко применяться на практике. Распространение получили два стандартных размера многомодовых волокон (диаметр сердцевины/оболочки): 62,5/125 мкм и 50/125 мкм.

Общепринятая классификация многомодовых кварцевых волокон приводится в стандарте ISO/IEC 11801. Этот стандарт выделяет четыре класса многомодовых волокон (OM – Optical Multimode), отличающиеся шириной полосы пропускания (параметр, характеризующий межмодовую дисперсию и определяющий скорость передачи информации):


  • OM1 – стандартное многомодовое волокно 62,5/125 мкм;
  • OM2 – стандартное многомодовое волокно 50/125 мкм;
  • OM3 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером;
  • OM4 – многомодовое волокно 50/125 мкм, оптимизированное для работы с лазером, с улучшенными характеристиками.

Фраза «оптимизированное для работы с лазером» напоминает о том, что изначальна для передачи сигнала по многомодовому волокну использовались светодиоды (LED). С появлением полупроводниковых лазеров стали разрабатываться волокна более совершенной структуры, названные оптимизированными для работы с лазерами.

Применение. Многомодовое волокно применяется в непротяженных линиях связи (обычно сотни метров), причем волокно 50/125 мкм (OM2, OM3, OM4) используется в основном в локальных сетях и дата-центрах, а волокно 62,5/125 мкм часто применяется в индустриальных сетях. В гигабитных приложениях рекомендуется применять волокна классов OM3 и OM4. Причина, по которой многомодовое волокно до сих пор не вытеснено одномодовым волокном, обладающим лучшими характеристиками, заключается в меньшей стоимости компонентов линии (активное оборудование, соединительные изделия). Цена снижается из-за большего диаметра сердцевины многомодового волокна, и, соответственно, меньших требований к точности изготовления и монтажа компонентов.


2. Кварцевое одномодовое волокно

В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).


Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).

Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.

В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.


Тип волокна Описание Применение
G.652. Одномодовое волокно с несмещенной дисперсией Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). Стандартные области применения.
G.653. Одномодовое волокно с нулевой смещенной дисперсией Точка нулевой дисперсии смещена на длину волны 1550 нм. Передача на длине волны 1550 нм.
G.654. Одномодовое волокно со смещенной длиной волны отсечки Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели.
G.655. Одномодовое волокно с ненулевой смещенной дисперсией Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). Линии передачи со спектральным уплотнением каналов (DWDM).
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. Линии передачи со спектральным уплотнением каналов (CWDM/DWDM).
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. Для прокладывания в ограниченном пространстве.

Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.


3. Пластиковое оптическое волокно (POF)

О кварцевом оптическом волокне знают практически все. Но помимо него существует еще два типа оптических волокон, заслуживающие внимания. Прежде всего, речь идет о пластиковом, или полимерном, оптическом волокне (POF – Plastic/Polymer Optical Fiber). Это многомодовое волокно большого диаметра со ступенчатым показателем преломления, сердцевина и оболочка которого изготовлены из полимерных материалов, прежде всего, из полиметилметакрилата (по-простому, оргстекла). Чаще всего можно встретить POF с соотношением диаметров сердцевины и оболочки 980/1000 мкм.

В сравнении с кварцевым волокном POF имеет очень большие потери (100-200 дБ/км). С другой стороны, минимум потерь находится в видимом диапазоне (520, 560 и 650 нм). Это, а также очень большой размер поперечного сечения, позволяет использовать в качестве источников излучения дешевые светодиоды. Большой диаметр также значительно упрощает процесс работы с пластиковым волокном. Процесс изготовления патч-корда (оптического шнура) требует меньших навыков и времени, а все необходимые приспособления имеют значительно меньшую стоимость. На рисунке ниже представлены пластиковые патч-корды с коннекторами семейства Versatile Link (VL) от компании Broadcom Limited (ранее Avago Technologies).


Таким образом, главные преимущества пластикового волокна – это низкая стоимость компонентов и простота работы с ним. При этом POF присущи все те особенности оптического волокна, которые дают ему преимущества перед другими видами связи. В их числе невосприимчивость к электромагнитному излучению и изолирующие свойства (защита от высоких напряжений), меньшие габариты и вес.

Классификация. Хотя выпускаемые пластиковые волокна отличаются по размеру, используемым полимерам, профилю показателя преломления и другим параметрам, подавляющую часть всех пластиковых волокон составляет POF 980/1000 мкм из полиметилметакрилата.

Применение. Область применения POF – короткие низкоскоростные линии связи (до 200 Мбит/с на несколько десятков метров). Преимущества POF проявляются в тех случаях, когда простота эксплуатации и низкая стоимость линии связи важнее, чем характеристики самой передачи. POF часто используется в промышленных линиях связи, автомобильной электронике, медицине и разного рода датчиках. Кроме того, пластиковое волокно может с успехов применяться и в различных специальных/корпоративных сетях передачи данных, например, для связи в пределах квартиры или офиса (к слову, эта область применения в России пока только начинает развиваться).


4. Кварцевое волокно с полимерной оболочкой (HCS)

И, наконец, последний тип оптического волокна, с которым мы бы хотели познакомить читателей, представляет собой нечто среднее (во всех отношениях) между кварцевым и пластиковым волокном. У этого типа волокна много названий, но мы привыкли называть его кварцевым волокном с полимерной (жесткой) оболочкой и обозначать HCS (Hard Clad Silica). Также распространена аббревиатура PCS (Polymer Clad Silica).

HCS-волокно – это многомодовое оптическое волокно большого диаметра с сердцевиной из кварцевого стекла и оболочкой из полимерного материала. Наибольшее распространение в телекоммуникациях получило HCS-волокно с диаметром сердцевины и оболочки 200/230 мкм и ступенчатым показателем преломления. В других областях, таких как медицина и научные исследования, могут использоваться HCS-волокна с бо́льшим диаметром сердцевины (300, 400, 500 мкм…).


По своим оптическим характеристикам HCS-волокно также занимает промежуточное положение между кварцевым оптоволокном и POF. Минимум затухания стандартного HCS-волокна приходится на длину волны 850 нм и составляет единицы-десятки дБ/км. Для работы с HCS-волокном часто можно использовать те же активные компоненты, что и для POF (с длиной волны 650 нм) или для многомодового кварцевого волокна (светодиоды с длиной волны 850 нм).

Достаточно большой размер HCS-волокна, как и в случае POF, упрощает и удешевляет процесс работы с ним.

Классификация. Как уже упоминалось, в телекоммуникациях в основном используется HCS-волокно 200/230 мкм.

Применение. В целом, области применения HCS схожи с областями применения POF, с той лишь только разницей, что расстояние передачи при использовании HCS-волокна увеличивается до нескольких километров (благодаря меньшему затуханию).


Подведем итоги. Как видим, зачастую выбор оптического волокна для создания линии связи не ограничивается выбором одномод VS многомод. Ассортимент оптических волокон достаточно разнообразен, и в зависимости от ситуации наилучшим решением может оказаться использование того или иного типа волокна из тех, что были описаны в данной статье.

Напоследок благодарим всех читателей за внимание. Надеемся, что статья оказалась не только познавательной, но и полезной (или окажется таковой в будущем). С нетерпением ждем комментариев и вопросов.

Все об оптоволоконных кабелях: варианты, конструкции, разъемы

Первый шаг в разработке оптоволоконной системы — выбор передатчиков и приемников, наилучшим образом подходящих к заданному типу сигнала. Лучше всего это делать, сравнивая техническую информацию об изделиях и консультируясь с инженерами фирмы-изготовителя, которые помогут подобрать наилучший вариант. После этого надо выбрать сам оптоволоконный кабель, оптические соединители и метод их установки. Хотя это в самом деле не очень простая задача, часто не имеющие опыта инженеры испытывают неоправданную боязнь технологий работы с оптоволокном. В этой брошюре мы попытаемся прояснить несколько распространенных заблуждений об оптоволоконных кабелях и монтаже разъемов на них.

Конструкция кабеля

Выбор кабеля определяется решаемой задачей.

Как и медные провода, оптоволоконные кабели выпускаются во множестве различных вариантов. Существуют одно- и многожильные кабели, кабели для воздушной прокладки или непосредственной укладки в грунт, кабели в негорючей оболочке для прокладки в пространстве между фальшпотолком и перекрытием и в межэтажных кабельных каналах, и даже сверхпрочные тактические кабели военного назначения, способные выдерживать сильнейшие механические перегрузки. Понятно, что выбор кабеля определяется решаемой задачей.

Вне зависимости от вида внешней оболочки, в любом оптоволоконном кабеле имеется хотя бы один волоконный световод. Остальные конструктивные элементы (разные в разных типах кабеля) защищают световод от повреждений. Наиболее часто используются две схемы защиты тонких оптических волокон: с помощью неплотно облегающей трубки и с помощью плотно прилегающей оболочки.

Наиболее часто используются две схемы защиты тонких оптических волокон: с помощью неплотно облегающей трубки и с помощью плотно прилегающей оболочки.

В первом способе оптоволокно находится внутри пластмассовой защитной трубки, внутренний диаметр которой больше внешнего диаметра волокна. Иногда эту трубку заполняют силиконовым гелем, предотвращающим скопление влаги в ней. Поскольку оптоволокно свободно «плавает» в трубке, механические усилия, действующие на кабель снаружи, обычно его не достигают. Такой кабель очень устойчив к продольным воздействиям, возникающим при протяжке через кабельные каналы или при прокладке кабеля на опорах. Поскольку в световоде нет значительных механических напряжений, кабели такой конструкции имеют малые оптические потери.

Второй способ состоит в использовании толстого пластикового покрытия, нанесенного прямо на поверхность световода. Защищенный таким образом кабель имеет меньший диаметр и массу, большую устойчивость к ударным воздействиям и гибкость, но поскольку оптоволокно жестко зафиксировано внутри кабеля, его стойкость к растяжению не столь высока, как при использовании свободно облегающей защитной трубки. Такой кабель применяется там, где не предъявляются очень высокие требования к механическим параметрам, например, при прокладке внутри зданий или для соединения отдельных блоков аппаратуры. На рис. 1 схематично показано устройство обоих типов кабеля.


Рис. 1. Конструкция основных типов оптоволоконных кабелей

На рис. 2 показано поперечное сечение одно- и двухжильного оптоволоконного кабеля, а также более сложного многожильного. Двухжильный кабель внешне похож на обычный сетевой электропровод.

Во всех случаях световод с защитной трубкой сначала заключаются в слой синтетической (например, кевларовой) оплетки, определяющей прочность кабеля на растяжение, а затем все элементы помещаются во внешнюю защитную оболочку из поливинилхлорида или другого подобного материала.

Во всех случаях световод с защитной трубкой сначала заключаются в слой синтетической (например, кевларовой) оплетки, определяющей прочность кабеля на растяжение, а затем все элементы помещаются во внешнюю защитную оболочку из поливинилхлорида или другого подобного материала. В многожильных кабелях часто добавляется дополнительный центральный усиливающий элемент. При изготовлении оптоволоконных кабелей используются, как правило, только не проводящие электрический ток материалы, но иногда добавляется внешняя навивка из стальной ленты для защиты от грызунов (кабель для непосредственной укладки в грунт) или внутренние усиливающие элементы из стальной проволоки (кабели для воздушных линий на опорах). Существуют также кабели с дополнительными медными жилами, по которым подается питание на удаленные электронные устройства, используемые в системе передачи сигнала.


Рис. 2. Различные типы кабелей в поперечном разрезе

Волоконные световоды

Независимо от разнообразия конструкций кабелей их основной элемент — оптическое волокно — существует лишь в двух основных модификациях: многомодовое (для передачи на расстояния примерно до 10 км) и одномодовое (для больших расстояний). Применяемое в телекоммуникациях оптоволокно обычно выпускается в двух типоразмерах, отличающихся диаметром сердцевины: 50 и 62,5 мкм. Внешний диаметр в обоих случаях составляет 125 мкм, для обоих типоразмеров используются одни и те же разъемы. Одномодовое оптоволокно выпускается только одного типоразмера: диаметр сердцевины 8-10 мкм, внешний диаметр 125 мкм. Разъемы для многомодовых и одномодовых световодов, несмотря на внешнее сходство, не взаимозаменяемы.


Рис. 3. Прохождение света через оптоволокно со ступенчатым и плавным профилем показателя преломления

На рис. 3 показано устройство двух типов оптоволокна — со ступенчатой и с плавной зависимостью показателя преломления от радиуса (профилем).

Волокно со ступенчатым профилем состоит из сердцевины из сверхчистого стекла, окруженной обычным стеклом с более высоким показателем преломления. При таком сочетании свет, распространяясь по волокну, непрерывно отражается от границы двух стекол, примерно как теннисный шарик, запущенный в трубу. В световоде с плавным профилем показателя преломления, который целиком изготовлен из сверхчистого стекла, свет распространяется не с резким, а с постепенным изменением направления, как в толстой линзе. В оптоволокне обоих типов свет надежно заперт и выходит из него только на дальнем конце.

Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света. На 850 нм (свет с такой длиной волны в основном применяется в системах передачи на небольшие расстояния) потери в обычном оптоволокне составляют 4-5 дБ на километр кабеля. На 1300 нм потери снижаются до 3 дБ/км, а на 1550 нм — до величины порядка 1 дБ. Свет с двумя последними длинами волн используется для передачи данных на большие расстояния.

Потери, о которых только что было сказано, не зависят от частоты передаваемого сигнала (скорости передачи данных). Однако существует еще одна причина потерь, которая зависит от частоты сигнала и связана с существованием множества путей распространения света в световоде. Рис. 4 поясняет механизм возникновения таких потерь в оптоволокне со ступенчатым профилем показателя преломления.


