Устройство юсб: USB — Википедия – что такое? Виды и фото :: SYL.ru

Содержание

что такое? Виды и фото :: SYL.ru

Что такое USB? На сегодняшний день об этом не знает и не слышал, наверное, только ленивый. USB прочно вошел в жизнь современного человека, и многие сферы деятельности невозможно без него представить. USB по популярности обошел все другие аналогичные интерфейсы, которые взаимодействуют с компьютерными периферийными устройствами. Разъемами USB оснащены практически все электронные гаджеты и системы: компьютеры, телефоны, планшеты, телевизоры, автомобильные магнитолы и множество других устройств.

Понятие USB

Разобраться, что такое USB, поможет техническое определение. В официальной документации заявлено: USB, Universal Serial Bus – универсальная последовательная шина. В сущности, это программное средство, осуществляющее соединение для трансляции данных между электронными гаджетами.

USB имеет собственный символьный значок в виде геометрических фигур: два круга (маленький и большой), треугольник и квадрат. Из большого круга выходят три разветвленные линии, на концах которых находятся остальные фигуры.

логотип разъема USB

Можно определить, что такое USB, более простым понятием. Это разъем, к которому подключается устройство со штекером того же стандарта. Например, при помощи USB к персональному компьютеру подключается клавиатура, мышь, принтеры. Для обмена информацией, установкой различных обновлений, настроек подсоединяются телефоны, смартфоны, планшеты, электронные книги, портативные жесткие диски и многие другие гаджеты.

Особенности и преимущества

Данный интерфейс был разработан и представлен в конце 1994 года. Руку к появлению USB приложили такие компании, как «Майкрософт», «Интел», «Филипс» и «ЮС Роботикс».

Раньше внешние сторонние устройства общались с ПК посредством таких средств коммутации, как PS/2, последовательный и параллельный вход-порт, отдельный разъем для подсоединения игровых манипуляторов, и что такое USB, никто даже не слышал. При разработке новых гаджетов появилась острая необходимость унифицировать коммутационные возможности. Презентация нового стандарта привела к расширению функциональности компьютера и стимулировала разработку сторонних продуктов с шиной USB.

На сегодняшний день все ПК и ноутбуки выходят в обязательном порядке с разъемами USB. В стационарном компьютере USB-коннекторов может быть монтировано до 12 штук, ноутбук обладает 3-4 входами. Любой современный «уважающий себя» гаджет имеет в своем активе USB-порт.

Простота и удобство в использовании стали синонимами USB-технологии. Она позволила взаимодействие со спецификацией «Plug and Play», которая предполагала надежную, быструю и дружественную коммутацию внешних источников.

подключение переферии по разъему USB

Стандартизация USB

Пробные спецификационные стандарты были представлены в конце 1994 г. Далее в течении года выпускалось еще несколько версий, и 15 января 1996 года был презентован стандарт USB 1.0. Он характеризовался двумя видами обмена данными: высоким проходным каналом до 12 Мбит/с и низким – 1.5 Мбит/с. При высокой проходимости длина USB кабеля составляла 3 м, а при низком – 5 м. Напряжение для подключаемых устройств было определено в 5 В с максимальным током – 500 мА. Подключить можно было до 127 гаджетов. При этом все они могли функционировать с различным пропускным стандартом.

В сентябре 1998 г. была проведена работа над обнаруженными ошибками, увеличена скорость до 15 Мбит/с, и получила путевку в жизнь USB-версия 1.1.

Начало 2000 года ознаменовалось выходом интерфейса USB поколения 2.0. Был введен скоростной режим обработки и трансляции данных. USB 2.0 получил три вида пропускной способности:

  • от 10 до 1500 Кбит/с использовалась для эксплуатации клавиатурами, мышами и игровыми гаджетами;
  • от 0.5 до 12 Мбит/с зарезервировали различные видео и аудиосредства;
  • от 25 до 480 Мбит/с работала с жесткими дисками (HDD) и обработкой видеопотоков.

Дополнительные спецификации

В 2005 г. была разработана технология USB Wireless. Характерной чертой была заявлена беспроводная коммутация с большой скоростью передачи данных. В радиусе 3 метров скорость составляла порядка 480 Мбит/с, 10 м – 110 Мбит/с.

Совместными усилиями компаний «Майкрософт», «Интел», «Хьюлетт-Паккард» и некоторых других появился спецификационный стандарт USB 3.0. Данная версия полностью совместима с 2.0. Разъемы последней спецификации имеют характерный синий цвет пластика в отличии от белого предыдущей версии. Спецификация 3.0 имеет дополнительные четыре линии коммутации, отчего кабель стал немного толще, а пропускная способность выросла до заоблачных 5 Гбит/с. При таких параметрах, например, информация объемом в 1 Тб может быть передана приблизительно за 50 минут. Тогда как при стандарте 2.0 тот же объем передается около 9 часов.

кабель разъема USB 3.0

Последняя версия USB имеет более увеличенную силу тока – 900 мА. Данный параметр дал возможность подключать к разъему большее количество устройств по сравнению с 2.0.

Также существует спецификация USB OTG, которая дает возможность подключаемым устройствам определять в одностороннем порядке, когда быть хостом, а когда — периферийным устройством.

USB разъемы

Спецификация USB имеет два типа разъемов/штекеров: тип А и В.

Тип А соединяет стороннее устройство USB и компьютер. Он находится на стороне контроллера. При подключении любого гаджета USB драйвера моментально находит сама операционная система. Если таковые отсутствуют, то устройство всегда комплектуется диском с ПО, в который входит необходимый элемент инсталляции.

Тип В присутствует на стороне периферийных USB-устройств. Это в основном сканеры, принтеры или многофункциональные устройства. Оба типа включают в себя несколько вариантов конфигурации штекеров/разъемов: mini USB и micro USB.

Разъем/штекер mini USB отличается более компактными размерами и встречается на ранних версиях смартфонов, в фотоаппаратах, видеокамерах, электронных книгах и т.д.

Разъем/штекер micro USB габаритами еще меньше, чем предыдущий вариант. Зачастую он встречается в современных смартфонах.

виды разъема USB

Недостатки интерфейса USB

Разъемы mini USB и micro USB из-за конструктивных особенностей часто выходят из строя раньше своего эксплуатационного срока службы. Это обусловлено тем, что такие разъемы обычно находятся в гаджетах, которые очень часто приходится подсоединять к компьютеру или заряжать (телефоны, смартфоны, КПК, МР3-плееры). При этом стоит отметить, что технология USB позволяет не только обмениваться данными, но и дает возможность заряжать устройства через свое соединение.

гнездо смартфона

Заявленная пропускная способность у спецификации 2.0 в 480 Мбит/с не соответствует действительности. Это происходит потому, что данные передаются в обе стороны по одной витой паре кабеля. Для достижения максимальной скорости требуется 2 такта при обмене информацией, что, кстати, реализовано в USB 3.0.

Виды, отличия и функции USB-разъемов

Они большие и маленькие, широкие и узкие, прямоугольные, овальные, со срезанными углами, цветные и черно-белые. Они повсюду: на телефоне, на компьютере, ТВ, возле розетки на стене, а иногда даже на люстре.

Виды USB разъемов

Виды USB разъемов

Они – разъемы USB. Их много, и они разные. Сегодня поговорим, какие бывают виды USB разъемов и чем они отличаются друг от друга.

Основные характеристики USB

USB (Universal Serial Bus) расшифровывается как универсальная последовательная шина передачи данных между устройствами. Например, между компьютером и его периферией – клавиатурой, мышкой, флешкой, принтером, сканером, веб-камерой и т. д.

Через USB подключенные девайсы получают энергию для работы и зарядки, поэтому гнездами такого типа оснащают power-банки и зарядные устройства. За питание отвечает пара или две пары контактов, которые на схемах условно обозначают VCC или +5 V и GND (земля). Если внимательно взглянуть на разъем, можно увидеть, что эти контакты длиннее остальных. Так сделано для того, чтобы соединение/разъединение силовых и информационных линий происходило с разбежкой во времени, иначе данные могут передаваться с ошибками.

Линии питания и данных USB.Линии питания и данных USB.

За данные отвечают 2 и более контакта в зависимости от версии USB. Половина из них передает сигнал от основного устройства (хоста) к периферии, а вторая половина – обратно.

Интерфейс USB поддерживает технологию Plug and Play («подключаю и использую»). При соединении с хостом, например, компьютером, периферийное устройство сообщает ему, что оно собой представляет, а хост подбирает подходящий драйвер. «Общение» происходит по линиям данных.

Девайсы, выпущенные в последнее десятилетие, оснащены USB-интерфейсами версий 2.0, 3.0, 3.1, 3.2. Редко, но еще встречаются старые устройства с USB 1.1. Интерфейсы разных поколений передают информацию с различной быстротой.

Теоретически достижимые скорости передачи данных по шине USB актуальных версий представлены в таблице:

USB1.112 Мбит/с
USB2.0480 Мбит/с
USB3.05 Гбит/с
USB3.110 Гбит/с
USB3.220 Гбит/с

Дабы не путать читателя, здесь приведены только максимальные скорости, согласно спецификациям USB различных версий без учета режимов их работы. Значит, реальная скорость обмена данными между устройствами, соединенными этой шиной, может быть в разы ниже.

USB-разъемы разных поколений совместимы друг с другом, но быстрота передачи данных между ними всегда ограничивается потенциалом более медленной стороны.

USB последнего – третьего поколения выдерживает бОльшую силу тока, нежели предшественники, что влияет на скорость зарядки и поддержание работы подключенных устройств, особенно потребляющих много энергии, вроде внешних жестких дисков.

Максимальный выходной ток USB-порта зарядного или хостового устройства составляет:

  • Для версий 1.1-0 – 0,5 А.
  • Для версии 3.0 – 0,9-1,5 А.
  • Для версий 3.1-3.2 – 1,5-3 А с возможностью повышения до 5A.

Стандартное напряжение выходного USB-порта – 5 V. Отдельные спецификации версий 3.1-3.2, ориентированные на подключение энергоемких девайсов, выдерживают до 20 V.

USB гнезда.USB гнезда.

Внешне USB-разъемы разных поколений отличаются цветами. Третье – самое молодое, имеет голубой или синий оттенок, это его типовой признак. Первое и второе могут быть окрашены в черный, белый, серый и другие цвета, их раскраска никак не связана с характеристиками.

Виды USB-разъемов

По назначению

По назначению любой USB-порт можно отнести к одному из трех типов:

  • Стандартному или обычному, который обеспечивает питание и информационный обмен между девайсами. Такими портами оборудованы компьютеры, ноутбуки, смартфоны, телевизоры и т. д.
  • Зарядному. Они встречаются на зарядных устройствах, power-банках и некоторых системных блоках, предназначены только для питания периферии.
  • Выделенному зарядному. Эти гнезда служат для зарядки USB-гаджетов от бытовой электросети. Их встраивают в электрические розетки. Пример такого решения показан на фото ниже.

Зарядный порт USB.Зарядный порт USB.

Первый тип может быть любой версии, второй и третий чаще относится к версиям 2.0 или 3.0. Последние различаются между собой цветами.

По конфигурации

Конфигурация разъемов тоже «завязана» на поколение интерфейса. USB-штекеры и гнезда версий 1.1 и 2.0 бывают следующих типоразмеров и форм:

  • Типа А (стандартные). Такие порты устанавливают на хостовые и зарядные устройства. Они бывают трех размеров: обычного (самый распространенный – 12×4 мм, 4 контакта), среднего (miniUSB 7×3 мм, 5 контактов) и маленького (microUSB 7×2 мм, 5 контактов).

Разъемы USB 2.0Разъемы USB 2.0

  • Типа B (узкие). Гнездами этого вида оснащают периферийное оборудование. Они также могут быть обычными (7×8 мм, 4 контакта), мини (3×7 мм, 5 контактов) и микро (2×7 мм, 5 контактов).

Разъемы микро обоих типов визуально очень похожи. Отличие лишь в том, что А имеет форму прямоугольника, а у B скошены верхние углы.

Разъемы microUSB.Разъемы microUSB.

Редко, но встречаются USB-кабели, которые оборудованы комбинированными разъемами: mini-AB и micro-AB. Их можно подключать к гнездам того и другого вида.

Разъемы USB третьего поколения имеют следующие типоразмеры:

  • A – стандартный. Он отличается от предшественника цветом и количеством контактов, здесь их 9. Разъем микро-A имеет 10 контактов и разделен на 2 части. Половина идентична microUSB 2.0 (для совместимости), остальные 5 контактов расположены в другой части. Так сделано потому, что компактный размер не позволил уместить все выводы в одном месте. Разъемов типа мини-A 3.0 не существует.
  • В – его стандартный и мини-разъемы идентичны по конфигурации USB-B версии 2.0, но также имеют по 9 контактов. Micro-В отличится от micro-А формой совмещаемой половины. Она, как и microUSB-B 2.0, имеет срезанные углы.

Разъемы USB 3.0.Разъемы USB 3.0.

Интерфейсы microUSB третьего поколения распространены мало, поскольку крайне неудобны в использовании. Кроме того, гнезда этого типа зачастую не выдерживают многократных рывков туда-сюда и отламываются от носителя. Таким же недостатком страдают и их предшественники, но здесь проблема возникает чаще.

Однако это не значит, что от миниатюрных разъемов USB-3 придется отказаться. Замена неудачному решению уже найдена – новый и кардинально непохожий на прототип интерфейс USB Type C.

Особенности USB Type C

Type-C или просто USB-C – это компактный разъем USB третьего поколения (8,4 x 2,6 мм, 24 контакта), который предназначен для тех же задач, что и его предшественники. В отличие от всех прочих интерфейсов этого типа, он симметричный или двусторонний, то есть поддерживает подключения кабеля и верхней, и нижней сторонами, как разъемы Lightning на устройствах Apple.

Гнездо USB-C.Гнездо USB-C.

Отсутствие нужды ориентировать кабель в нужном положении уменьшает риск поломки гнезда, продлевает срок его службы и упрощает жизнь людям с ослабленным зрением и нарушенной координацией движений, которые в силу этих причин не могут пользоваться устройствами с разъемами microUSB-B.

Спецификация Type-C соответствует USB 3.1 и обеспечивает полную совместимость с ранними версиями этого интерфейса, как того требует стандарт. Поэтому мобильные гаджеты, оснащенные такими гнездами, не всегда поддерживают скорости третьего поколения: новомодный разъем вполне способен уживаться с USB-контроллером версии 2.0.

Штепсель USB-C.Штепсель USB-C.

Другая особенность USB-C – это поддержка альтернативных режимов работы в качестве интерфейсов HDMI и MHL (гибрид HDMI и microUSB ), DisplayPort, VGA и Thunderbolt. Благодаря этой фишке смартфон с Type-C можно подключать, например, к HDMI-порту телевизора или DisplayPort-входу компьютерного монитора. Разумеется, возможность сообщения по такому каналу должна быть реализована в устройстве с USB-C, что пока встречается лишь на топовых смартфонах. Однако перспективы у технологии есть.

Немного о USB-кабелях

Различия между кабелями USB не только в конфигурации разъемов, но и в количестве жил. Самый распространённый тип кабеля – четырехжильный USB 2.0, предназначен для передачи данных и питания периферийного оборудования. В нем каждая из линий связана с парой идентичных контактов на противоположных штепселях. Данные по такому кабелю передаются по очереди – или в одну, или в другую сторону.

Существуют USB-кабели только для зарядки. В них всего 2 жилы – плюс и земля, а контакты информационных линий просто соединены между собой. Они обычно тоньше 4-жильных. В магазинах их, как правило, не продают, но включают в комплекты поставки разных девайсов с поддержкой питания 5 V (например, электрических зубных щеток).

Кабели USB третьего поколения обычно окрашены в синий цвет (хотя не всегда) и более толстые. Ведь помимо стандартных четырех жил, в них включено столько же дополнительных. За счет добавочных линий поддерживается одновременная передача данных в оба направления.

Кабели USB-OTG.Кабели USB-OTG.