Рис. 4. Различные пути распространения света в оптоволокне

Потери в оптоволокне возникают из-за поглощения и рассеяния на неоднородностях стекла, а также из-за механических воздействий на кабель, при котором световод изгибается так сильно, что свет начинает выходить через оболочку наружу. Величина поглощения в стекле зависит от длины волны света.

Луч, вошедший в оптоволокно почти параллельно его оси, проходит меньший путь, чем тот, который испытывает многократные отражения, поэтому свету для достижения дальнего конца световода требуется разное время. Из-за этого световые импульсы с малой длительностью нарастания и спада, обычно используемые для передачи данных, на выходе из оптоволокна размываются, что ограничивает максимальную частоту их следования. Влияние этого эффекта выражается в мегагерцах полосы пропускания кабеля на километр его длины. Стандартное волокно с диаметром сердцевины 62,5 мкм (многократно превышающим длину волны света) имеет максимальную частоту 160 МГц на 1 км на длине волны 850 нм и 500 МГц на 1 км при 1300 нм. Одномодовое волокно с более тонкой сердцевиной (8 мкм) обеспечивает максимальную частоту в тысячи мегагерц на 1 км. Однако для большинства низкочастотных систем максимальное расстояние передачи в основном ограничивается все же поглощением света, а не эффектом размывания импульсов.

Оптические разъемы

Поскольку свет передается только по очень тонкой сердцевине оптоволокна, важно очень точно совмещать его с излучателями в передатчиках, фотодетекторами в приемниках и световодами в оптических соединениях. Эта функция возлагается на оптические разъемы, которые изготавливаются с очень высокой точностью (допуски имеют порядок тысячных долей миллиметра).

Поскольку свет передается только по очень тонкой сердцевине оптоволокна, важно очень точно совмещать его с излучателями в передатчиках, фотодетекторами в приемниках и световодами в оптических соединениях.

Хотя существует много типов оптических разъемов, сейчас наиболее распространен разъем типа ST (рис. 5). Он состоит из изготовленного с высокой точностью штифта, в который выходит оптоволокно, пружинного механизма, который прижимает штифт к такому же штифту в ответной части разъема (или в электронно-оптическом устройстве) и кожуха, механически разгружающего кабель.

Разъемы ST выпускаются в вариантах для одномодового и многомодового оптоволокна. Основное различие между ними заключено в центральном штифте и его не так просто заметить визуально. Однако следует внимательно относиться к выбору варианта разъема: если одномодовые разъемы еще можно использовать с многомодовыми излучателями и детекторами, то разъемы для многомодового кабеля с одномодовым будут работать плохо или вообще приведут к неработоспособности системы.


Рис. 5. Оптический разъем типа ST

Однако следует внимательно относиться к выбору варианта разъема: если одномодовые разъемы еще можно использовать с многомодовыми излучателями и детекторами, то разъемы для многомодового кабеля с одномодовым будут работать плохо или вообще приведут к неработоспособности системы.

Установка оптического разъема на кабель начинается со снятия оболочки с помощью практически таких же инструментов, что используются для электрического кабеля. Затем усиливающие элементы обрезаются на нужную длину и вставляются в различные удерживающие уплотнения и втулки. В кабеле со свободно облегающей защитной трубкой ее конец снимается, чтобы обнажить само оптоволокно. В кабеле с плотно прилегающей к оптоволокну оболочкой она снимается с помощью прецизионного инструмента, напоминающего устройство для снятия изоляции с тонких электрических проводов. До этого момента процесс очень похож на работу с электрическим кабелем, но дальше начинаются отличия. Освобожденное от оболочек оптоволокно смазывается быстротвердеющей эпоксидной смолой и вставляется в прецизионно выполненное отверстие или канавку штифта, конец оптоволокна при этом выходит из отверстия наружу. Затем на разъеме устанавливаются элементы механической разгрузки кабеля, и он готов к завершающим операциям. Штифт помещается в специальное приспособление, в котором торчащий конец оптоволокна скалывается. На это уходит одна-две секунды, после чего разъем устанавливается в специальное зажимное приспособление, где выполняется полировка скола с помощью специальных пленок двух или трех степеней шероховатости. На все, не считая пяти минут на затвердевание эпоксидной смолы, уходит 5-10 минут в зависимости от мастерства монтажника.

Фактически, сборка оптического разъема ST — не более трудная задача, чем монтаж старого знакомого электрического разъема BNC.

Разъемы всех типов их изготовители снабжают простой пошаговой инструкцией по монтажу на оптоволоконный кабель.

Среди многих людей распространено предубеждение о трудностях установки разъемов на оптоволоконные кабели, поскольку они слышали «о сложном процессе скола и полировки стеклянного волокна». Когда им показывают, что этот «сложный процесс» выполняется с помощью очень простого приспособления и занимает меньше минуты, то окутывающая его «тайна» мгновенно улетучивается. Фактически, сборка оптического разъема ST — не более трудная задача, чем монтаж старого знакомого электрического разъема BNC. После обучения, которое занимает от 30 минут до часа, наибольшее время при установке оптических разъемов расходуется на ожидание затвердевания эпоксидной смолы. Тем не менее предубеждение остается широко распространенным, и для таких потребителей некоторые фирмы выпускают оптические разъемы так называемого быстрого монтажа. Они устанавливаются на кабели с помощью разнообразных механических зажимных систем, клеевых расплавов, быстросохнущих клеев (а иногда и вообще без химических клеящих составов). Некоторые из этих разъемов даже поставляются с заранее отполированным отрезком оптоволокна, вставленного в штифт, что вообще позволяет исключить процедуру окончательной обработки. Хотя установка этих разъемов действительно чуть более проста, никому не следует бояться и стандартного метода монтажа с использованием эпоксидной смолы и полировкой торца световода. На рис. 6 показана последовательность установки типового разъема ST на оптоволоконный кабель.


Рис. 6. Этапы монтажа разъема ST на оптоволоконный кабель

Также распространены оптические разъемы SMA, SC и FCPC. Все они подобны в смысле использования штифта, прецизионно совмещаемого с таким же штифтом в ответной части разъема, а отличаются только конструкцией механического соединения. Разъемы всех типов их изготовители снабжают простой пошаговой инструкцией по монтажу на оптоволоконный кабель.

3 мифа об оптоволокне в квартире

Среди интернет-пользователей не утихают споры о том, какой кабель лучше использовать для выхода во всемирную сеть: оптоволокно или витую пару. Сторонники применения оптоволоконного кабеля говорят о его надежности, скорости и стабильности. Так ли это на самом деле?

Существует два вида кабеля, с помощью которых провайдеры выполняют подключение интернета и телевидения: оптоволоконный кабель и витая пара. Абоненты Baza.net подключены именно с помощью витой пары.

Конструкция данного кабеля довольно проста. Она представляет собой одну или несколько пар изолированных проводников, скрученных между собой и покрытых пластиковой оболочкой. Такой кабель можно разместить в квартире, как вам удобно. Например, под плинтусом. А устранение повреждений витой пары не займет большого количества времени.

С волоконно-оптическим кабелем совсем другая ситуация. Внутри него находится много элементов: стеклянные волокна, пластиковые трубки, трос из стеклопластика. Его нельзя так же свободно сгибать, иначе кабель может переломиться и в результате сигнал пропадет. Чтобы устранить повреждение в оптоволокне, необходимо будет вызывать специалиста с дорогостоящим оборудованием.

Кроме того, ремонт и замена оптоволокна может «влететь в копеечку».

На конце каждого кабеля находится коннектор. У витой пары это пластиковый наконечник, похожий на тот, что вставляется в стационарный телефон. Важно отметить, что этот коннектор универсален и подойдет практически к любой сетевой плате. Вы можете вставить его в ноутбук, Wi-Fi-роутер или в игровую консоль.

У оптоволокна другой коннектор, для которого необходимо будет приобрести специальный оптический терминал. Удовольствие не из дешевых, да и модельный ряд ограничен всего несколькими вариантами.

Конечно, максимально возможная скорость передачи данных через оптоволокно выше, чем через витую пару. Но стоит отметить, что вы навряд ли почувствуете эту разницу в скорости. Дело в том, что каждое устройство, будь то W-Fi-роутер, домашний компьютер или ТВ-приставка, имеет свой сетевой адаптер. Если ваше устройство было выпущено несколько лет назад, то его максимальная пропускная способность составляет только 100 Мбит/c, в то время как в новых устройствах она по умолчанию позволяет разогнаться до 1 Гбит/с. В таком случае, даже если вы провели оптоволокно, но выходите в интернет со старой модели ноутбука, вы не сможете получите скорость выше, чем 100 Мбит/с.

Мы решили проверить, какая максимальная скорость необходима рядовому пользователю для комфортного времяпрепровождения в интернете.

В качестве теста мы просматривали видео на Youtube в максимально высоком качестве, запускали онлайн-игры, слушали музыку из сети и скачивали файлы с различных ресурсов. Несмотря на то, что в офисе скорость интернета достигает 1 Гбит/с, ни одна из этих задач не потребовала больше, чем 72 Мбит/с.

Если говорить откровенно, то использование оптоволокна в квартире не нужно никому. Да и пользователи сами не знают, зачем им нужна такая скорость.

Специалисты со всего заявляют, что оптоволоконная сеть останется невостребованной еще минимум десяток лет. В данный момент практически не существует интернет-ресурсов, для которых вам нужна скорость выше 70-100 Мбит/с. Даже если в будущем и появятся страницы, с которыми не справится витая пара, мы сможем в минимальные сроки заменить оборудование на более актуальное и будем предоставлять доступ через волоконно-оптический кабель.

На самом деле вы и так выходите в интернет через оптоволоконный кабель.

Как провайдер, мы проводим оптоволокно до каждого многоквартирного дома, а уже дальше выполняем подключение интернета в каждую отдельную квартиру посредством витой пары.

Проведя ряд исследований, мы пришли к выводу, что стабильность передачи данных с помощью обоих типов кабеля абсолютно идентична и никаким образом не зависит от их пропускной способности.

Так что же выбрать?

Вывод напрашивается сам. Витая пара дешевле и доступнее, чем оптоволоконный кабель, который не имеет преимуществ в использовании для обычного пользователя. Уважаемые друзья, тщательно выбирайте провайдера и всегда вспоминайте данную статью перед тем, как отдать предпочтение тому или иному способу подключения интернета.

Оптоволоконный кабель. Виды и устройство. Установка и применение

В современном мире необходимо качественно и быстро передавать информацию. Сегодня нет более совершенного и эффективного способа передачи данных, чем оптоволоконный кабель. Если кто-то думает, что это уникальная разработка, то он глубоко ошибается. Первые оптические волокна появились еще в конце прошлого столетия, и до сих пор ведутся работы по развитию этой технологии.

На сегодняшний день мы уже имеем передающий материал, уникальный по свойствам. Его применение получило широкую популярность. Информация в наше время имеет большое значение. С помощью нее мы общаемся, развиваем экономику и быт. Скорость передачи информации при этом должна быть высокой для того, чтобы обеспечить необходимый темп современной жизни. Поэтому сейчас многие интернет провайдеры внедряют оптоволоконный кабель.

Этот тип проводника предназначен только на передачу импульса света, несущего часть информации. Поэтому его применяют для передачи информативных данных, а не для подключения питания. Оптоволоконный кабель дает возможность повысить скорость в несколько раз, в сравнении с проводами из металла. При эксплуатации он не имеет побочных явлений, ухудшения качества на расстоянии, перегрева провода. Достоинством кабеля на основе оптических волокон является невозможность влияния на передаваемый сигнал, поэтому ему не нужен экран, блуждающие токи на него не действуют.

Классификация

Оптоволоконный кабель имеет большие отличия от витой пары, исходя из области применения и места монтажа. Выделяют основные виды кабелей на основе оптического волокна:

  • Для внутреннего монтажа.
  • Установки в кабельные каналы, без брони.
  • Установки в кабельные каналы, бронированный.
  • Укладки в грунт.
  • Подвесной, не имеющий троса.
  • Подвесной, с тросом.
  • Для подводного монтажа.
Устройство

Самое простое устройство имеет оптоволоконный кабель для внутреннего монтажа, а также кабель обычного исполнения, не имеющего брони. Наиболее сложная конструкция у кабелей для подводного монтажа и для монтажа в грунт.

Кабель для внутреннего монтажа

Внутренние кабели делят на абонентские, для прокладки к потребителю, и распределительные для создания сети. Оптику проводят в кабельных каналах, лотках. Некоторые разновидности прокладывают по фасаду здания до распредкоробки, либо до самого абонента.

Устройство оптоволокна для внутренней прокладки состоит из оптического волокна, специального защитного покрытия, силовых элементов, например, троса. К кабелю, прокладываемому внутри зданий, предъявляются требования пожарной безопасности: стойкость к горению, низкое выделение дыма. Материал оболочки кабеля состоит из полиуретана, а не полиэтилена. Кабель должен быть легким, тонким и гибким. Многие исполнения оптоволоконного кабеля облегчены и защищены от влаги.

Внутри помещений кабель обычно прокладывается на небольшие расстояния, поэтому о затухании сигнала и влиянии на передачу информации речи не идет. В таких кабелях количество оптоволокна не более двенадцати. Существуют и гибридные оптоволоконные кабели, имеющие в составе витую пару.

Кабель без брони для кабельных каналов

Оптика без брони применяется для монтажа в кабельные каналы, при условии, что не будет механических воздействий снаружи. Такое исполнение кабеля применяется для тоннелей и коллекторов домов. Его укладывают в трубы из полиэтилена, вручную или специальной лебедкой. Особенностью такого исполнения кабеля является наличие гидрофобного наполнителя, гарантирующего нормальную эксплуатацию в кабельном канале, защищает от влаги.

Кабель с броней для кабельных каналов

Оптоволоконный кабель с броней применяется тогда, когда присутствуют нагрузки снаружи, например, на растяжение. Броня выполняется по-разному. Броня в виде ленты применяется, если нет воздействия агрессивных веществ, в кабельных каналах, тоннелях и т.д. Конструкция брони состоит из стальной трубы (гофрированная, либо гладкая), с толщиной стенки 0,25 мм. Гофрирование выполняют тогда, когда это является одним слоем защиты кабеля. Оно защищает оптическое волокно от грызунов, увеличивает гибкость кабеля. При условиях с большим риском повреждений применяют броню из проволоки, например, на дне реки, или в грунте.

Кабель для укладки в грунт

Для монтажа кабеля в грунт применяют оптоволокно с броней из проволоки. Могут использоваться также кабели с ленточной броней, усиленные, но они не нашли широкого применения. Для прокладки оптоволокна в грунт задействуют кабелеукладчик. Если монтаж в грунт осуществляется в холодное время при температуре менее -10 градусов, то кабель заранее нагревают.

Для мокрого грунта применяют кабель с герметичным оптоволокном в металлической трубке, а броня из проволоки пропитывается водоотталкивающим составом. Специалисты делают расчеты по укладке кабеля. Они определяют допустимые растяжения, нагрузки на сдавливание и т. д. Иначе по истечении определенного времени оптические волокна повредятся, и кабель придет в негодность.

Броня оказывает влияние на величину допускаемой нагрузки на растяжение. Оптоволокно с броней из проволоки выдерживает нагрузку до 80 кН, с ленточной броней нагрузка может быть не более 2,7 кН.

Подвесной оптоволоконный кабель без брони

Такие кабели устанавливаются на опоры линий связи и питания. Так производить монтаж проще и удобнее, чем в грунт. При этом есть важное ограничение – во время монтажа температура не должна опускаться ниже -15 градусов. Сечение кабеля имеет круглую форму. Благодаря этому уменьшаются нагрузки от ветра на кабель. Расстояние между опорами должно быть не больше 100 метров. В конструкции есть силовой элемент в виде стеклопластика.

Благодаря силовому элементу кабель может выдержать большие нагрузки, направленные вдоль него. Силовые элементы в виде арамидных нитей применяют при расстояниях между столбами до 1000 метров. Достоинством арамидных нитей, кроме малой массы и прочности, являются диэлектрические свойства арамида. При ударе молнии в кабель, никаких повреждений не будет.

Сердечники подвесных кабелей по их типу делят на:
  • Кабель с сердечником в виде профиля, оптоволокно устойчиво к сдавливанию и растяжению.
  • Кабель с модулями скрученного вида, оптические волокна проложены свободно, имеется устойчивость к растяжению.
  • С оптическим модулем, сердечник кроме оптоволокна ничего в составе не имеет. Недостаток такого исполнения – неудобно идентифицировать волокна. Преимущество – малый диаметр, низкая стоимость.
Оптоволоконный кабель с тросом

Тросовое оптоволокно является самонесущим. Такие кабели применяются для прокладки по воздуху. Трос бывает несущим или навивным. Есть модели кабеля, в котором оптоволокно находится внутри молниезащитного троса. Кабель, усиленный профильным сердечником, обладает достаточной эффективностью. Трос состоит из стальной проволоки в оболочке. Эта оболочка соединена с оплеткой кабеля. Свободный объем заполнен гидрофобным веществом. Такие кабели прокладывают с расстоянием между столбами не более 70 метров. Ограничением кабеля является невозможность прокладки на линию электропитания.

Кабели с тросом для грозовой защиты устанавливаются на высоковольтных линиях с фиксацией на заземление. Тросовый кабель используется при рисках его повреждения животными, либо на большие дистанции.

Оптоволоконный кабель для укладки под водой

Такой тип оптоволокна обособлен от остальных, потому что его укладка проходит в особых условиях. Все подводные кабели имеют броню, конструкция которой зависит от глубины прокладки и рельефа дна водоема.

Некоторые виды подводного оптоволокна по исполнению брони с:
  • Одинарной броней.
  • Усиленной броней.
  • Усиленной двойной броней.
  • Без брони.

1› Изоляция из полиэтилена.
2› Майларовое покрытие.
3› Двойная броня из проволоки.
4› Гидроизоляция алюминиевая.
5› Поликарбонат.
6› Центральная трубка.
7› Заполнитель гидрофобный.
8› Оптоволокно.

Размер брони не зависит от глубины прокладки. Армирование защищает кабель только от обитателей водоема, якорей, судов.

Сварка оптоволокна

Для сварки используется сварочный аппарат специального типа. В его составе содержится микроскоп, зажимы для фиксации волокон, дуговая сварка, камера термоусадки для нагрева гильз, микропроцессор для управления и контроля.

Краткий техпроцесс сварки оптоволокна:
  • Снятие оболочки стриппером.
  • Подготовка к сварке. На концы надеваются гильзы. Концы волокон обезжириваются спиртом. Конец волокна скалывается специальным приспособлением под определенным углом. Волокна укладываются в аппарат.
  • Сварка. Волокна выравниваются. При автоматическом управлении положение волокон устанавливается автоматически. После подтверждения сварщика, волокна свариваются аппаратом. При ручном управлении все операции проводятся вручную специалистом. При сварке волокна плавятся дугой электрического тока, совмещаются. Затем свариваемое место прогревается во избежание внутренних напряжений.
  • Проверка качества. Автомат сварки проводит анализ картинки места сварки по микроскопу, определяет оценку работы. Точный результат получают рефлектометром, который выявляет неоднородность и затухание на линии сварки.
  • Обработка и защита свариваемого места. Надетая гильза сдвигается на сварку и закладывается в печь для термоусадки на одну минуту. После этого гильза остывает, ложится в защитную пластину муфты, накладывается запасное оптическое волокно.
Достоинства оптоволоконного кабеля

Основным достоинством оптоволокна является повышенная скорость передачи информации, практически нет затухания сигнала (очень низкое), а также, безопасность передачи данных.

  • Невозможно подключиться к оптической линии без санкций. При любом включении в сеть оптические волокна повредятся.
  • Электробезопасность. Она повышает популярность и область применения таких кабелей. Их все больше используют в промышленности при опасности взрывов на производстве.
  • Имеет хорошую защиту от помех природного происхождения, электрооборудования и т.д.
Похожие темы:

Виды и характеристики многомодового оптоволоконного кабеля

Многомодовое оптоволокно – кабель с большим диаметром сечения. Этот кабель проводит световой импульс методом внутреннего отражения.

Преимущества многомодового волоконно-оптического кабеля

Сети, созданные с помощью многомодового оптоволокна, обходятся гораздо дешевле, чем одномодовые. Скорость передачи данных в них зависит от дистанции. Например, при передаче на 2 км максимальная скорость составляет 100 Мбит. Если сократить дистанцию до 500 м, можно добиться скорости прохождения импульса 1 Гбит. При сокращении расстояния до 300 м достигается скорость около 10 Гбит.

Многомодовое оптоволокно – очень надежная продукция с хорошей производительностью. Ее используют для создания сетевых магистралей. С помощью этих кабелей можно легко расширять информационные сети без больших финансовых затрат.

Виды многомодового оптоволокна

Самым первым кабелем из этой серии стал MOB-G. Как и современные изделия, он состоял из сердцевины, покрытой оболочкой. Эта оболочка играла защитную роль для волоконно-оптического кабеля. Вся последующая продукция выпускалась с разной конструкцией волокон. Сейчас она производится по стандартам VDE 0888 и EN 188200, подразумевающим соблюдение определенных требований к выпускаемым изделиям.

Требования к многомодовому оптоволокну

Этот волоконно-оптический кабель должен иметь:

  1. Толщину сердцевины – 50 мкм. При производстве возможны отклонения не более 3 мкм.
  2. Наружную толщину волокна – 125 мкм (с отклонением до 2 мкм).
  3. Диаметр первичной наружной оболочки – 250 мкм (с возможным отклонением до 10 мкм).
  4. Диаметр вторичной наружной оболочки – 900 мкм (с допустимым отклонением до 10 мкм).

Классификация многомодовых волокон соответствует стандартам, составленным Международной организацией по стандартизации. Этой организацией было выделено 4 стандарта для многомодового оптоволокна: ОМ1, ОМ2, ОМ3, ОМ4. Принадлежность кабеля к одной из перечисленных групп зависит от ширины полосы пропускания. Самым последним из разработанных стандартов является ОМ4. Он используется с 2009 года и позволяет передавать данные со скоростью 100 Гбит/с.

Отличительные признаки многомодового оптоволокна

Чтобы не возникало путаницы при покупке, кабель должен иметь характерные для него внешние признаки. Поэтому многие производители присваивают определенный цвет оболочкам одномодового и многомодового оптоволокна. Но они это делают на добровольных началах, так как обязательного требования к цвету подобной продукции не существует. Следовательно, при покупке не стоит ориентироваться только на внешний вид изделий, потому что он может быть обманчив.

Чаще всего для выделения многомодового оптоволокна на фоне похожей продукции используются оболочки серого и оранжевого цветов. Серым отмечают кабель на 62,5/125 мкм, а оранжевым – изделия на 50/125 мкм. Иногда для выделения оптоволокна стандартов ОМ4 и ОМ3 используют бирюзовый оттенок оболочки. Эти кабели тоже на 50/125 мкм.

Путаница чаще всего возникает при покупке оптоволокна с желтой оболочкой. Как правило, желтый цвет используют для выделения одномодовой продукции. Но некоторые производители выбирают этот тон и для многомодовых кабелей.

Сварка оптоволокна — 15 глупых ошибок. Как правильно паять оптоволоконный кабель.

Оптоволоконный кабель уже давно и прочно вошел в нашу жизнь, постепенно заменяя все остальные марки проводов, широко применяемые ранее в слаботочных сетях и сетях телекоммуникаций.

При этом у всех почему-то крепко засело в головах, что для работы с оптикой требуются какие-то суперпрофессионалы и обучаться той же сварке оптоволокна нужно очень долго и усердно.

А между тем, производители сварочных аппаратов говорят совершенно обратное. Они утверждают, что их современные приборы настолько совершенны и просты в работе, что справиться с этим процессом может любой человек.

Достаточно придерживаться определенных инструкций, не совершать элементарных ошибок и чудо аппарат сделает за вас большую часть работы самостоятельно.

Так ли это на самом деле или нет? Чтобы объективно ответить на данный вопрос, следует сделать важную ремарку – сама сварка это всего лишь 5% от общей работы кабельщика ВОЛС.

Изучив только процесс сварки, без соответствующих знаний чтения схем, постройки магистралей, навыков разделки и укладки кабеля в кассету и кросс, измерения затухания рефлектометром, вы никогда не будете считаться профессионалом своего дела.

Но давайте все-таки подробнее рассмотрим именно процесс сварочных работ, подготовки кабеля к нему и отметим наиболее распространенные ошибки, которые печальным образом сказываются на месте соединения, уровне сигнала и дальнейшей работе ВОЛС.

Типы оптоволоконного кабеля

Сварочные аппараты для оптики работают примерно по одному принципу. Поэтому не будем заострять внимание на какой-то одной модели, старый добрый Фуджикура (Fujikura) или Ilsintech, изучим саму последовательность процесса.

У вас может быть даже модель с управлением от смартфона. Но это в корне не меняет технологию работ. Она везде одинакова.

Итак, изначально мы имеем два отрезка кабеля ВОЛС, с которых нужно снять внешнюю изоляцию.



Снимая внешнюю оболочку, делайте это с таким прицелом, чтобы в дальнейшем у вас не возникло проблем с укладкой волокон и модулей в сплайс-кассете, кроссе или муфте.

Ошибка №1

Если кабель при этом долго лежал под открытым небом (без защитной капы), перед разделкой обязательно отрезается около 1м с каждого конца.

Дело в том, что нити в кабеле как губка всасывают всю окружающую влагу. В итоге оптоволокно мутнеет.

И даже если вы идеально сделаете соединение, это все равно в дальнейшем не спасет вас от больших потерь сигнала.

Включаете аппарат и выставляете на нем тип кабеля, который будет соединяться.

Различают одномодовые (SM) и многомодовые (MM) оптические кабеля.



На одномодовых волокнах в основном используется три длины волны (три окна прозрачности):

Все зависит от общей длины трассы и используемого оборудования. Кроме того, волокна подразделяют на:

  • со смещенной дисперизацией — DS
  • с ненулевой смещенной дисперизацией — NZ

Внешне их никак не отличить. При сварке чаще всего работают с простыми и со смещенкой. Соединять смещенку и простые волокна не рекомендуется.

Стриппер для снятия изоляции с оптического кабеля

Далее требуется удалить изоляцию с модулей и с отдельных жил. Чаще всего для этого используют специальный ручной инструмент — оптический стриппер.



Хотя в отдельных моделях сварочников можно встретить и встроенный термостриппер. Однако механическим работать гораздо удобнее и быстрее.



Тем более, когда варишь не за удобным столиком, а где-нибудь на высоте или в колодце.

Ошибка №2

Запомните, такой инструмент, по-хорошему, должен иметь заводскую юстировку.

Иначе весь процесс может превратиться не в аккуратное срезание, а в царапанье или грубое сдирание оболочки.

Если лаковое покрытие с волокн не снимается с первого раза и приходится юлозить стриппером туда-сюда, это многое говорит о качестве инструмента.

Сначала изоляция снимается с модулей. Перед этим, салфеткой смоченной в спирте, с них счищается гидрофобное покрытие.

Рекомендуется проделывать это в перчатках. Гидрофоб очень неприятная штука, которая в дальнейшем плохо смывается.

А вам после этого еще работать с тонким оптоволокном и сварочником!

Ошибка №3

Удаляя оболочку с жил, не делайте это так, как показано ниже.