Для подключения к смартфонам и планшетам периферийного оборудования (клавиатур, флешек, мышей и т. д.) разработан еще один тип кабелей – OTG. В кабеле OTG-2.0 всего 4 жилы и 5 контактов. На стороне хоста дополнительный – пятый контакт (ID) соединяется с землей – так устройства определяют, какое из них выступает в роли хоста. В OTG-3, соответственно, на 4 линии данных больше.

Кабели USB Type-C с противоположной стороны чаще имеют штепсель другого вида, например, USB-A, HDMI, DP и т. д. Конфигурация второго разъема, количество жил и связь с определенными выводами, поддержка силы тока разных уровней определяют их назначение и функциональность.

Выбор кабеля влияет на скорость зарядки и обмена информацией между устройствами. Некачественный или неправильно подобранный, он может быть «бутылочным горлом» подключения. Так, если соединить телефон и компьютер через порты USB-3.0 – USB-C кабелем USB-2.0, связь будет медленнее в разы, чем если бы использовался соединитель версии 3.

Питание через USB-разъем

Изначально стандарт USB был «заточен» на питание и зарядку маломощных девайсов с током потребления до 0,5 A при напряжении 5 V. Однако с появлением смартфонов и планшетов с батареями повышенной емкости этот предел стал бы непреодолимым барьером к массовому выпуску их на рынок. Ведь заряжать такие устройства малыми токами можно сутки напролет, а кому это понравится.

Так появилось еще несколько спецификаций, в том числе Quick Charge (быстрая зарядка) – технология передачи энергии, которая превышает штатные возможности USB, посредством USB-интерфейса.

Зарядное устройство Quick Charge.Зарядное устройство Quick Charge.

Сегодня актуальны следующие версии этого стандарта:

  • Quick Charge 2.0. Она предусматривает ступенчатое повышение выходного напряжения от 5 V до 9 V, 12 V и 20 V.
  • Quick Charge 3.0. Также поддерживает повышение напряжения до 20 V, но с интервалом 0,2 V.
  • Quick Charge 4.0 и 4+. Базируется на еще одной технологии электропитания – Power Delivery, и обеспечивает быструю зарядку аккумуляторов через разъемы USB-C.

Возможность пополнять запасы энергии от зарядных устройств с поддержкой Quick Charge имеют только те гаджеты, где она реализована на аппаратном уровне. Технология QC, как и USB, полностью поддерживает обратную совместимость.

Power Delivery – стандарт питания энергоемких устройств с поддержкой мощности до 100 W посредством обычного кабеля и разъемов USB версии 2.0 или 3.0-3.2. Источником энергии в такой системе может быть не только зарядник или power bank, но и девайс, выступающий в роли хоста. А хостом может назначаться любой гаджет с аккумулятором, например, смартфон, подключенный к другому смартфону.

Передача тока в системах Power Delivery идет в обоих направлениях, поэтому хост и периферия в процессе зарядки могут меняться местами. Кроме того, стандартом предусмотрена возможность изменения уровней токов и напряжений по пяти профилям:

  • менее 5 V и 2 А;
  • 5-12 V и 1.5 А;
  • 5-12 V и 3 А;
  • 12-20 V и 3 А;
  • 12-20 V и 4.75-5 А.

Power Delivery уже сейчас позволяет питать через разъемы USB такие мощные устройства, как ноутбуки и моноблоки. Дальнейшее развитее технологии, надо ожидать, перешагнет 100-ваттный порог и найдет применение в умных TV, бытовой технике, осветительных приборах и везде, где только можно. Словом, у USB большое будущее, и нам предстоит сосуществовать с ним еще много-много лет.

Разобрались? Удивлены, что разных видов USB так много? ;)

Распиновка USB разъема типа А и Б, микро и мини: полное описание

Интерфейс USB начали широко применять около 20-ти лет назад, если быть точным, с весны 1997 года. Именно тогда универсальная последовательная шина была аппаратно реализована во многих системных платах персональных компьютеров. На текущий момент данный тип подключения периферии к ПК является стандартом, вышли версии, позволившие существенно увеличить скорость обмена данных, появились новые типы коннекторов. Попробуем разобраться в спецификации, распиновки и других особенностях USB.

В чем заключаются преимущества универсальной последовательной шины?

Внедрение данного способа подключения сделало возможным:

  • Оперативно выполнять подключение различных периферийных устройств к ПК, начиная от клавиатуры и заканчивая внешними дисковыми накопителями.
  • Полноценно использовать технологию «Plug&Play», что упростило подключение и настройку периферии.
  • Отказ от ряда устаревших интерфейсов, что положительно отразилось на функциональных возможностях вычислительных систем.
  • Шина позволяет не только передавать данные, а и осуществлять питание подключаемых устройств, с ограничением по току нагрузки 0,5 и 0,9 А для старого и нового поколения. Это сделало возможным использовать USB для зарядки телефонов, а также подключения различных гаджетов (мини вентиляторов, подсветки и т.д.).
  • Стало возможным изготовление мобильных контролеров, например, USB сетевой карты RJ-45, электронных ключей для входа и выхода из системы

Виды USB разъемов – основные отличия и особенности

Существует три спецификации (версии) данного типа подключения частично совместимых между собой:

  1. Самый первый вариант, получивший широкое распространение – v 1. Является усовершенствованной модификацией предыдущей версии (1.0), которая практически не вышла из фазы прототипа ввиду серьезных ошибок в протоколе передачи данных. Эта спецификация обладает следующими характеристиками:
  • Двухрежимная передача данных на высокой и низкой скорости (12,0 и 1,50 Мбит в секунду, соответственно).
  • Возможность подключения больше сотни различных устройств (с учетом хабов).
  • Максимальная протяженность шнура 3,0 и 5,0 м для высокой и низкой скорости обмена, соответственно.
  • Номинальное напряжение шины – 5,0 В, допустимый ток нагрузки подключаемого оборудования – 0,5 А.

Сегодня данный стандарт практически не используется в силу невысокой пропускной способности.

  1. Доминирующая на сегодняшний день вторая спецификация.. Этот стандарт полностью совместим с предыдущей модификацией. Отличительная особенность – наличие высокоскоростного протокола обмена данными (до 480,0 Мбит в секунду).
Наглядная демонстрация преимущества USB 2.0 над другими интерфейсами (скорость передачи 60 Мбайт в секунду, что соответствует 480 Мбит в секунду)Наглядная демонстрация преимущества USB 2.0 над другими интерфейсами (скорость передачи 60 Мбайт в секунду, что соответствует 480 Мбит в секунду)

Благодаря полной аппаратной совместимости с младшей версией, периферийные устройства данного стандарта могут быть подключены к предыдущей модификации. Правда при этом пропускная способность уменьшиться до 35-40 раз, а в некоторых случаях и более.

Поскольку между этими версиями полная совместимость, их кабели и коннекторы идентичны.

Обратим внимание что, несмотря на указанную в спецификации пропускную способность, реальная скорость обмена данными во втором поколении несколько ниже (порядка 30-35 Мбайт в секунду). Это связано с особенностью реализации протокола, что ведет к задержкам между пакетами данных. Поскольку у современных накопителей скорость считывания вчетверо выше, чем пропускная способность второй  модификации, то есть, она не стала удовлетворять текущие требования.

  1. Универсальная шина 3-го поколения была разработана специально для решения проблем недостаточной пропускной способности. Согласно спецификации данная модификация способно производить обмен информации на скорости 5,0 Гбит в секунду, что почти втрое превышает скорость считывания современных накопителей. Штекеры и гнезда последней модификации принято маркировать синим для облегчения идентификации принадлежности к данной спецификации.
Разъемы USB 3.0 имеют характерный синий цветРазъемы USB 3.0 имеют характерный синий цвет

Еще одна особенность третьего поколения – увеличение номинального тока до 0,9 А, что позволяет осуществлять питание ряда устройств и отказаться от отдельных блоков питания для них.

Что касается совместимости с предыдущей версией, то она реализована частично, подробно об этом будет расписано ниже.