Оптоволокно крепкий материал на разрыв, но не на излом! При разделке в минусовую температуру жила при таком способе запросто может сломаться.

Поэтому изоляцию лучше снимать стриппером, поочередно вытягивая ее с каждой жилки, и только после этого переходить к следующей, избегая резких изгибов и заломов.

После снятия внешней изоляции, с волокна удаляется лаковое покрытие. Оно придает ему одновременно гибкость и жесткость.

Без него волокно становится очень хрупким. Можете без лака на такую жилку положить мобильник и она сломается. А вот с лаком совсем другое дело.

Бывает, что кабель неделями висит только на этих нитках в лаке, когда вся внешняя оболочка уже повреждена. А оптоволокну хоть бы что, держит и ветровые и растягивающие нагрузки.

Ошибка №4

Когда зачищаете волокно от лака, часть его остаётся на стриппере.

Из-за этого можно случайно сломать или поцарапать следующее волокно, что скажется на качестве сварки. Поэтому переходя к зачистке очередной жилы, каждый раз убирайте с лезвий все лишнее.

Ошибка №5

Оптическим стриппером запрещено перекусывать что-либо другое, кроме жил ВОЛС.

Он рассчитан именно на оптоволоконные жилы в 125мкм. Откусите им пластиковую стяжку и можете идти покупать другой инструмент.

Ошибка №6

Также при зачистке следите, чтобы сварочный аппарат был закрыт и туда не попало посторонних обрезков или мусора.

Испытание сварочника Фуджикура в пыльных и влажных условиях

Кстати, многие сварочники при запылении даже запрещено продувать сжатым воздухом.

В них установлена очень уж чувствительная механика и сильный поток воздуха может нарушить заводские настройки.

Скалыватель оптических волокон

После снятия лакового слоя с волокна, его требуется протереть безворсовой салфеткой, смоченной в спирте.

Ошибка №7

При чистке следующего волокна рекомендуется использовать другую салфетку, ну или по крайней мере ту ее часть, которая не участвовала в предыдущей очистке, либо не контактировала с вашими пальцами.

Если жила идеально чистая, протирая ее салфеткой, вы должны услышать характерный скрипящий звук.

Ошибка №8

С этого момента дотрагиваться до волокна руками или чем-либо другим ни в коем случае нельзя.

Более того, пока вы ее не поместили в сварочный аппарат, на нее даже пылинки не должно осесть. Это все влияет на качество сварки и уровень потерь.



После этого волокно нужно идеально ровно отрезать.

Ошибка №9

Нельзя это делать каким-либо другим инструментом, кроме специального скалывателя.

Хотя в СССР на ранних порах развития оптики, применялся даже вот такой универсальный набор кабельщика ВОЛС.

Срез должен быть очень четким, иметь строго цилиндрическую форму, без каких-либо углов и сколов.

Скалыватель может быть как встроен в сварочный аппарат, так и идти отдельным инструментом. Второй вариант предпочтительнее.

Просто помещаете проводок в скалыватель и закрываете крышечки до щелчка.



Ошибка №10

Внимание – остатки и отрезанные кусочки оптоволокна должны обязательно собираться в отдельный контейнер.



Нельзя чтобы они упали на пол, на стол или попали еще куда-либо. Толщина этих жилок настолько мала, что попав вам под кожу, этот кусочек может проникнуть в вену и начнет свое путешествие по всему организму. Также его можно случайно вдохнуть в легкие.

Все это в конечном итоге приведет к печальным последствиям.

Многие решают проблему сбора обрезков при помощи обычных кусочков изоленты. Дешево и сердито.

Ошибка №11

После скалывания волокно больше нельзя протирать спиртом или касаться им чего-либо.

Даже находиться с ним в пыльных или антисанитарных условиях запрещено. Создайте для этого подходящее рабочее место (палатка, затащите и спрячьте кабель в машину и т.п).

Сварка оптоволокна и уровень затухания сигнала

Подготовленная и зачищенная жила аккуратно вкладывается в посадочное место для сварки, чуть-чуть не доставая своим кончиком середины электрода.

Все те же операции проделываются со вторым концом кабеля.

Ошибка №12

Не забудьте перед этим одеть на второй конец муфточку КДЗС (комплект динамической защиты сварочного соединения), иначе потом будет поздно.

КДЗС — это две термоусадочные трубочки, между которыми располагается стальной штифт.



Волокна должны попасть именно в центральную трубочку, а не между ними.

В противном случае после пайки стальной штифт может его поломать.

Подготовленный второй конец закладывается в сварочник с обратной стороны от первого.

В итоге идеально чистые и ровно срезанные два конца волокна, должны оказаться между двух электродов, которые и будут выполнять сварку.

Если один из концов оказался слишком далеко от электродов и заданного положения, прибор известит вас об этом.

Также высветится ошибка, если волокна будут пересекать друг дружку.

Как только вы закрываете крышку происходит процесс самодиагностики, калибровки и выравнивания двух концов. Все это выводится на экран.

Если все нормально, нажимаете кнопку сварки и она запускается автоматически. Если вдруг один из кончиков оказался срезан недостаточно ровно, система известит вас об этом, не только просигналив об ошибке, но и известив какой конец кабеля виноват.



В данной ситуации процесс зачистки и скалывания повторяется. Со вторым, нормально зачищенным концом ничего делать не нужно.

При успешном завершении сварочного процесса (длится пару секунд), на экран выводятся потери или затухание сигнала в децибелах. Очень хорошим результатом считается 0,01-0,02дб.



Идеал – это соединение вообще без потерь. Бывает и такое.

Хотя даже на заводских пигтейлах (от английского pig tail – поросячий хвостик) встречаются не такие уж идеальные пайки.

При неудовлетворительных результатах сварки, монитор качественных аппаратов проинформирует вас об этом.

Допустимыми значениями затухания считаются следующие параметры:



Ошибка №13

Однако никогда не полагайтесь только на результат показаний сварочного аппарата.

Для конечной проверки результата обязательно требуется рефлектометр. Иначе после окончания всех работ будете задаваться вот такими вот вопросами:

Объясняется это тем, что камера микроскопа сварочника не способна увидеть всю картинку в 360 градусов вокруг волокна. Отсюда и погрешность.

После сварки и открытия крышки аппарат с расчётным усилием пытается развести жилки, как бы растягивая их. Тем самым проводится тест на прочность контакта.

Если сварка выдержала и не порвалась – все ОК. Однако некоторые кабельщики отключают программно такой тест, предполагая, что такое «растягивание» может повредить еще не до конца остывший контакт.

Комплект защиты сварки

После этого оптоволокно аккуратно достается из сварочника. На место сварки надвигается муфточка КДЗС.

Ошибка №14

КДЗС должна полностью покрывать всю длину зачищенного волокна, иначе никакой жесткости не обеспечить.

Остался последний этап работ. Оптоволокно с муфтой помещается в печку, которая обычно расположена в верхней части сварочного прибора.



Выравниваете жилу в этой печке и закрываете крышку. Нажимаете на табло значок печки и ждете некоторое время до появления сигнала.

Далее открыв крышку, достаете ваше оптоволокно. При этом внутри прозрачной муфты не должно быть пузырьков, которые свидетельствуют о наличии воздуха или отдельных деформированных участков (локальный перегрев).

С каждого конца муфты должно показаться и вытечь наружу немного клеящего состава. Все это говорит о хорошей сварке и надежном соединении и изоляции проводов.

При сварке многожильного кабеля все готовые муфты КДЗС обычно укладываются в специальный охлаждающий лоток. Его смысл не просто удобно расположить жилы, дабы они не путались и не мешались, а в равномерном охлаждении гильз.

Некоторые кабельщики делают такие лотки самостоятельно, например из алюминиевых уголков.

При последовательной сварке нескольких жил, не оставляйте надолго муфту в данном отсеке, иначе ее стенки расплавятся и прилипнут к стенкам направляющих элементов.

Ошибка №15

Еще одна ошибка – так называемый “горячий пирожок”.

Это когда еще не совсем остывшую муфту, сразу же из печки перекладывают в ложемент сплайс кассеты оптического кросса. С одной стороны очень удобно, сплавил – вставил, сплавил – вставил. Ничего не запутается и не переплетется с другими жилами.

Однако в этом случае стенки ложемента не дают толком остыть муфточке, мягкие стенки гильзы изгибает, что в итоге деформирует волокно и приводит к потерям.

Как видите, даже при использовании профессионального сварочного оборудования в этом деле имеется огромное количество своих нюансов и тонкостей.

Укладка кабеля в оптический кросс и сплайс кассету

Но на этом процесс вовсе не заканчивается. Когда вы заправляете оптоволоконный кабель в кросс или муфту, учтите еще несколько моментов.

Концы кабеля с необходимым запасом должны быть уложены в кассету. Именно эта работа, а не сама сварка считаются у монтажников более ответственным этапом и требует определенной сноровки и навыков.

Запас модуля в кроссе должен составлять порядка 90см, а запас волокна в кассете 2,5-3 оборота.

Поэтому изначально все вымеряйте и не экономьте на разделке.

Место крепления модуля хомутиками, кабельщики рекомендуют обматывать изолентой. Это снижает нагрузку на модуль и не повредит его острыми стенками хомута. Но и перебарщивать с изолентой не стоит.

При укладке волокон в кассете и самого кабеля в кроссе, нигде не должно образоваться острых углов. Любой острый угол превышающий допустимый радиус изгиба кабеля – это потери и ухудшение сигнала.

Критичный изгиб кабеля может случиться и при его монтаже. Поэтому когда монтажники, заводя оптику в ваш дом или проводя по подъезду, не укладывают ее, а именно “пихают”, ждите беды.

При этом, изгиба в дальнейшем может и не остаться, трасса будет идеально ровной. Однако заломленный кабель при монтаже приводит к трещинам на волокнах.

Со временем затухания будут увеличиваться. Активное оборудование поначалу будет вытягивать полезный сигнал из шумов. Но это до тех пор, пока чувствительность приемника и FEC позволяют.

Кассету после укладки жил закрывают крышкой.

Перед этим обязательно проверьте, не торчат ли где какие проводки. Иначе можете попросту перерубить их этой самой крышкой и весь процесс начнете заново.

Проверка затухания оптическим рефлектометром

Ну и на финальном этапе остается проверить уровень сигнала непосредственно на самом коннекторе. Оптический рефлектометр не только покажет значение в виде цифры, но и проинформирует на каком расстоянии и в какой точке кабеля происходит падение.

Это не обязательно окажется место пайки, вполне возможно, что сигнал будет теряться на каком-нибудь из поворотов трассы.

Подобными сварочными аппаратами легко и удобно варить кабель GPON для подключения одного или нескольких абонентов. А вот если дело коснется 64-х или 96-ти жильной оптики, то конечно данный процесс с поэтапной заправкой каждой жилки будет сплошным мучением.

При этом нужно иметь очень зоркий глаз, дабы не перепутать цветные оттенки многочисленных жилок.

Для опытного кабельщика на фуджике с отдельным скалывателем, технологический процесс сварки 24-х волокон занимает чуть более 40 минут (1,5минуты на жилу). А сборка кросса, со всеми сопутствующими операциями (разделка, укладка, маркировка) – до полутора часов.

Какой вывод можно сделать из всего вышеизложенного? Конечно, сварить оптику на исправном и настроенном оборудовании, стоимостью в несколько сотен тысяч может каждый, у кого руки растут из нужного места.

А вот настроить этот самый сварочник, скалыватель, плюс поддерживать все это в исправном и работоспособном состоянии годами – для этого уже надо быть профессионалом своего дела и любить данную работу.

Статьи по теме

Диаметр волокна — обзор

10.3.1 Прогноз диаметра волокна в процессе выдувания из расплава

Диаметр волокна нетканых материалов, полученных выдуванием из расплава, был спрогнозирован на основе параметров обработки ANN (Sun et al. , 1996). Входными параметрами сети были температура экструдера, температура фильеры, скорость потока расплава, температура воздуха у фильеры, давление воздуха у фильеры и расстояние от фильеры до коллектора. Выходным параметром сети был диаметр волокна. В качестве полимера использовались гранулы полипропилена с показателем текучести расплава 60 (г / 10 мин).Эксперименты планировались по ортогональному плану экспериментов L 27 (9 × 3 9 ). Параметры обработки варьировались в следующих диапазонах: температура экструдера 270–370 ° С, температура воздуха на головке 260–340 ° С, расход расплава 16–32 г / мин, давление воздуха на головке 0,02–0,16 МПа, время прижима к головке. -коллекторное расстояние 0,07–0,20 м. В качестве измеренного значения был взят средний диаметр 100 случайных волокон из 10 образцов полотна.

Трехуровневая архитектура нейронной сети с прямой связью и алгоритмом обратного распространения была использована для прогнозирования диаметра волокна (Sun и др. , 1996).Использовалась сетевая структура 6-4-1 (шесть узлов на входном уровне, четыре узла на скрытом слое и два узла на выходном слое). Между скрытым и выходным слоями использовалась сигмовидная передаточная функция. данные были уменьшены между 0 и 1 путем нормализации их соответствующих значений. Для обучения сети использовалось сто шестьдесят наборов образцов. Тестирование сети проводилось с 70 наборами тестовых выборок, которые отличались от обучающих данных. максимальная абсолютная ошибка между прогнозируемым диаметром волокна и фактическим значением была меньше 1.5 мкм, что указывает на способность ИНС прогнозировать диаметр волокна.