Классификация и распиновка

Коннекторы принято классифицировать по типам, их всего два:

  • А – это штекер, подключаемый к гнезду «маме», установленном на системной плате ПК или USB хабе. При помощи такого типа соединения производится подключение USB флешки, клавиатуры, мышки и т.д. Данные соединения полностью совместимы в между начальной версией и вторым поколением. С последней модификацией совместимость частичная, то есть устройства и кабели с ранних версий можно подключать к гнездам третьего поколения, но не наоборот. Разъемы типа АРазъемы типа А
  • B – штекер для подключения к гнезду, установленному на периферийном устройстве, например, принтере. Размеры классического типа В не позволяют его использовать для подключения малогабаритных устройств (например, планшетов, мобильных телефонов, цифровых фотоаппаратов и т.д.). Чтобы исправить ситуации были приняты две стандартные уменьшенные модификации типа В: мини и микро ЮСБ.

Заметим, что такие конвекторы совместимы только между ранними модификациями.

Различные модели разъемов типа ВРазличные модели разъемов типа В

Помимо этого, существуют удлинители для  портов данного интерфейса. На одном их конце установлен штекер тип А, а на втором гнездо под него, то есть, по сути, соединение «мама» — «папа». Такие шнуры могут быть весьма полезны, например, чтобы подключать флешку не залезая под стол к системному блоку.

Шнур-удлинитель для порта USBШнур-удлинитель для порта USB

Теперь рассмотрим, как производится распайка контактов для каждого из перечисленных выше типов.

Распиновка usb 2.0 разъёма (типы A и B)

Поскольку физически штекеры и гнезда ранних версий 1.1 и 2.0 не отличаются друг от друга, мы приведем распайку последней.

Распайка штекера и гнезда разъема типа АРисунок 6. Распайка штекера и гнезда разъема типа А

Обозначение:

  • А – гнездо.
  • В – штекер.
  • 1 – питание +5,0 В.
  • 2 и 3 сигнальные провода.
  • 4 – масса.

На рисунке раскраска контактов приведена по цветам провода, и соответствует принятой спецификации.

Теперь рассмотрим распайку классического гнезда В.

Распайка штекера и гнезда типа ВРаспайка штекера и гнезда типа В

Обозначение:

  • А – штекер, подключаемый к гнезду на периферийных устройствах.
  • В – гнездо на периферийном устройстве.
  • 1 – контакт питания (+5 В).
  • 2 и 3 – сигнальные контакты.
  • 4 – контакт провода «масса».

Цвета контактов соответствует принятой раскраске проводов в шнуре.

Распиновка usb 3.0 (типы A и B)

В третьем поколении подключение периферийных устройств осуществляется по 10 (9, если нет экранирующей оплетки) проводам, соответственно, число контактов также увеличено. Но они расположены таким образом, чтобы имелась возможность подключения устройств ранних поколений. То есть, контакты +5,0 В, GND, D+ и D-, располагаются также, как в предыдущей версии. Распайка гнезда типа А представлена на рисунке ниже.

 Распиновка разъема Тип А в USB 3.0Рисунок 8. Распиновка разъема Тип А в USB 3.0

Обозначение:

  • А – штекер.
  • В – гнездо.
  • 1, 2, 3, 4 – коннекторы полностью соответствуют распиновки штекера для версии 2.0 (см. В на рис. 6), цвета проводов также совпадают.
  • 5 (SS_TХ-) и 6 (SS_ТХ+) коннекторы проводов передачи данных по протоколу SUPER_SPEED.
  • 7 – масса (GND) для сигнальных проводов.
  • 8 (SS_RX-) и 9(SS_RX+) коннекторы проводов приема данных по протоколу SUPER_SPEED.

Цвета на рисунке соответствуют общепринятым для данного стандарта.

Как уже упоминалось выше в гнездо данного порта можно вставить штекер более раннего образца, соответственно, пропускная способность при этом уменьшится. Что касается штекера третьего поколения универсальной шины, то всунуть его в гнезда раннего выпуска невозможно.

Теперь рассмотрим распайку контактов для гнезда типа В. В отличие от предыдущего вида, такое гнездо несовместимо ни с каким штекером ранних версий.

Распайка USB 3.0 тип ВРаспайка USB 3.0 тип В

Обозначения:

А и В – штекер и гнездо, соответственно.

Цифровые подписи к контактам соответствуют описанию к рисунку 8.

Цвет максимально приближен к цветовой маркировки проводов в шнуре.

Распиновка микро usb разъёма

Для начала приведем распайку для данной спецификации.

Распайка разъема микро USB v 2.0Распайка разъема микро USB v 2.0

Как видно из рисунка, это соединение на 5 pin, как в штекере (А), так и гнезде (В) задействованы  четыре контакта. Их назначение и цифровое и цветовое обозначение соответствует принятому стандарту, который приводился выше.

Описание разъема микро ЮСБ для версии 3.0.

Для данного соединения используется коннектор характерной формы на 10 pin. По сути, он представляет собой две части по 5 pin каждая, причем одна из них полностью соответствует предыдущей версии интерфейса. Такая реализация несколько непонятна, особенно принимая во внимание несовместимость этих типов. Вероятно, разработчики планировали сделать возможность работы с разъемами ранних модификаций, но впоследствии отказала от этой идеи или пока не осуществили ее.

Разводка разъема микроUSB для версии 3.0Разводка разъема микроUSB для версии 3.0

На рисунке представлена распиновка штекера (А) и внешний вид гнезда (В) микро ЮСБ.

Контакты с 1-го по 5-й полностью соответствуют микро коннектору второго поколения, назначение других контактов следующее:

  • 6 и 7 – передача данных по скоростному протоколу (SS_ТХ- и SS_ТХ+, соответственно).
  • 8 – масса для высокоскоростных информационных каналов.
  • 9 и 10 – прием данных по скоростному протоколу (SS_RX- и SS_RX+, соответственно).

Распиновка мини USB

Данный вариант подключения применяется только в ранних версиях интерфейса, в третьем поколении такой тип не используется.

Распиновка разъема мини USBРаспиновка разъема мини USB

Как видите, распайка штекера и гнезда практически идентична микро ЮСБ, соответственно, цветовая схема проводов и номера контактов также совпадают. Собственно, различия заключаются только в форме и размерах.

В данной статье мы привели только стандартные типы соединений, многие производители цифровой техники практикуют внедрение своих стандартов, там можно встретить разъемы на 7 pin, 8 pin и т.д. Это вносит определенные сложности, особенно когда встает вопрос поиска зарядника для мобильного телефона. Также необходимо заметить, что производители такой «эксклюзивной» продукции не спешат рассказывать, как выполнена распиновка USB в таких контакторах. Но, как правило, эту информацию несложно найти на тематических форумах.

Принцип работы и устройство USB-флешки

Принцип работы и устройство USB-флешкиПринцип работы и устройство USB-флешки

В этой статье мы с Вами рассмотрим принцип работы и устройство USB-флешки, а также я расскажу об особенности USB-флэш-накопителя перед другими запоминающими устройствами. C появление USB-флэшки произошел некий переворот в ПЗУ устройствах и большое количество людей по всему миру оценило удобство транспортировки данных в компактном и емком флэш-накопителе, который к тому же устойчив к воздействиям окружающей среды.

Первым делом, я хотел бы дать определение флэш-накопителю, а уж потом рассказать о его особенности перед другими запоминающими устройствами.

USB-Flash Drive (флешка, флэшка) — устройство для накопления и хранения информации. Переданные устройству данные располагаются и хранятся во флэш-памяти. Для получения информации usb флешку необходимо подключить к телевизору (Smart), компьютеру, планшету или любому другому считывающему устройству.

К основным недостаткам USB флэш-накопителя можно отнести ограниченный цикл записи/стирания, но хранящуюся в устройстве можно считать бесконечное количество раз. Цикл перезаписи современными стандартами на сегодняшний день ограничен от 10000 и до 100000 раз. Если взять во внимание минимальный цикл перезаписи (10000) то может показаться, что для эксплуатации такое количество более чем достаточно. Но на самом деле это не так.

Представьте себе ситуации, когда вы интенсивно используете флэшку перезаписывая на ней данные по нескольку раз в день. Согласитесь, что при такой эксплуатации, такое количество циклов (10000) для обновления информации уже не кажется таким уж большим. Хотя, справедливости ради, стоит сказать, что для рядового пользователя флэш-накопитель с минимальным ограничением перезаписи прослужит немало времени.