ИНС наряду с физическими и статистическими моделями использовалась для прогнозирования диаметра волокна нетканых материалов, полученных методом экструзии с раздувом из расплава, на основе параметров обработки (Чен и др. , 2005). Параметры обработки, расход полимера, начальная скорость воздуха и расстояние от фильеры до коллектора были взяты в качестве входных параметров для обеих моделей. Выходным параметром моделей был диаметр волокна. Эксперименты были спроектированы по ортогональной экспериментальной схеме L 9 (3 4 ), всего было выполнено 13 серий экспериментов.В качестве полимера использовались гранулы полипропилена с индексом текучести расплава 52 (г / 10 мин). Параметры обработки варьировали следующим образом: расход полимера 0,0017, 0,0025 и 0,0033 г / с; начальная скорость воздуха 87, 174 и 261 м / с; и расстояние от кристалла до коллектора 8, 11 и 14 см. Для измерения диаметра волокна использовался метод анализа изображений.

Для статистической модели экспериментальные данные были разделены на набор для подгонки с 12 точками данных и набор для тестирования с одной точкой данных.12 точек данных использовались для создания уравнения многомерной нелинейной регрессии, оставшаяся одна точка данных использовалась для проверки уравнения (Chen et al. , 2005). Эта процедура была повторена для всех комбинаций из 12 и одной точки данных. Было установлено и испытано 13 корпусов. Физическая модель вытяжки полимеров воздухом состоит из уравнения неразрывности, уравнения количества движения, уравнения энергии и определяющего уравнения.

Трехуровневая архитектура нейронной сети с прямой связью и алгоритмом обратного распространения использовалась для прогнозирования диаметра волокна (Chen et al., 2005). Рассматривалась трехслойная ИНС с входным, выходным и скрытым слоями. Входной слой имел три нейрона, соответствующих скорости потока полимера, начальной скорости воздуха и расстоянию от кристалла до коллектора. Выходной слой содержал один нейрон, соответствующий диаметру волокна. Чтобы определить количество нейронов в скрытом слое, все экспериментальные данные были разделены на набор для подгонки с 11 точками данных и набор для тестирования с двумя точками данных. количество скрытых нейронов изменено с двух до трех.Все комбинации из 11 и двух точек данных использовались для обучения и тестирования ИНС. Всего было обучено и протестировано 156 случаев (78 для двух скрытых нейронов и 78 для трех скрытых нейронов). При сравнении средней ошибки предсказания средняя ошибка двух скрытых нейронов составила 0,03%, что ниже, чем у трех скрытых нейронов (0,05%). Таким образом, количество нейронов в скрытом слое было выбрано равным двум. Передаточными функциями нейронов скрытого слоя и выходного слоя были функция гиперболического тангенса и чисто линейная функция соответственно.Перед обучением ИНС данные обучения были соответствующим образом нормализованы. Чтобы протестировать модель ИНС, все экспериментальные данные были разделены на набор для подгонки с 12 точками данных и набор для тестирования с одной точкой данных. Все комбинации из 12 и одной точки данных использовались для обучения и тестирования ИНС. Всего было обучено и протестировано 13 случаев (Chen et al. , 2005).

Авторы использовали другой подход к сообщению о средней ошибке: вместо сообщения об абсолютной ошибке они сообщили о реальной ошибке (Chen et al., 2005). Для любой регрессионной модели (статистической или нейронной сети) средняя ошибка должна быть близка к нулю (ровно ноль для точного соответствия регрессии). При вычислении средней ошибки для статистической модели или модели нейронной сети, а затем стандартного отклонения также важно учитывать отрицательные значения. это может быть связано с широким диапазоном данных, охватываемым этими отрицательными значениями по сравнению с абсолютными значениями. Например, из таблицы 10.3 для статистической модели диапазон процентной ошибки, который включает отрицательные значения, равен -0.08–3,38, тогда как диапазон процентной ошибки без отрицательных значений составляет от 0,08 до 4,53 (Chen et al. , 2005). Это означает, что если включены отрицательные значения, среднее или среднее будет ниже, но отклонение будет выше из-за дисперсии. С другой стороны, если учитывается абсолютная ошибка, все значения усредняются, и диапазон данных будет меньше, а желаемое значение будет намного лучше и стабильнее, что не является правильным представлением.

Таблица 10.3. Измеренные и прогнозируемые диаметры волокна

900,04 7 5,140
No. Измеренный диаметр
(мм)
Физическая модель Статистическая модель Модель ANN
Диаметр прогнозируемой ошибки (%) Диаметр прогнозируемой ошибки (%) Диаметр прогнозируемой ошибки (%)
1 5,45 5,068 –7,00 5,634 3,38 5,446 –0,07
2 4,31 3.891 –9,72 4,167 –3,32 4,310 –0,00
3 3,66 3,322 –9,23 3,767 2,92 3,659 –0,01
4 3,69 3,358 –8,99 3,707 0,45 3,694 0,10
5 5,23 4,733 –9,50 5.225 –0,08 5,234 0,07
6 4,13 3,727 –9,75 4,101 –0,69 4,126 –0,09
4 3,592 –11,08 4,161 3,00 4,043 0,07
8 5,44 4,868 –10,51 5,345 –1.74 5,436 –0,07
9 5,38 4,922 –8,51 5,283 –1,80 5,389 0,16
10 5,82 5,348 — 8,11 5,792 –0,48 5,819 –0,02
11 3,60 3,175 –11,80 3,718 3,28 3.600 0,01
12 4,04 3,604 –10,79 3,857 –4,53 4,039 –0,01
13 5,11 4,516 –11,62 0,59 5,112 0,03
Среднее значение –9,74 0,07 0,01
Стандартное отклонение 1.40 2,56 0,07

Источник: Chen et al. (2005).

В таблице 10.3 показаны измеренные диаметры волокон, прогнозируемые диаметры волокон и ошибки прогноза для трех моделей. Расчетные диаметры волокна статистической модели и модели ИНС являются средним значением 13 результатов. Из таблицы 10.3 видно, что характеристики ИНС и статистических моделей аналогичны друг другу, что дает средние ошибки 0,01% и 0.07% соответственно. Физическая модель со средней погрешностью — 9,74% работает хуже, чем предыдущие модели. Стандартное отклонение ошибки было самым низким в модели ИНС (0,07). Стандартное отклонение ошибки в физической модели составляло 1,41, а в статистической модели — 2,56. Это указывает на то, что ошибки прогнозирования статистической модели более дискретны, чем ошибки ИНС и физических моделей. Во всех выборках абсолютная ошибка в модели ИНС была ниже, чем в статистической и физической моделях.ИНС работает лучше, чем две другие модели, потому что допущения, сделанные в последней, не приняли во внимание все важные факторы.

Модель ИНС использовалась для прогнозирования диаметра волокна нетканых материалов, полученных методом экструзии с раздувом из расплава, исходя из параметров обработки (Чен и др. , 2006). Чтобы минимизировать ошибку предсказания, была предпринята попытка изучить влияние количества скрытых слоев и их нейронов. Параметры обработки, такие как расход полимера, начальная температура полимера, начальная скорость воздуха и начальная температура воздуха, были входными параметрами моделей.Выходным параметром моделей был диаметр волокна. В качестве полимера использовали полипропилен с индексом текучести 54 (г / 10 мин). Параметры обработки варьировали следующим образом: расход полимера 0,018, 0,035 и 0,070 г / с; начальная температура полимера 230, 260 и 290 ° С; начальная скорость воздуха 78, 168 и 235 м / с; и начальная температура воздуха 280, 310 и 340 ° С. Для измерения диаметра волокна использовался метод анализа изображений. Для модели использовалось 90 образцов нетканого материала, 60 — для обучающего набора, а оставшиеся 30 — для набора для тестирования.

Многослойная архитектура нейронной сети с прямой связью и алгоритмом обратного распространения была использована для прогнозирования диаметра волокна (Chen et al , 2006). Модель ИНС с одним скрытым слоем содержала от двух до девяти нейронов в скрытом слое. Была разработана модель ИНС с двумя скрытыми слоями, содержащими от двух до пяти нейронов в каждом скрытом слое. Модель ИНС с тремя скрытыми слоями может иметь от двух до пяти нейронов в каждом скрытом слое. Например, 4-5-3-3-1 означает, что есть 4, 5, 3, 3 и 1 нейрон во входном, первом, втором и третьем скрытых слоях и в выходном слое соответственно.Передаточными функциями скрытого слоя и нейронов выходного слоя были функция гиперболического тангенса и чисто линейная функция, соответственно.

Средняя ошибка и коэффициент вариации средней ошибки для структуры ИНС 4-5-3-3-1 составили 2,77% и 0,88% соответственно. Аналогичным образом, значения для структур ИНС 4-5-3-2-1 и 4-5-2-3-1 составили 2,77% и 0,78% и 2,79% и 0,72% соответственно. Структура ИНС 4-5-2-3-1 с тремя скрытыми слоями обеспечивала минимальную ошибку предсказания среди других структур и была выбрана в качестве предпочтительной сети.квадрат коэффициента корреляции между измеренным и прогнозируемым диаметрами волокна составил 0,942, что свидетельствует о хороших характеристиках модели.

Основные сведения о кабеле: оптоволоконный кабель

В свободной буферной конструкции волокно заключено в пластиковую трубку, внутренний диаметр которой значительно больше самого волокна. Внутренняя часть пластиковой трубки обычно заполнена гелевым материалом.

Свободная трубка изолирует волокно от внешних механических сил, действующих на кабель.Для многоволоконных кабелей некоторые из этих трубок, каждая из которых содержит одно или несколько волокон, объединены с силовыми элементами, чтобы волокна не подвергались нагрузкам и минимизировали удлинение и сжатие.

Изменяя количество волокон внутри трубки в процессе прокладки кабеля, можно контролировать степень усадки из-за изменения температуры, и, следовательно, степень ослабления в диапазоне температур сводится к минимуму.

Другой метод защиты волокна, плотный буфер, основан на прямом выдавливании пластика поверх основного покрытия волокна.

Плотные буферные конструкции способны выдерживать гораздо большие силы сжатия и удара без разрушения волокна.

Однако конструкция плотного буфера снижает изоляцию волокна от нагрузок, возникающих при изменении температуры. Будучи относительно более гибким, чем свободный буфер, если плотный буфер развернут с резкими изгибами или изгибами, оптические потери, вероятно, превысят номинальные характеристики из-за микроизгибов.

Усовершенствованная форма плотной буферной конструкции — это кабель с разрывом.В соединительном кабеле волокно с плотным буфером окружено арамидной пряжей и оболочкой, обычно из ПВХ. Эти однокомпонентные элементы волокна затем покрываются общей оболочкой, образуя соединительный кабель. «Этот кабель в кабеле» предлагает преимущество прямого и упрощенного подключения и установки разъема.

Каждой конструкции присущи преимущества. Свободная буферная трубка обеспечивает более низкое затухание кабеля из-за микроизгибов в любом конкретном волокне, а также высокий уровень изоляции от внешних сил.При постоянном механическом воздействии свободная трубка обеспечивает более стабильные характеристики передачи.

Конструкция с плотным буфером позволяет использовать меньшие по размеру и легковесные конструкции для аналогичной конфигурации волокна и, как правило, дает более гибкий и устойчивый к раздавливанию кабель.

Компромиссы свободного и узкого буфера

Справочник FOA для волоконной оптики


Оптический Волокно

Волоконная оптика — это работающая среда связи посылая оптические сигналы по тонким как волос прядям сверхчистое стекло или пластмассовое волокно.Свет «направляемый» вниз по центру волокна, называемый «основной». Сердечник окружен оптическим материалом называется «облицовка», которая улавливает свет в сердечник с использованием оптического метода, называемого «общий внутреннее отражение ». Само волокно покрытый «буфером», поскольку он сделан для защиты волокно от влаги и физических повреждений.Буфер это то, что снимают с волокна для завершения или сращивание.




сердцевина и оболочка большинства волокон сделаны из сверхчистое стекло, хотя некоторые волокна все пластиковая или стеклянная сердцевина и пластиковая оболочка.В ядро спроектировано так, чтобы иметь более высокий индекс преломление, оптический параметр, который является мерой скорости света в материале, чем облицовка, вызывающая «общую внутреннюю отражение «для улавливания света в ядре до определенный угол, определяющий числовой апертура волокна. Более технические подробности ниже.

Стекловолокно покрыто защитным пластиком. покрытие, называемое «первичным буферным покрытием», которое защищает его от влаги и других повреждений. Более защита обеспечивается «тросом», имеющим волокна и силовые элементы внутри внешнего защитное покрытие называется «куртка».


Также см. FOA Лекция 60 Как работает волокно (видео) Fiber Trivia

Хотя стеклянные оптические волокна изготовлены из материала, который все думают, что оно хрупкое, это сверхчистое стекло. на самом деле довольно гибкий и в 3 раза прочнее, чем стали и в 6 раз прочнее титана по крупнейший производитель оптического волокна Corning.


Волокно Типы: многомодовые и одномодовые, Размер сердечника / оболочки

В два типа волокна — многомодовое и одномодовое. Внутри этих категорий волокна обозначаются их основной состав (индекс ступени ММ или градиентный индекс) и диаметры сердцевины / оболочки, выраженные в микронах (одна миллионная метра), e.грамм. 50/125 мкм градуированный индекс многомодовое волокно. Большинство стекловолокон имеют толщину 125 микрон. по внешнему диаметру — микрон составляет одну миллионную метра и 125 микрон — это 0,005 дюйма — немного больше, чем типичный человеческий волос.

многомодовый в волокне свет проходит по сердцевине во многих лучах, так называемые режимы.У него более крупное ядро ​​(почти всегда 50 или 62,5 мкм), который поддерживает передача нескольких режимов (лучей) света. Многомодовый обычно используется со светодиодными источниками. на длинах волн 850 и 1300 нм (см. ниже!) для более медленные локальные сети (LAN) и лазеры на 850 (VCSEL) и 1310 нм (лазеры Фабри-Перо) для сети, работающие со скоростью гигабит в секунду или более.

одномодовый волокно имеет гораздо меньшую сердцевину, всего около 9 микрон, так что свет распространяется только одним лучом (режимом). используется для телефонии и кабельного телевидения с лазерными источниками на 1310 и 1550 нм, потому что он имеет меньшие потери и практически бесконечная пропускная способность.

1300 или 1310нм?
Fiber наполнен традиционным и традиционным жаргоном. часто тупой по смыслу.Проблема 1300/1310 восходит к прошлому к началу. Длинноволновые лазеры AT&T были статистически центрировано около 1310 нм (но варьировалось от 1290-1330 или более), поэтому они приняли 1310 нм номенклатура. Светодиоды с более широким и разнообразным спектральным выход (~ 1260-1350 нм со спектральной шириной 60-150 нм в зависимости от конструкции) стали называть 1300нм устройств.
Когда NBS (ныне NIST) создал калибровочный стандарт для измерители мощности, они использовали 850, 1300 и 1550 нм, поэтому метр калибровка обычно выполняется на этих длинах волн, хотя некоторые производители предлагают и 1300, и 1310 или называют это 1300/1310, потому что это несущественная разница в калибровка.
пластик Оптическое волокно (POF) с большим сердечником (около 1 мм) волокно, обычно ступенчатый индекс, которое используется для короткие, низкоскоростные сети.

шт. / HCS (пластиковая или жесткая оболочка из диоксида кремния, пластиковая оболочка на стеклянная сердцевина) имеет меньшую стеклянную сердцевину (около 200 мкм) и тонкой пластиковой обшивкой.

Волокно типы.Слева на чертеже показана сердцевина / оболочка. диаметры. В правой части рисунка указан указатель профиль волокна. Профиль индекса показывает относительный показатель преломления материала, используемого в изготовление волокна.

Всего внутренних Отражение

Показатель преломления стекла или любого оптического материала является мерой скорости света в материале и изменения показателя преломления — вот что заставляет свет изгиб — как показано на этой фотографии пластмассового стержня в пруд:

За пределами под определенным углом преломление приведет к тому, что свет будет отраженный от поверхности.Оптическое волокно использует это отражение, чтобы «захватить» волокно в сердцевине волокна за счет выбор основных и облицовочных материалов с соответствующими показатель преломления, который заставит весь свет отражается, если угол света ниже определенного угол. Мы называем это «полным внутренним отражением».


Там угол, который для любого данного волокна определяет общую внутреннее отражение.Под большими углами луч света будет преломляться, но недостаточно, поэтому он теряется в оболочка волокна. Ниже этого угла будет отражается обратно в сердцевину волокна и передается на конец волокна. Угол общего внутреннее отражение определяет «числовую апертуру» (NA) волокна, стандартная спецификация волокна.

Подробнее о полном внутреннем отражении в оптическом волокне.


Индекс шага многомодового волокна

Многомодовое волокно со ступенчатым показателем преломления было первым волокном дизайн. Сердцевина многомодового волокна со ступенчатым показателем преломления сделана полностью из одного типа оптического материала и облицовка другого типа с другими оптическими характеристики. Он имеет более высокое затухание и слишком медленно для многих применений из-за дисперсии, вызванной различная длина пути различных режимов путешествуя по ядру.Волокно со ступенчатым показателем преломления не является широко распространенным б / у — только POF и PCS / HCS (пластик или твердое покрытие кремнезем, пластиковая оболочка на стеклянном сердечнике) используйте ступеньку индексный дизайн сегодня. POF в основном используется для потребителей аудио и ТВ ссылки.




Многомодовое волокно с градиентным индексом

В многомодовом волокне с градиентным индексом состав стекла в ядре для компенсации различная длина пути мод.Это предлагает в сотни раз больше пропускной способности, чем у шагового оптоволокна — примерно до 4 гигагерц / км. Используются два типа, 50/125 и 62,5 / 125, где числа представляют диаметр сердцевины / оболочки в микронах. Многомодовое волокно с градиентным показателем преломления в основном используется для сети помещений, локальные сети, оптоволокно к столу, видеонаблюдение и другие системы безопасности.
Волокно с градуированным индексом (GI) производится с различными материалы в ядре, выбранные для минимизации модальных дисперсия, вызванная разной длиной пути по волокну передаются разные моды.В профиль показателя преломления керна изогнут, а точнее параболы — со стеклом с более низким показателем преломления на внешней стороне сердечника. В стекло с более низким показателем преломления пропускает световые лучи под большим углом (так называемые режимы высокого порядка) быстрее чем стекло с более низким показателем преломления около центра сердечника.


Индексный профиль сердцевины многомодового GI-волокна составляет не непрерывно, что трудно, если не невозможно производство, но поэтапно, от сотен шагов до тысячи в зависимости от конструкции волокна и производственный процесс.Поскольку режим света проходит на каждом шаге он слегка сгибается, пока не отразится обратно к сердцевине волокна.
Кому помочь визуализировать слои в волокне, рассмотрите Линза Френеля, «плоская» линза из кольцевых колец. из стекла, напоминающего обычный объектив. Эти линзы используются в огнях маяков, таких как этот:

Линза Френеля, подобная той, что используется в маяке, — это плоская линза из сегментов обычной линзы.


Показатель преломления связан со скоростью света в волокно; N = C / V, поэтому более высокий показатель преломления указывает, что свет движется с меньшей скоростью (V) относительно скорости света в вакууме (С.) Поскольку свет переходит в более низкий показатель преломления материал за пределами сердечника, это ускоряет по сравнению со скоростью в центре ядра.К тщательно проектируя и производя волокно, вы можете получить среднюю скорость режима высшего порядка примерно так же, как и режимы, идущие прямо вниз волокно, уменьшающее модальную дисперсию.

Хотя большая часть волокна с дифференцированным показателем преломления целиком состоит из стекла, есть также некоторые волокна GI POF.

Одномодовое волокно

Одномодовое волокно сжимает сердцевину до такой степени, что свет может перемещаться только в одном луче или режиме, отсюда и название одиночный режим.

Так как режим только один, проблем с модальная дисперсия и выбор материала сердцевины могут уменьшить хроматическую дисперсию (см. ниже), что увеличивает пропускная способность почти бесконечна — но это практически ограничивается примерно 100 000 гигагерц — это еще много! Одномодовое волокно имеет диаметр сердцевины 8-10 мкм, заданный как «диаметр модового поля», эффективный размер сердечника и оболочки диаметром 125 мкм.

Специальные волокна были разработаны для приложений которые требуют уникальных характеристик волокна. В волокнах используются одномодовые волокна, легированные эрбием. усилители, устройства, используемые очень долго удаленные сети для регенерации сигналов. Волокна оптимизирован для полосы пропускания на длинах волн, подходящих для DWDM системы или для обращения хроматической дисперсии.Этот является активной областью развития волокон.

Волокна, нечувствительные к изгибу

Затухание в оптическом волокне чувствительно к нагрузке как встречается при слишком сильном сгибании волокна, особенно с патчкордами и волокнами в плотных вольеры. Стресс заставляет свет выходить из сердцевины волокно, вызывающее потери.Модификация волокна индексный профиль, добавляя слой стекла с низким индексом вокруг сердечника, обычно называемого оптическим желобом, который направляет или отражает свет, потерянный от сердечника, обратно в сердцевину может сделать волокно менее чувствительным к потери на изгибе. Это можно сделать как с многомодовыми и одномодовые волокна.

Многие волокна теперь доступны как нечувствительные к изгибу. волокна, включая большинство многомодовых волокон.Одиночный режим волокна, используемые в патчкордах, малый диаметр, высокое волокно подсчитать кабели, называемые микрокабелями, и специальные кабели обычно представляют собой нечувствительные к изгибу волокна.

Подробнее на нечувствительных к изгибу волокнах.


Производство Оптическое волокно

The производство оптического волокна до субмикронного точность — интересный процесс, связанный с созданием сверхчистое стекло и растягивая его в пряди, размер человеческого волоса.Процесс начинается с изготовление преформы, стеклянного стержня большого диаметра который имеет то же оптическое сечение, что и волокно, но в сотни раз больше. Конец стержень нагревается и тонкая нить волокна вытаскивают из спектакля и наматывают на большие катушки. После изготовления волокно тестируется, а затем изготавливается в кабель.


Здесь Больше информация о производстве волокна.

Волокно Размеры и типы Волокно бывает двух типов: одномодовое и многомодовый.За исключением волокон, используемых в специальных приложений, одномодовое волокно можно рассматривать как одно размер и тип. Если вы работаете в сфере дальней связи или подводные кабели, возможно, придется работать по специальности одномодовые волокна.

Относительные размеры всех волокон

Сравнение размеров сердцевины / оболочки

Вот еще один способ взглянуть на волокно — Оптическое волокно Семейное древо


Для получения информации о том, что все разные обозначения означает, см. таблицу ниже или перейдите здесь.

Многомодовые волокна изначально были нескольких размеров, оптимизирован для различных сетей и источников, но данные промышленный стандарт на 62,5-жильное волокно в середине 80-х (Волокно 62,5 / 125 имеет сердцевину 62,5 мкм и 125 мкм облицовка. Теперь это стандартное волокно OM1.) поскольку гигабитные и 10-гигабитные сети получили широкое распространение была возрождена старая конструкция волокна.50/125 волокно использовалось с конца 70-х годов с лазерами для телекоммуникаций. приложений до того, как стали доступны одномодовые волокна. Оптоволокно 50/125 (стандарт OM2) обеспечивает более высокую пропускную способность с лазерные источники, используемые в гигабитных локальных сетях, и могут позволить гигабитные ссылки для больших расстояний. Новее OM3 или оптимизированное для лазера оптоволокно 50/125 сегодня рассматривается большинством быть лучшим выбором для многомодовых приложений.Волокно OM4 — это волокно с более высокой пропускной способностью для сетей 10G +. OM5 — это широкополосное многомодовое волокно, оптимизированное для длины волны. мультиплексирование с разделением на VCSEL на длине волны 850-950 нм диапазон.

Для идентификации типов волокна в кабеле существуют стандартизованные цветовые коды для покрытой оболочки кабеля под TIA-598. Здесь дополнительная информация о цветовых кодах кабелей и разъемы.

Волокно Типы и типовые характеристики
(OM / OS относится к типам TIA, B относится к IEC типы, G относится к типам ITU)
Сердечник / оболочка Затухание Пропускная способность Приложения / Примечания
Многомодовый Индекс оценок
@ 850/1300 нм @ 850/1300 нм
50/125 микрон (OM2, G.651,1) 3/1 дБ / км 500/500 МГц-км Лазерный для сетей GbE
50/125 микроны (OM3, G.651.1) 2.5 / 0,8 дБ / км 1500/500 МГц-км Оптимизировано для 850 нм VCSEL
50/125 микроны (OM4, G.651.1) 2,5 / 0,8 дБ / км 3500/500 МГц-км Оптимизировано для 850 нм VCSEL, более высокая скорость
50/125 мкм (OM5) 2.5 / 0,8 дБ / км 3500/500 МГц-км широкополосный MMF, оптимизированный для WDM 850-950 нм VCSEL, повышенная скорость
62,5 / 125 мкм (ОМ1) 3/1 дБ / км 160-200 / 500 МГц-км LAN волокно
100/140 мкм 3/1 дБ / км 150/300 МГц-км Вышло из употребления
Одиночный режим
@ 1310/1550 нм *
9/125 микроны (OS1 B1.1 или G.652) 0,4 / 0,25 дБ / км
ВЫСОКИЙ!
~ 100 Терагерц
Одномодовый волокно, наиболее распространенное для Telco / CATV / высокоскоростные локальные сети.OS1 — это обозначение TIA-568 для оптоволоконного кабеля SM для использование помещений с более высоким затуханием — 1 дБ / км. Все волокна SM имеют мало воды пиковое волокно.
9/125 микроны (OS2, B1.2 или G.652) 0,4 / 0,25 дБ / км
ВЫСОКИЙ!
~ 100 Терагерц
Низкий водное пиковое волокно.OS2 — это обозначение TIA-568 для SM-волокна. с кабелем для наружного использования.
9/125 микроны (B2 или G.653) 0,4 / 0,25 дБ / км
ВЫСОКИЙ!
~ 100 Терагерц
Дисперсия смещенное волокно
9/125 микроны (B1.2 или G.654) 0,4 / 0,25 дБ / км
ВЫСОКИЙ!
~ 100 Терагерц
Отрезка смещенное волокно
9/125 микроны (B4 или G.655) 0,4 / 0,25 дБ / км
ВЫСОКИЙ!
~ 100 Терагерц
Ненулевое значение волокно со смещенной дисперсией
9/125 микрон (G.657)
0,4 / 0,25 дБ / км
ВЫСОКИЙ!
~ 100 Терагерц
нечувствительность к изгибу волокно
Многомодовый Шаг-указатель
@ 850 нм @ 850 нм
200/240 мкм 4-6 дБ / км 50 МГц-км Медленно ЛВС и ссылки
POF (пластиковое оптическое волокно)
@ 650 нм @ 650 нм
1 мм ~ 1 дБ / м ~ 5 МГц-км Короткий Ссылки и автомобили

* Некоторые стандарты теперь включают затухание на 1383 нм (вода пик), который обычно не превышает 1310 нм.

ВНИМАНИЕ: нельзя смешивать и сочетать волокна! Пытаясь подключение одномодового к многомодовому волокну может привести к 20 дБ потеря — это 99% мощности. Даже связи между 62,5 / 125 и 50/125 могут вызвать потери на 3 дБ и более — более половины мощности. Более на несовпадающих волокнах.