К сожалению не все USB накопители отрабатывают свой положенный срок честно. Как правило, виной этому производители мало известных фирм и компании с неизвестным происхождением, которые не соблюдают технологических норм при создании постоянного запоминающего устройства (ПЗУ). Очень часто наши китайские «друзья», которые любят делать подделки именитых брендов, не соблюдают технологию (не качественные детали) и создают дешевые накопительные устройства, которые раньше положенного времени  выходят из строя.

На что нужно обратить внимание при выборе USB-флэш-накопителя.

  • Производитель (компания). Чтобы свести к минимуму преждевременный выход из строя USB-флэш-накопителя , делайте свой выбор в пользу зарекомендовавших себя компаний, которые работаю на рынке не один год. Например, это могут быть такие компании как: Kingston, Transcend, Corsair, Apacer…
  • Так же при выборе usb-флэш-накопителя обратите внимание на каком типе памяти она построена. Хорошо если в ней установлена флэш-память типа NAND, потому что именно этот тип памяти может выполнить около 100000 циклов записи/стирания информации.

В основе USB флэш-накопителя находиться флэш-память типа NAND и небольшой микроконтроллер со встроенным ROM или RAM. Флэш-память (Flash Memory) относится к классу EEPROM (Electrically Erasable Programmable Read-Only Memory) — электрически стираемое перепрограммируемое запоминающее устройство ПЗУ или ЭСППЗУ.

Основное достоинство этого устройства в том, что оно энергонезависимо, а значит ему не нужно электричество для хранения данных. Стоит сказать, что основная особенность EEPROM в том, что хранящуюся информацию в устройстве (mini SD, MMC, SD, USB-флешка…) можно считать бесконечное количество раз, а вот количество записи к сожалению ограничено (мы уже с вами говорили о том как выбрать SD карту).

Как правило на упаковке указывают и то и другое. Но и не редки случай, когда указывают только число циклов или тип памяти.

  • Тип ячеек памяти. В рядовых флэшках (USB-Flash-Drive) используют два типа ячеек памяти MLC и SLC. Как правило более дешевые модели USB флэш-накопителей комплектуют MLC (Multi-level cell — многоуровневые ячейки памяти)ячейками, которые могут выдержать около 10 тысяч циклов. Ну и как вы уже догадались SLC (Single-level cell — одноуровневые ячейки памяти) ячейками комплектуют более дорогие модели, которые выдерживают до 100000, а то и более циклов записи/стирания.

Если вы в ближайшее время планируете покупать такой накопитель (USB-Flash-Drive), то рекомендую прочитать статью о том как выбрать надежную USB флешку.

Принцип работы USB -флеш-накопителя и его компоненты.

Как я уже писал выше, что в основе USB-накопителя лежит флэш-память типа NAND или NOR. В свою очередь флэш-память содержит в себе кристалл кремния на котором размещены полевые транзисторы с плавающими и управляющими изолированными затворами. Стоит сказать, что полевые транзисторы имеют сток и исток. Так вот плавающий затвор транзистора способен удерживать заряд (электроны).

Во время записи данных на управляющий затвор подается положительное напряжение и некоторая часть электронов направляется (двигается) от стока к истоку, отклоняясь к плавающему затвору. Часть электронов преодолевает тонкий слой изолятора и проникают в плавающий затвор, где и остаются на продолжительный срок хранения. Время хранения информации измеряется годами, но так или иначе оно ограничено.

Устройство USB flash довольно компактны, мобильны и дают возможность подключиться к любому компьютеру, который имеет USB-разъем. На что только не идут производители чтобы угодить потенциальным покупателям совмещая USB накопитель со всевозможными брелками, украшениями, игрушками и авторучками…

Устройство USB Flash накопителя состоит из следующих электронных компонентов:

Устройство USB Flash накопителяУстройство USB Flash накопителя
  1. Разъем USB.
  2. Микроконтроллер.
  3. Контрольные точки.
  4. Чип (микросхема) флэш-памяти.
  5. Кварцевый резонатор.
  6. Светодиод.
  7. Переключатель (защита от записи).
  8. Место для микросхемы памяти (дополнительное место).

Далее я хотел бы более подробно остановиться на основных компонентах usb flash накопителя и описать некоторые характерные симптомы нестабильной работы USB Flash накопителя.

Компоненты и симптомы нестабильной работы USB Flash накопителя.

  1. PCB — это многослойная печатная плата, которая служит основой для всех размещенных (распаянных) деталей электроники. Имеет следующие типичные неисправности: некачественно выполненный монтаж деталей электроники при деформации (изгибы, удары) платы приводит к внутренним разрывам около проводников и нестабильной работе usb-флэш накопителя.
  2. USB разъем — предназначен для подключения флэш-накопителя к устройствам чтения. При некачественном монтаже разъем отрывается от дорожек и в месте пайки.  Не так давно я сталкивался с данным явлением.
  3. Микроконтроллер — микросхема, в обязанности которой входит управление памятью типа NAND и передача информации. Содержит в себе данные о производителе и типе памяти, а также хранит в себе необходимую служебную информацию для правильного функционирования флэш-накопителя. По вине контроллера чаще всего происходит выход из строя флэш-накопителя.
  4. Симптомы характеризующие его выход из строя: флэш-накопитель определяется как «неизвестное устройство», показывает не правильный размер (объем) накопителя или просит вставить чистый диск в устройство чтения. Причиной выхода из строя контроллера (сгорает) — служит некачественное питание, плохая работа стабилизатора и неправильное извлечение флэш-накопителя.
  5. Микросхема памяти типа NAND — это энергонезависимая память, которая отвечает за хранение информации. По истечении N-го количества времени, при сбое или повреждении в памяти могут образоваться поврежденные блоки (бэд блоки). Возможны и другие причины появления испорченных блоков, в которые больше не представляется возможным записывать/считывать информацию. Устранить такую неисправность можно с помощью узкоспециализированных программ, что в конечном итоге уменьшит объем памяти, но восстановит работоспособность.
  6. Кварцевый резонатор — используется для построения опорной частоты, которая необходима для функционирования логики контроллера и флэш-памяти. При выходе из строя, USB флэш-накопитель определяется как «неизвестное устройство» или не определяется вовсе(не видит считывающее устройство).

Преимущества USB-флешек:

  • Небольшой размер, вес, портативность.
  • Накопитель можно подключить к любому устройству считывания (практически везде есть USB).
  • Практически нет влияния от внешней окружающей среды (пыль, царапины, загрязненность).
  • USB флешка может работать в широком диапазоне температур.
  • Малые габариты позволяют хранить большой объем информации.
  • Низкое энергопотребления.
  • В сравнении с жестким дискам, она устойчивее к внешним воздействиям, вибрациям и ударам.
  • Удобство подключения к устройству.
  • Высокая скорость доступа к данным.

Недостатки USB-флешек:

  • Ограниченное число циклов записи и стирания перед выходом из строя.
  • Ограниченный срок автономного хранения данных.
  • Скорость записи и чтения ограничены пропускной способностью шины USB и самой флеш-памяти.
  • Чувствительны к радиации и электростатическому разряду (обычно наблюдается в быту, чаще всего зимой).

В заключении статьи предлагаю Вам посмотреть тематическое видео по производству USB Flash накопителей на заводе Kingston Production.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также

Поделитесь в соцсетях:

  • 6

    0

    На чем информация может храниться дольше всего? Имею ввиду действительно длительные сроки. Например домашний архив с фото и документами, который хотелось бы передать правнукам. Облака не предлагать. Спасибо.

  • 2

    0

    Очень полезная и понятная статья, спасибо

  • 0

    0

    Да перезаписывайте сколько угодно. Ресурса флеш-накопителя хватит на много лет. А вот на производителя действительно стоит обращать внимание и это я уже описывал в одной из публикаций.

  • 0

    0

    Согласна, как и при выборе любого другого продукта, при покупке USB-флэш-накопителя следует обратить внимание на фирму-изготовителя (переходите по ссылке и узнавайте имена лучших компаний). Уже исходя из этого станет ясно, прослужит флешка долго или в скором времени с ней будут проблемы. В любом случае, ее следует беречь и стараться не перезаписывать информацию множество раз.