Характеристики волокна

Обычные характеристики волокна — это размер (диаметр сердцевины / оболочки в микронах), затухание коэффициент (дБ / км на соответствующих длинах волн) и полоса пропускания (МГц-км) для многомодового волокна, хроматического и поляризационно-модовая дисперсия для одномодового волокна.В то время как производители имеют другие спецификации для проектирования и производство волокна в соответствии с отраслевыми стандартами, например числовая апертура (угол приема света в волокно), овальность (насколько круглое волокно), концентричность сердечника и оболочки и т. д., эти спецификации обычно не влияют на пользователей, которые указывают волокна на покупку или установку.Здесь дополнительная информация о тестировании спецификаций волокна.

Некоторые волокна были разработаны, чтобы быть менее чувствительными. к потерям, вызванным изгибом. Эти «нечувствительные к изгибу» волокна предназначены для использования в качестве патчкордов или в тесных помещениях приложения, где обычные волокна будут нести потери. Вот это больше информации о нечувствительных к изгибу волокнах.

Затухание
Основной спецификацией оптического волокна является затухание. Затухание означает потерю оптической мощности. Затухание в оптическом волокне выражается коэффициент затухания, который определяется как потеря длина волокна на единицу длины в дБ / км.



Затухание в оптическом волокне является результатом двух факторы поглощения и рассеяния.Поглощение вызванные поглощением света и преобразованием в тепло молекулами в стекле. Первичные поглотители остаточный ОН + и легирующие примеси, используемые для изменения преломляющей индекс стекла. Это поглощение происходит на дискретных длины волн, определяемые элементами, поглощающими свет. Абсорбция ОН + преобладает и происходит наиболее сильно около 1000 нм, 1400 нм и выше 1600 нм.Сегодня многие волокна представляют собой волокна с низким пиком воды, в которых Полосы поглощения OH + были значительно уменьшены, что позволило версия мультиплексирования с разделением по длине волны для использования эти длины волн.



Самая большая причина затухания — это рассеяние. Рассеяние происходит при столкновении света с индивидуальным атомов в стекле и является анизотропным.Свет, который есть рассеянных под углами за пределами числовой апертуры волокно впитается в оболочку или передается обратно к источнику. Рассеяние также является функция длины волны, пропорциональная обратной четвертая степень длины волны света. Таким образом, если вы удвоить длину волны света, вы уменьшите потери на рассеяние в 2 раза в 4 степени или в 16 раз.

Например, потери в многомодовом волокне намного выше на длине волны 850 нм (называемой короткой длиной волны) при 3 дБ / км, в то время как на длине волны 1300 нм (называемой длинной волной) она составляет всего 1 дБ / км. Это означает, что на длине волны 850 нм половина света теряется на 1 км. в то время как на 1300 нм теряется только 20%.

Следовательно, для передачи на большие расстояния это выгодно использовать самую длинную практическую длину волны для минимальное затухание и максимальное расстояние между повторители.Вместе поглощение и рассеяние создают кривая затухания для типичного стеклянного оптического волокна показано выше.

Оптоволоконные системы передают в созданных «окнах» между полосами поглощения при 850 нм, 1300 нм и 1550 нм нм, где физика также позволяет изготавливать лазеры и детекторы легко. Пластиковое волокно имеет более ограниченный диапазон длин волн, ограничивающий практическое использование светодиодами с длиной волны 660 нм источники.

Подробнее: Wavelength Полосы, используемые для оптоволоконной передачи


дисперсии в многомодовом и одномодовом оптоволокне

Дисперсия относится к расширение или распространение световых импульсов по мере их прохождения вниз по оптическому волокну. Дисперсность — один из факторов что ограничивает пропускную способность оптоволоконного канала вместе с ширина полосы передатчика-источника.Дисперсия имеет несколько причин, описанных ниже.

Полоса пропускания

Пропускная способность передачи информации многомодового волокна составляет ограничивается двумя отдельными компонентами дисперсии: модальным и хроматический. Модальная дисперсия возникает из-за того, что профиль показателя преломления многомодового волокна не идеален. Градуированный профиль индекса был выбран теоретически таким образом, чтобы разрешить всем режимам иметь одинаковую групповую скорость или скорость прохождения по длине волокна.Сделав внешние части сердечника имеют более низкий показатель преломления чем внутренние части сердечника, моды более высокого порядка ускоряются по мере удаления от центра ядра, компенсируя их большую длину пути.

В идеализированном волокне все моды имеют одну и ту же группу скорости и модальной дисперсии не происходит. Но на самом деле волокна, профиль показателя преломления является приблизительным, и все режимы не передаются идеально, что позволяет некоторым модальным дисперсия.Поскольку моды более высокого порядка имеют больше отклонения, модальная дисперсия волокна (и следовательно, его полоса пропускания лазера), как правило, очень чувствителен к модальным условиям в волокне. Таким образом полоса пропускания более длинных волокон нелинейно ухудшается по мере того, как моды более высокого порядка ослабляются сильнее.

Второй фактор в полосе пропускания волокна, хроматический дисперсия влияет как на многомодовое, так и на одномодовое волокно.Помните, что призма расширяет спектр происшествий свет, поскольку свет движется с разной скоростью в соответствии с его цветом и поэтому преломляется на разные углы. Обычный способ заявить, что это показатель преломления стекла — длина волны зависимый. Таким образом, тщательно изготовленный градуированный индекс профиль можно оптимизировать только для одной длины волны, обычно около 1300 нм, а свет других цветов будет страдают хроматической дисперсией.Даже свет в том же режим будет разогнан, если он другой длины волн.

Хроматическая дисперсия — большая проблема для светодиодных источников в ММ-волокне, которое имеет широкие спектральные выходы, в отличие от лазеры, которые концентрируют большую часть своего света в узком спектральный диапазон. Такие системы, как FDDI, основанные на широком со спектральным выходом светодиодов с поверхностным эмиттером, страдающих такими интенсивная хроматическая дисперсия, что передача была ограничивается всего двумя км из 62.5/125 волокна.

Хроматическая дисперсия (CD) также влияет на длинные ссылки в одномодовые системы, даже с лазерами, поэтому волокна и источники оптимизированы для минимизации хроматической дисперсии в междугородних ссылках. Дефекты волокна и нагрузка на волокна могут вызывать поляризационную модовую дисперсию (PMD) по длинным ссылкам. И CD, и PMD тестируются на кабеле. установки для протяженных высокоскоростных волоконно-оптических сетей, а процесс, называемый характеристикой волокна.

Узнать больше о дисперсия в оптическом волокне. Более на CD и PMD.


Нечувствительность к изгибу (BI) Fibers
При прокладке кабелей с малым количеством волокон внутри помещений и прокладка патчкордов вокруг патч-панелей, оптоволокно кабели могут подвергаться сильным перегибам. Этот стресс может вызвать потери при изгибе волокон и даже длинные срок отказа.Производители волокна теперь предлагают нечувствительные к изгибу волокна, как одномодовые, так и многомодовые, более устойчивые к резкому изгибу. Один производитель даже демонстрирует волокно прикрепив его к деревянным шпилькам с помощью степлера, практики мы настоятельно рекомендуем вам не пробовать только для демонстрации! Нечувствительные к изгибу волокна большое преимущество для патчкордов или когда волокна подвергается стрессу, но производители должны проконсультировались, чтобы узнать, требуют ли эти волокна специальных методы соединения, завершения или тестирования.Более на BI-волокнах.

Тест Ваше понимание

Таблица Содержание: Справочное руководство FOA по волоконной оптике

Оценка взаимосвязи между толщиной нервных волокон сетчатки, толщиной улиткового нерва, уровнем шума в ушах и потерей слуха у пациентов с односторонним тиннитусом

Фон: В этом исследовании была проведена оптическая когерентная томография (ОКТ), чтобы проверить, было ли какое-либо взаимодействие между офтальмологическими аксональными структурами у пациентов с односторонним тиннитусом, и была оценена взаимосвязь между толщиной зрительного нерва и толщиной кохлеарного нерва.

Задача: Целью исследования было оценить взаимосвязь между потерей слуха, шумом в ушах и утолщением нервов.

Дизайн исследования: Перспективное исследование.

Параметр: Третичная университетская больница.

Пациенты: В исследование были включены 88 пациентов с односторонним шумом в ушах, органические причины которого не могли быть обнаружены при физикальном обследовании, психиатрической оценке или с помощью методов визуализации. Исследовательские группы были сформированы со стороны тиннитуса, а контрольные группы — со стороны здорового человека: 1-я группа (нормальные значения слуха без тиннитуса — n = 30), 2-я группа (минимальная потеря слуха со стороны без тиннитуса — n = 27). ), Группа 3 (умеренная потеря слуха на стороне без шума в ушах — n = 31), Группа 4 (нормальные значения слуха на стороне шума в ушах — n = 25), Группа 5 (минимальная потеря слуха на стороне шума в ушах — n = 25) и Группа 6 ( тиннитус со стороны средней тугоухости — n = 38).

Вмешательство: Толщина слоя нервных волокон сетчатки (СНВС) оценивалась с помощью ОКТ, а площадь поперечного сечения улиткового нерва оценивалась с помощью МРТ.

Основные показатели результатов: Измерения RNFL проводились с помощью OCT из субфовеальной области (RNFL-SF) и 1.5 мм височно от фовеа (RNFL-T мкм) и носового (RNFL-N мкм) секторов. На МРТ было проведено 3 измерения вдоль нерва от мостомозжечкового угла до внутреннего слухового прохода, и было вычислено среднее значение этих 3 измерений.

Полученные результаты: Когда группы оценивались в отношении толщины улиткового нерва, значительная разница была замечена между группой 1 и обеими группами с потерей слуха и группами тиннитуса.При анализе подгрупп была определена статистически значимая разница между группой 1 и группами 3, 4, 5 и 6 (p = 0,013, p = 0,003, p <0,001 и p <0,001, соответственно). Когда группы оценивали в отношении значений RNFL-SF (мкм), RNFL-T (мкм) и RNFL-N (мкм), различия были определены как статистически значимые (p <0,001 для всех). При корреляционном анализе была определена отрицательная корреляция между потерей слуха и диаметром улиткового нерва (r: -0.184, p = 0,014) и RNFL-N (r: -0,272, p <0,001) и между тиннитусом и диаметром улиткового нерва (r: -0,536, p <0,001) и RNFL-T (r: -0,222, p <0,009).

Заключение: Результаты исследования четко показали взаимосвязь между толщиной нервных волокон улитки и потерей слуха и тяжестью шума в ушах в случаях одностороннего шума в ушах, а также что в этиологии заболевания могут быть нейродегенеративные факторы.Подобная взаимосвязь, наблюдаемая с RNFL, подтверждает гипотезу исследования.

Ключевые слова: Толщина улиткового нерва; Слой нервных волокон сетчатки; Односторонний шум в ушах.

Стандартные толщины | Композиты Protech

0,25 мм (0,010 дюйма) Глянцевая с одной стороны
Наш очень тонкий шпон из углеродного волокна.
Очень гибкий лист из углеродного волокна, обычно используемый в качестве тонкого шпона поверх других материалов, таких как алюминий или МДФ.Его можно обернуть вокруг трубы диаметром 1 дюйм и разрезать ножницами или бритвенным ножом. Этот шпон из углеродного волокна — идеальный выбор для приклеивания к гладкой плоской поверхности, чтобы получить удивительную глубину и красоту настоящего углеродного волокна при невысокой стоимости.

0,5 мм (0,020 дюйма) Глянцевая с одной стороны
Наш стандартный тонкий шпон / лист из углеродного волокна.
Довольно гибкий шпон из углеродного волокна, он оборачивается вокруг трубы диаметром 4 дюйма. Этот лист можно разрезать хорошими ножницами или острым бритвенным ножом.Чаще всего используется для проектов, требующих декоративного ламинирования поверх другой жесткой панели или основания. Дополнительная толщина и жесткость покрывают небольшие дефекты подложки, которые могут быть видны сквозь лист толщиной 0,25 мм.

1,0 мм (0,038 дюйма) Глянцевая с одной стороны
Лист из углеродного волокна со средним содержанием углерода.
Этот лист гибкий, но обычно используется в плоской форме. Его можно согнуть вокруг трубы диаметром от 10 до 12 дюймов, и он работает. а также полужесткий шпон, либо легкий конструкционный материал.Красивый зеркальный блеск с одной стороны и фактурная склеивающая поверхность с обратной. Эту панель можно разрезать с помощью нескольких надрезов бритвенным ножом или абразивным отрезным кругом. Очистите края наждачной бумагой с зернистостью 220 для получения мягкого и гладкого ощущения.

1,3 мм (0,052 дюйма) Глянцевая с одной стороны
Жесткий лист из углеродного волокна
Обладая небольшой гибкостью, эта панель из углеродного волокна оборачивается вокруг 24-дюймовой трубы. Она обычно используется в легких конструктивных элементах или приборные панели для поддержки датчиков и органов управления.Этот лист — самое толстое углеродное волокно с глянцевой поверхностью. Его можно резать твердосплавным фрезером / битами с ЧПУ или абразивными отрезными кругами. Как и все изделия из углеродного волокна, лучше всего подходят лезвия со сплошным ободом и без зубьев.

1,7 мм (0,068 дюйма) Матовая текстура на ОБЕИХ сторонах
Структурная панель — очень жесткий лист из углеродного волокна
Эта панель из углеродного волокна является полужесткой с небольшим изгибом и обычно не требует поддержки для поддержки установленных на нем датчиков и органов управления.Его можно резать твердосплавными битами или абразивными отрезными кругами. Для резки элементов можно использовать стандартные инструменты dremel, но инструменты из простой стали изнашиваются после резки нескольких панелей. Многие режущие инструменты с алмазным покрытием (могут использоваться для панелей всех размеров) доступны в хозяйственных магазинах по низкой цене.

2,4 мм (0,093 дюйма) Матовая текстура на ОБЕИХ сторонах
Структурная панель — жесткая пластина из углеродного волокна
Очень жесткая, эта панель из углеродного волокна предназначена для легких конструктивных компонентов и идеально подходит для шасси радиоуправляемого автомобиля, квадроцикла -коптеры, робототехника и др.Ему не нужна подкладка для поддержки установленных на нем датчиков и органов управления. Его можно разрезать твердосплавной пилой или абразивными отрезными кругами. Для резки элементов можно использовать стандартные инструменты dremel, но инструменты из простой стали изнашиваются после резки нескольких панелей. Режущие инструменты с алмазным покрытием также являются хорошим выбором.

3,1 мм (0,122 дюйма) Матовая текстура на ОБЕИХ сторонах
Структурная панель толщиной 1/8 дюйма — жесткая пластина из углеродного волокна
При толщине 0,134 дюйма или 1/8 дюйма наша пластина ProPlate 3,4 мм представляет собой отличный выбор, если вы ищете функциональность углеродного волокна в толстой конструкционной пластине.ProPlate изготовлен из 100% углеродного волокна, сшитого вместе толстыми слоями. Повышенная эффективность этого предварительно прошитого материала позволяет нам предлагать его по более низкой цене, чем наши обычные запасы. Вы получите ту же производительность, что и наш стандартный продукт, по более низкой цене.

ProPlate будет выглядеть практически так же, как и любые другие наши панели из углеродного волокна. Единственный признак того, что это ProPlate, — это волнистая линия стежка, видимая на кромке среза. По этой причине мы не рекомендуем этот продукт для применений, связанных с шлифовкой или полировкой, которая может обнажить линии стежков.

Сделанный из комбинации саржевого переплетения 6K 2×2 и однонаправленной углеродной ткани 12k, этот продукт на 100% состоит из настоящего углеродного волокна. Обе стороны имеют текстурированную матовую поверхность, что позволяет приклеивать ее к любой поверхности с помощью нашего высокопроизводительного двустороннего клея 3M. Этот лист можно разрезать стандартными инструментами dremel, но мы рекомендуем режущие инструменты с твердосплавным, биметаллическим или алмазным покрытием.

Также доступны нестандартные толщины и размеры. Изготовим любую толщину до.5 ”. Наша саржа 2×2 доступна в 19 стандартных размерах продукта от 4 «x4» до 50 «x100». Однако, если вам нужен другой размер, просто спросите — другие размеры можно вырезать за небольшую плату.

Ультра-упрощенное одноступенчатое изготовление микроструктурированного оптического волокна

Оптические волокна произвели революцию в способах связи, поскольку на них приходится большая часть реального глобального трафика данных. Сегодня на планете проложены сотни миллионов километров оптических волокон.Трафик данных удваивается каждые два года, что представляет собой 1000-кратное увеличение всего за 20 лет.

Оптические волокна получили значительное развитие в конце 1990-х годов, когда были предложены и разработаны структуры с внутренним поперечным сечением микроструктуры. Пионер Филип Рассел из Univ. Бата ​​(Великобритания) и его исследовательской группы, разработка фотонно-кристаллических волокон (PCF) или микроструктурированных оптических волокон (MOF), расширила и произвела революцию в области направленной оптики 1,2,3 .Наличие структур в масштабе длины волны с высоким контрастом показателя преломления (материал волокна по отношению к воздуху) открыло возможность широкого управления оптическими свойствами волокна. Хроматическая дисперсия, модальная площадь, кратковременное поле оболочки, двойное лучепреломление и нелинейность, например, могут сильно зависеть от конкретного распределения отверстий — размер, форма, положение 1,2 . С другой стороны, обычные оптические волокна имеют небольшой контраст показателя преломления сердцевина / оболочка, обычно менее 1%.

В то время как волокна с твердой сердцевиной и дырчатой ​​оболочкой с направляющей с более низким показателем преломления за счет полного внутреннего отражения, как и традиционные оптические волокна, волокна с полой сердцевиной (HCF) позволили использовать новые направляющие механизмы.Сложные конструкции оболочки позволяют управлять через запрещенную фотонную зону. Более простые конструкции обеспечивают низкий коэффициент пропускания за счет ингибированной связи 4 или антирезонансной связи 5 .

В то время как большинство традиционных волокон и MOF изготавливаются из диоксида кремния из-за их замечательных оптических и физических свойств, волокна также могут быть изготовлены из полимеров и некремнеземных стекол. В начале 2000-х годов были разработаны оптические волокна из микроструктурированного полимера 6 , расширяющие область применения обычных полимерных волокон.

Во всех случаях оптические волокна обычно вытягиваются в многоступенчатом процессе, основным этапом которого является изготовление увеличенной версии волокна, преформы. Для изготовления макроскопической преформы использовались разные подходы. Стандартные оптические волокна основаны на методах осаждения из паровой фазы для изготовления преформ с низкими потерями. С другой стороны, преформы MOF с характерным набором отверстий для воздуха производятся с использованием различных технологий. MOF из диоксида кремния обычно изготавливают методом «стопки и вытяжки» 1 , при котором капилляры толщиной миллиметра укладываются вручную в стопку, образуя желаемую структуру.Это удобная и универсальная процедура, когда пробирки широко доступны, например, для диоксида кремния, а также для некоторых боросиликатных стекол (например, Duran 7 ). Однако штабелирование занимает много времени. MOF из мягкого стекла также могут быть изготовлены с помощью этой процедуры, но с дополнительной сложностью из-за первоначальной потребности в производстве трубок 8 .

Полимерные MOF были изготовлены путем прямого сверления отверстий в пластиковом стержне 6 , метод, который также применялся с очками 9,10 .Как и при методе штабелирования, сверление ограничивается круглыми отверстиями. Это также ограничено короткими преформами. Альтернативой является отливка волокнистого материала в заранее разработанной форме, процедура, используемая для формования пластика 11 и стекловолокна 12 .

Заготовки из мягкого стекла и полимеров также были изготовлены путем экструзии заготовок — прямого и понятного способа получения структур сложной конструкции. Экструзия заготовки включает изготовление заготовки из выбранного оптического материала, нагрев заготовки для снижения ее вязкости (обычно до 10 8 -10 10 дПа · с 13 ) и, с помощью плашки, нагнетание материалы через матрицу с желаемым рисунком 14 .Экструзионная фильера включает начальную секцию с отверстиями для подачи материала, подлежащего экструзии, и задний сегмент, который имеет твердые элементы для блокирования потока материала в заранее определенных областях, позволяя экструзию преформы с отверстиями. Этот метод оказался успешным в производстве высококачественных MOF из мягкого стекла 14 (такого как силикат свинца, теллурит, висмут, фторид, халькогенид, фосфат) и полимера (например, PMMA 15,16 ).

Для мягких стекол установка для экструзии заготовок была также объединена с вытяжкой волокна путем непосредственного размещения установки на вершине башни вытяжки волокна.В этом случае экструдированная преформа нагревается башенной печью и вытягивается до уменьшенного диаметра 17 . Экструзия многоматериальных преформ также возможна, когда заготовка формируется из стопки различных материалов 18 .

Экструзионные матрицы обычно обрабатываются на станках с ЧПУ, и нержавеющая сталь является наиболее распространенным материалом для штампов. Недавно было показано, что штампы из Cr-Co-Mo и титана, напечатанные на 3D-принтере, подходят для выдерживания высоких температур (560–600 ° C) и высоких усилий (20 кН), возникающих в процессе экструзии промышленного свинцово-силикатного стекла 19 без каких-либо механических повреждений детали, напечатанной на 3D-принтере, что открывает беспрецедентную свободу в проектировании штампов с помощью 3D-печати.Совсем недавно 20 , титановая матрица, напечатанная на 3D-принтере, использовалась для изготовления многоядерного MOF для получения изображений. В то время как в 19 заготовка волокна была экструдирована через фильеру и затем вытянута в оптическое волокно, в 20 волоконные стержни с четырьмя сердечниками были экструдированы, затем уложены в стопку, образуя структуру из 100 сердечников, и, наконец, вытянуты в волокно. Важно отметить, что штампы, напечатанные на 3D-принтере, имеют более высокую шероховатость поверхности по сравнению с обработанными на станке, что может повлиять на качество экструдированной преформы и волокна.Это может быть особенно вредным для потерь на рассеяние в микроструктурированных оптических волокнах, зависящих, например, от показателя преломления материала волокна и размера сердцевины. Однако было показано, что полировка только последних нескольких миллиметров внутренних поверхностей выхода фильеры (которые доступны через наконечник конца сопла) решит проблему 19 , обеспечивая качество поверхности экструдированных оптических образцов, аналогичное качеству поверхности. одни производятся с механически обработанными матрицами.

Следует отметить, что экструзия позволяет производить все элементы поперечного сечения одновременно, в отличие от процедур штабелирования и вытяжки и сверления, когда отверстия формируются последовательно.Стандартный способ, однако, заключается в экструдировании макроскопической преформы, которая затем вытягивается на ступень оптического волокна, что означает многоступенчатый процесс, требующий сложного оборудования.

Стандартные цельнотвердые полимерные волокна могут быть экструдированы в одном процессе, при котором одновременно подаются два материала, формируя волокно из двух разных материалов / составов, чтобы обеспечить границу раздела сердцевина-оболочка. Здесь сырьем могут быть полимерные гранулы или очищенные мономеры.

С другой стороны, при экструзии стеклянных или полимерных MOF сырье представляет собой объемную заготовку, а не гранулы.Заготовку обычно вырезают из большей массы материала или готовят путем полного сплавления сырья / гранул вместе для обеспечения высокого оптического качества.

В последние несколько лет был разработан совершенно новый метод изготовления преформ оптических волокон, основанный на использовании процессов аддитивного производства. В этом случае сама преформа печатается на 3D-принтере, а затем вытягивается на оптическое волокно с помощью специальной башни для вытяжки оптического волокна. Волокна с полой сердцевиной 21,22 и сплошной сердцевиной 23 были изготовлены таким образом с использованием имеющихся в продаже полимерных нитей.Было показано наведение в видимом и инфракрасном диапазонах. Недавно технология была расширена для печати образцов стекла, например, боросиликатом 24 , кремнеземом 25 и халькогенидом 26 . Волоконно-оптические волокна со ступенчатым показателем преломления 27 также были произведены посредством аддитивного производства по многоступенчатой ​​процедуре.

Еще одним прорывным событием в этой области стала идея упростить процедуру производства MOF путем экструзии непосредственно из 3D-принтера с использованием акрилонитрилбутадиенстирольной нити (ABS) и специальной микрообработанной форсунки 28 .Было успешно изготовлено волокно с подвешенной сердцевиной, но можно было получить только короткие отрезки волокна, прежде чем отверстия схлопнулись. Несмотря на то, что этот метод сочетал экструзию и вытягивание в непрерывном процессе, исходный материал, то есть полимерная нить, получали из гранул в отдельном процессе на другом оборудовании.

В этой работе единый непрерывный процесс от гранул до конечной MOF достигается путем одновременного экструдирования гранул и вытягивания экструдированного материала с использованием компактного настольного горизонтального экструдера на основе гранул, изначально предназначенного для производства нитей для 3D-принтеров.Этот процесс в корне отличается от существующих технологий экструзии заготовок, используемых для производства MOF, где задействованы несколько этапов и оборудование, включая формирование заготовки с использованием способности плавления стекла / полимера, экструзию заготовки для получения преформы с использованием плунжерного экструдера и, наконец, вытягивание преформы. для волокна с помощью вытяжной башни. В отличие от этого, наша новая технология непрерывного непрерывного процесса требует только одного базового оборудования для прямого перехода от окатышей к МФ. Кроме того, наша технология также отличается от использования экструдера 3D-принтера в качестве оборудования, где MOF изготавливается из нитей путем одновременной экструзии и вытягивания 28 , тогда как в нашем процессе одновременной экструзии и вытягивания гранулы используются непосредственно в качестве исходного материала, таким образом исключение стадии изготовления нити из гранул методом экструзии.Кроме того, использование компактного экструдера волокон для изготовления волокна непосредственно из гранул позволяет улучшить контроль процесса и стабильность, поскольку такой экструдер уже разработан для производства волоконоподобных структур (то есть волокон для 3D-печати). Наш процесс позволяет изготавливать волокна сложной геометрии, экономя при этом затраты, время, энергию и занимаемую площадь. Показано, что 3D-печать металлом является мощным методом изготовления сопел, используемых для изготовления MOF. Были выбраны три хорошо зарекомендовавших себя геометрии MOF, чтобы продемонстрировать жизнеспособность нашей новой технологии для производства широкого диапазона структур MOF.Были определены параметры потока экструдера и охарактеризована геометрия волокон. Оптическое направление полого волокна было проанализировано, и было показано, что направление находится в воздушной сердцевине в спектральном диапазоне, где материал волокна непрозрачен.

Купить листы и пластины из углеродного волокна

Огромный выбор материалов ◾ Пластины из углеродного волокна длиной от 6 дюймов до 132 дюймов ◾ Доступны высококачественные листы и недорогие варианты

Мы производим пластины из углеродного волокна в тканевом и однонаправленном исполнении, из различных материалов, отделки и толщины.От прямых листов из углеродного волокна до гибридных композитов, от фанеры до пластин толщиной почти два дюйма — композиты значительно экономят вес по сравнению с металлическими пластинами. Независимо от того, большой ли ваш проект или маленький, у нас обязательно найдется пластина из углеродного волокна, которая соответствует вашим потребностям. Мы также предлагаем услуги механической обработки. Свяжитесь с нами, чтобы узнать цену! Чтобы помочь вам сразу же приступить к работе над проектом, мы, как правило, можем отправить большую часть продуктов, перечисленных в нашем магазине, в течение одного рабочего дня.