Устройство USB не опознано в Windows

&nbsp windows

Устройство USB не опознаноЕсли при подключении флешки, внешнего жесткого диска, принтера или другого девайса, подключаемого по USB в Windows 7 или Windows 8.1 (думаю, применимо и к Windows 10) вы видите ошибку, сообщающую, что устройство USB не опознано, эта инструкция должна помочь решить проблему. Ошибка может возникать с USB 3.0 и USB 2.0 устройствами.

Причины того, что Windows не опознает USB устройство, могут быть разными (их действительно много), а потому и решений проблемы также существует несколько, при этом одни сработают для одного пользователя, другие — для другого. Я постараюсь ничего не упустить. См. также: Сбой запроса дескриптора USB устройства (код 43) в Windows 10 и 8

Первые действия при появлении ошибки «Устройство USB не опознано»

Прежде всего, если у вас возникла указанная ошибка Windows при подключении флешки, мыши и клавиатуры или чего-то еще, я рекомендую убедиться, что виной всему не неполадки самого USB устройства (это, как минимум, сбережет ваше время).

Ошибка USB устройство не опознано

Для этого просто попробуйте, если есть такая возможность, подключить данное устройство к другому компьютеру или ноутбуку и проверить, работает ли оно там. Если нет — есть все основания предполагать, что причина в самом устройстве и способы ниже, вероятно, не подойдут. Остается лишь проверить правильность подключения (если используются провода), подключить не к переднему, а заднему USB порту, а если ничего не поможет — нужно диагностировать сам девайс.

Второй способ, который следует попробовать, особенно если раньше это же устройство работало нормально (а также в том случае, если первый вариант нельзя осуществить, так как нет второго компьютера):

  1. Отключите USB устройство, которое не опознается и выключите компьютер. Вытащите вилку из розетки, после чего нажмите и удерживайте кнопку включения на компьютере несколько секунд — это уберет остатки зарядов с материнской платы и комплектующих.
  2. Включите компьютер и подключите проблемное устройство снова после загрузки Windows. Есть вероятность, что оно заработает.

Третий пункт, который также может помочь быстрее, чем все, которые будут описаны далее: если к вашему компьютеру (особенно к передней панели ПК или через USB разветвитель) подключено много оборудования, попробуйте отключить его часть, которая не нужна прямо сейчас, а само устройство, вызывающее ошибку, по возможности подключите к задней панели компьютера (если только это не ноутбук). Если сработало, дальше читать не обязательно.

Дополнительно: если USB устройство имеет внешний источник питания, подключите его (или проверьте подключение), а по возможности проверьте, работает ли этот блок питания.

Диспетчер устройств и драйвера USB

В этой части речь пойдет о том, как исправить ошибку Устройство USB не опознано в диспетчере устройств Windows 7, 8 или Windows 10. Отмечу, что это сразу несколько способов и, как я писал выше, они могут сработать, а могут и нет конкретно для вашей ситуации.

Запуск диспетчера устройств

Итак, прежде всего зайдите в диспетчер устройств. Один из быстрых способов это сделать — нажать клавиши Windows (с эмблемой) + R, ввести devmgmt.msc и нажать Enter.

Список USB контроллеров

Ваше неопознанное устройство скорее всего будет находиться в следующих разделах диспетчера:

  • Контроллеры USB
  • Другие устройства (и называться «Неизвестное устройство»)

Если это неизвестное устройство в других устройствах, то вы можете, подключившись к Интернету, кликнуть по нему правой кнопкой мыши и выбрать пункт «Обновить драйверы» и, возможно, операционная система сама установит все, что нужно. Если нет, то вам поможет статья Как установить драйвер неизвестного устройства.

В том случае, когда неизвестное USB устройство с восклицательным знаком отображается в списке «Контроллеры USB», попробуйте следующие две вещи:

  1. Нажмите правой кнопкой мыши по устройству, выберите «Свойства», затем на вкладке «Драйвер» нажмите кнопку «Откатить», если она доступна, а если нет — «Удалить» для удаления драйвера. После этого в диспетчере устройств нажмите «Действие» — «Обновить конфигурацию оборудования» и посмотрите, перестало ли ваше USB устройство быть неопознанным.
  2. Попробуйте зайти в свойства всех устройств с названиями Generic USB Hub, Корневой USB-концентратор или USB Root Controller и на вкладке «Управление электропитанием» снять галочку «Разрешить отключение этого устройства для экономии питания». Запретить отключение USB устройства

Еще один способ, работоспособность которого довелось увидеть в Windows 8.1 (когда система пишет код ошибки 43 в описании проблемы Устройство USB не опознано): для всех перечисленных в предыдущем пункте устройств по порядку попробуйте следующее: нажмите правой кнопкой мыши — «Обновить драйверы». Затем — выполнить поиск драйверов на этом компьютере — выбрать драйвер из списка уже установленных драйверов. В списке вы увидите совместимый драйвер (который уже и так установлен). Выберите его и нажмите «Далее» — после переустановки драйвера для того USB контроллера, к которому подключено неопознанное устройство, оно может заработать.

Переустановка драйвера USB концентратора

Устройства USB 3.0 (флешка или внешний жесткий диск) не опознаются в Windows 8.1

На ноутбуках с операционной системой Windows 8.1 ошибка USB устройство не опознано довольно часто встречается для внешних жестких дисков и флешек, работающих по USB 3.0.

Запрет выключения USB на ноутбуке

Решить эту проблему помогает изменение параметров схемы электропитания ноутбука. Зайдите в панель управления Windows — электропитание, выберите используемую схему электропитания и нажмите «Изменить дополнительные параметры питания». Затем, в параметрах USB запретите временное отключение USB портов.

Надеюсь, что-то из перечисленного вам поможет, и вы не увидите сообщений о том, что одно из подключенных к этому компьютеру USB-устройств работает неправильно. По-моему, перечислил все способы исправить ошибку, с которыми приходилось сталкиваться. Дополнительно может также помочь статья Компьютер не видит флешку.

А вдруг и это будет интересно:

распайка и схема по цветам для 2.0, 3.0, микро и мини USB

Распиновка USB-кабеля означает описание внутреннего устройства универсальной последовательной шины. Это устройство применяется для передачи данных и зарядки аккумуляторов любых электронных приборов: мобильных телефонов, плееров, ноутбуков, планшетных компьютеров, магнитофонов и других гаджетов.

Проведение качественной распиновки требует знаний и умения читать схемы, ориентирования в типах и видах соединений, нужно знать классификацию проводов, их цвета и назначение. Длительная и бесперебойная работа кабеля обеспечивается правильным соединением проводами 2 коннекторов USB и mini-USB.

Виды USB-разъемов, основные отличия и особенности

Универсальная последовательная шина представлена 3 версиями — USB 1.1, USB 2.0 и USB 3.0. Первые две спецификации полностью совмещаются между собой, шина 3.0 имеет частичное совмещение.

Схема распиновки USB кабеля по цветам

Схема распиновки USB кабеля по цветам

USB 1.1 — это первая версия устройства, используемая для передачи данных. Спецификацию применяют только для совместимости, так как 2 рабочих режима по передаче данных (Low-speed и Full-speed) обладают низкой скоростью обмена информацией. Режим Low-speed со скоростью передачи данных 10-1500 Кбит/с используется для джойстиков, мышей, клавиатур. Full-speed задействован в аудио- и видеоустройствах.

В USB 2.0 добавлен третий режим работы — High-speed для подключения устройств по хранению информации и видеоустройств более высокой организации. Разъем помечается надписью HI-SPEED на логотипе. Скорость обмена информацией в этом режиме — 480 Мбит/с, которая равняется скорости копирования в 48 Мбайт/с.

На практике, из-за особенностей конструкции и реализации протокола, пропускная способность второй версии оказалась меньше заявленной и составляет 30-35 Мбайт/с. Кабеля и коннекторы спецификаций универсальной шины 1.1 и второго поколения имеют идентичную конфигурацию.

Универсальная шина третьего поколения поддерживает скорость 5 Гбит/с, равняющуюся скорости копирования 500 Мбайт/с. Она выпускается в синем цвете, что облегчает определение принадлежности штекеров и гнезд к усовершенствованной модели. Сила тока в шине 3.0 увеличилась с 500 мА до 900 мА. Эта особенность позволяет не использовать отдельные блоки питания для периферийных устройств, а задействовать шину 3.0 для их питания.

Совместимость спецификаций 2.0 и 3.0 выполняется частично.

Классификация и распиновка

При описаниях и обозначениях в таблицах разъемов ЮСБ принято по умолчанию, что вид показан с внешней, рабочей стороны. Если подается вид с монтажной стороны, то это оговаривается в описании. В схеме светло-серым цветом отмечаются изолирующие элементы разъема, темно-серым цветом — металлические детали, полости обозначаются белым цветом.

Схема распиновки USB кабеля по цветам

Схема распиновки USB кабеля по цветам

Несмотря на то что последовательная шина называется универсальной, она представлена 2 типами. Они выполняют разные функции и обеспечивают совместимость с устройствами, обладающими улучшенными характеристиками.

К типу A относятся активные, питающие устройства (компьютер, хост), к типу B — пассивное, подключаемое оборудование (принтер, сканер). Все гнезда и штекеры шин второго поколения и версии 3.0 типа A рассчитаны на совместную работу. Разъем гнезда шины третьего поколения типа B больше, чем нужен для штекера версии 2.0 типа B, поэтому устройство с разъемом универсальной шины 2.0 тип B подключается с использованием только кабеля USB 2.0. Подключение внешнего оборудования с разъемами модификации 3,0 тип B выполняется кабелями обоих типов.

Разъемы классического типа B не подходят для подключения малогабаритного электронного оборудования. Подключение планшетов, цифровой техники, мобильных телефонов выполняется с использованием миниатюрных разъемов Mini-USB и их улучшенной модификации Micro-USB. У этих разъемов уменьшенные размеры штекера и гнезда.

Последняя модификация разъемов ЮСБ — тип C. Эта конструкция имеет на обоих концах кабеля одинаковые коннекторы, отличается более скоростной передачей данных и большей мощностью.

Распиновка USB 2.0 разъема типы A и B

Классические разъемы содержат 4 вида контактов, в мини- и микроформатах — 5 контактов. Цвета проводов в USB-кабеле 2.0:

  • +5V (красный VBUS), напряжение 5 В, максимальная сила тока 0,5 А, предназначен для питания;
  • D- (белый) Data-;
  • D+ (зеленый) Data+;
  • GND (черный), напряжение 0 В, используется для заземления.

Схема распиновки USB кабеля по цветам

Схема распиновки USB кабеля по цветам

Для формата мини: mini-USB и micro-USB:

  1. Красный VBUS (+), напряжение 5 В, сила тока 0,5 А.
  2. Белый (-), D-.
  3. Зеленый (+), D+.
  4. ID — для типа А замыкают на GND, для поддержания функции OTG, а для типа B не задействуют.
  5. Черный GND, напряжение 0 В, используется для заземления.

В большинстве кабелей имеется провод Shield, он не имеет изоляции, используется в роли экрана. Он не маркируется, и ему не присваивается номер. Универсальная шина имеет 2 вида соединителя. Они имеют обозначение M (male) и F (female). Коннектор М (папа) называют штекером, его вставляют, разъем F (мама) называется гнездо, в него вставляют.

Распиновка USB 3.0 типы A и B

Шина версии 3.0 имеет подключение по 10 или 9 проводам. 9 контактов используется, если отсутствует провод Shield. Расположение контактов выполняется таким образом, чтобы можно было подключать устройства ранних модификаций.

Распайка USB 3.0:

  • A — штекер;
  • B — гнездо;
  • 1, 2, 3, 4 — контакты, совпадающие с распиновкой контактов в спецификации 2.0, имеют ту же цветовую гамму;
  • 5, 6 контакты для передачи данных по протоколу SUPER_SPEED, имеют обозначение SS_TX- и SS_TX+ соответственно;
  • 7 — заземление GND;
  • 8, 9 — контактные площадки проводов для приема данных по протоколу SUPER_SPEED, обозначение контактов: SS_RX- и SS_RX+.

Схема распиновки USB кабеля по цветам

Схема распиновки USB кабеля по цветам

Распиновка Micro-USB-разъема

Кабель Micro-USB имеет соединители с 5 контактными площадками. К ним подводится отдельный монтажный провод в изоляции нужного цвета. Чтобы штекер точно и плотно садился в гнездо, верхняя экранирующая часть имеет специальную фаску. Контакты микро-USB пронумерованы цифрами от 1 до 5 и читаются справа налево.

Распиновки коннекторов микро- и мини-USB идентичны, представлены в таблице:

Номер проводаНазначениеЦвет
1VCC питание 5Vкрасный
2данныебелый
3данныезеленый
4функция ID, для типа A замыкается на заземление
5заземлениечерный

Экранирующий провод не припаивается ни к одному контакту.

Схема распиновки USB кабеля по цветам

Схема распиновки USB кабеля по цветам

Распиновка Mini-USB

Разъемы Mini-A и Mini-B появились на рынке в 2000 году, использовали стандарт USB 2.0. К сегодняшнему дню мало используются из-за появления более совершенных модификаций. Им на смену пришли микросоединители и модели ЮСБ типа C. В разъемах мини используется 4 экранированных провода и ID-функция. 2 провода используют для питания: питающий +5 В и заземление GND. 2 провода для приема и отправки дифференциальных сигналов данных, обозначаются D+ и D-pin. Data+ и Data- сигналы передаются по витой паре. D+ и D-работают всегда вместе, они не являются отдельными симплексными соединениями.

В USB-разъемах используется 2 вида кабелей:

  • экранированный, 28 AWG витая, мощность 28 AWG или 20 AWG без скрутки;
  • неэкранированный, 28 AWG без скрутки, мощность 28 AWG или 20 AWG без скрутки.

Схема распиновки USB кабеля по цветам

Схема распиновки USB кабеля по цветам

Длина кабеля зависит от мощности:

  • 28 — 0,81 м;
  • 26 — 1,31 м;
  • 24 — 2,08 м;
  • 22 — 3,33 м;
  • 20 — 5 м.

Многие производители цифровой техники разрабатывают и комплектуют свою продукцию разъемами другой конфигурации. Это может вызвать сложности с зарядкой мобильного телефона или других аппаратов.

USB — это… Что такое USB?

Символ USB

USB (ю-эс-би, англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс передачи данных для среднескоростных и низкоскоростных периферийных устройств в вычислительной технике. Символом USB являются четыре геометрические фигуры: большой круг, малый круг, треугольник и квадрат, расположенные на концах древовидной блок-схемы.

Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода — для питания периферийного устройства. Благодаря встроенным линиям питания USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА, у USB 3.0 — 900 мА).

История

Первые спецификации для USB 1.0 были представлены в 1994—1995 годах. Разработка USB поддерживалась фирмами Intel, Microsoft, Philips, US Robotics. USB стал «общим знаменателем» под тремя не связанными друг с другом стремлениями разных компаний:

  • Расширение функциональности компьютера. На тот момент для подключения внешних периферийных устройств к персональному компьютеру использовалось несколько «традиционных» (англ. legacy) интерфейсов (PS/2, последовательный порт, параллельный порт, порт для подключения джойстика, SCSI), и с появлением новых внешних устройств разрабатывали и новый разъём. Предполагалось, что USB заменит их все и заодно подхлестнёт разработку нетрадиционных устройств.
  • Подключить к компьютеру мобильный телефон. В то время мобильные сети переходили на цифровую передачу голоса, и ни один из имеющихся интерфейсов не годился для передачи с телефона на компьютер как речи, так и данных.
  • Простота для пользователя. Старые интерфейсы (например, последовательный (COM) и параллельный (LPT) порты) были крайне просты для разработчика, но не соответствовали требованиям спецификаций «Plug and Play». Требовались новые механизмы взаимодействия компьютера с низко- и среднескоростными внешними устройствами — возможно, более сложные для конструкторов, но надёжные, дружественные и пригодные к «горячему» подключению.

Поддержка USB вышла в виде патча к Windows 95b, в дальнейшем она вошла в стандартную поставку Windows 98. В первые годы устройств было мало, поэтому шину в шутку называли «Useless serial bus» — «бесполезная последовательная шина».[1] Впрочем, производители быстро осознали пользу USB, и уже к 2000 году большинство принтеров и сканеров работали с новым интерфейсом.

Hewlett-Packard, Intel, Lucent (ныне Alcatel-Lucent), Microsoft, NEC и Philips совместно выступили с инициативой по разработке более скоростной версии USB. Спецификация USB 2.0 была опубликована в апреле 2000 года, и в конце 2001 года эта версия была стандартизирована USB Implementers Forum. USB 2.0 является обратно совместимой со всеми предыдущими версиями USB.

Следует отметить, что в начале 2000-х годов корпорация Apple отдавала приоритет шине FireWire, в разработке которой она принимала активное участие. Ранние модели iPod были оснащены только интерфейсом FireWire, а USB отсутствовал. Впоследствии компания отказалась от FireWire в пользу USB, оставив в некоторых моделях FireWire только для подзарядки. Однако, клавиатуры и мыши, начиная со второй половины 90-х годов, имели интерфейс USB.

В середине 2000-х годов BIOS’ы компьютеров массового сегмента начали поддерживать USB (поддержка USB в корпоративном сегменте началась с середины 90-х). Это позволило загружаться с флэш-дисков, например, для переустановки ОС; пропала надобность в PS/2-клавиатуре. Современные материнские платы поддерживают до 20 USB-портов. В современных ноутбуках LPT-портов нет, всё чаще появляются настольные компьютеры без COM- портов.

Пока происходило распространение USB-портов второй версии, производители внешних жёстких дисков уже «упёрлись» в ограничение USB 2.0 — и по току, и по скорости. Потребовался новый стандарт, который и вышел в 2008 году. Уложиться в старые 4 провода не удалось, добавили 5 новых проводов. Первые материнские платы с поддержкой USB 3.0 вышли в 2010 году. На начало 2012 года USB 3.0 массово не поддерживается запоминающими устройствами и материнскими платами. Однако производители USB-накопителей уже начали поставлять на рынок устройства, поддерживающие USB 3.0. Также имеются платы расширения, добавляющие поддержку USB 3.0 в старых компьютерах.

Основные сведения

Кабель USB состоит из 4 медных проводников — 2 проводника питания и 2 проводника данных в витой паре — и заземленной оплётки (экрана).

Кабели USB ориентированы, то есть имеют физически разные наконечники «к устройству» и «к хосту». Возможна реализация USB устройства без кабеля, со встроенным в корпус наконечником «к хосту». Возможно и неразъёмное встраивание кабеля в устройство, как в мышь (стандарт запрещает это для устройств full и high speed, но производители его нарушают). Существуют (хотя и запрещены стандартом) и пассивные USB удлинители, имеющие разъёмы «от хоста» и «к хосту».

С помощью кабелей формируется интерфейс между USB-устройствами и USB-хостом. В качестве хоста выступает программно-управляемый USB-контроллер, который обеспечивает функциональность всего интерфейса. Контроллер, как правило, интегрирован в микросхему южного моста, хотя может быть исполнен и в отдельном корпусе. Соединение контроллера с внешними устройствами происходит через USB-концентратор (другие названия — хаб, разветвитель). В силу того, что USB-шина имеет древовидную топологию, концентратор самого верхнего уровня называется корневым (root hub). Он встроен в USB-контроллер и является его неотъемлемой частью.

Для подключения внешних устройств к USB-концентратору в нем предусмотрены порты, заканчивающиеся разъёмами. К разъёмам с помощью кабельного хозяйства могут подключаться USB-устройства, либо USB-хабы нижних уровней. Такие хабы — активные электронные устройства (пассивных не бывает), обслуживающие несколько собственных USB-портов. С помощью USB-концентраторов допускается до пяти уровней каскадирования, не считая корневого. USB-интерфейс позволяет соединить между собой и два компьютера, но это требует наличия специальной электроники, эмулирующей Ethernet-адаптер с драйверной поддержкой с обеих сторон.

Устройства могут быть запитаны от шины, но могут и требовать внешний источник питания. По умолчанию устройствам гарантируется ток до 100 мА, а после согласования с хост-контроллером — до 500 мА. Поддерживается и дежурный режим для устройств и разветвителей по команде с шины со снятием основного питания при сохранении дежурного питания и включением по команде с шины.

USB поддерживает «горячее» подключение и отключение устройств. Это достигнуто увеличенной длиной заземляющего контакта разъёма по отношению к сигнальным. При подключении разъёма USB первыми замыкаются заземляющие контакты, потенциалы корпусов двух устройств становятся равны и дальнейшее соединение сигнальных проводников не приводит к перенапряжениям, даже если устройства питаются от разных фаз силовой трёхфазной сети.

На логическом уровне устройство USB поддерживает транзакции приема и передачи данных. Каждый пакет каждой транзакции содержит в себе номер оконечной точки (endpoint) на устройстве. При подключении устройства драйверы в ядре ОС читают с устройства список оконечных точек и создают управляющие структуры данных для общения с каждой оконечной точкой устройства. Совокупность оконечной точки и структур данных в ядре ОС называется каналом (pipe).

Оконечные точки, а значит, и каналы, относятся к одному из 4 классов — поточный (bulk), управляющий (control), изохронный (isoch) и прерывание (interrupt). Низкоскоростные устройства, такие, как мышь, не могут иметь изохронные и поточные каналы.

Управляющий канал предназначен для обмена с устройством короткими пакетами «вопрос-ответ». Любое устройство имеет управляющий канал 0, который позволяет программному обеспечению ОС прочитать краткую информацию об устройстве, в том числе коды производителя и модели, используемые для выбора драйвера, и список других оконечных точек.

Канал прерывания позволяет доставлять короткие пакеты и в том, и в другом направлении, без получения на них ответа/подтверждения, но с гарантией времени доставки — пакет будет доставлен не позже, чем через N миллисекунд. Например, используется в устройствах ввода (клавиатуры/мыши/джойстики).

Изохронный канал позволяет доставлять пакеты без гарантии доставки и без ответов/подтверждений, но с гарантированной скоростью доставки в N пакетов на один период шины (1 КГц у low и full speed, 8 КГц у high speed). Используется для передачи аудио- и видеоинформации.

Поточный канал дает гарантию доставки каждого пакета, поддерживает автоматическую приостановку передачи данных по нежеланию устройства (переполнение или опустошение буфера), но не дает гарантий скорости и задержки доставки. Используется, например, в принтерах и сканерах.

Время шины делится на периоды, в начале периода контроллер передает всей шине пакет «начало периода». Далее в течение периода передаются пакеты прерываний, потом изохронные в требуемом количестве, в оставшееся время в периоде передаются управляющие пакеты и в последнюю очередь поточные.

Активной стороной шины всегда является контроллер, передача пакета данных от устройства к контроллеру реализована как короткий вопрос контроллера и длинный, содержащий данные, ответ устройства. Расписание движения пакетов для каждого периода шины создается совместным усилием аппаратуры контроллера и ПО драйвера, для этого многие контроллеры используют крайне сложный DMA со сложной DMA-программой, формируемой драйвером.

Размер пакета для оконечной точки есть вшитая в таблицу оконечных точек устройства константа, изменению не подлежит. Он выбирается разработчиком устройства из числа тех, что поддерживаются стандартом USB

Версии спецификации

Предварительные версии

  • USB 0.7: спецификация выпущена в ноябре 1994 года.
  • USB 0.8: спецификация выпущена в декабре 1994 года.
  • USB 0.9: спецификация выпущена в апреле 1995 года.
  • USB 0.99: спецификация выпущена в августе 1995 года.
  • USB 1.0 Release Candidate: спецификация выпущена в ноябре 1995 года.

USB 1.0

Спецификация выпущена 15 января 1996 года.

Технические характеристики:

  • два режима данных:
    • режим с высокой пропускной способностью (Full-Speed) — 12 Мбит/с
    • режим с низкой пропускной способностью (Low-Speed) — 1,5 Мбит/с
  • максимальная длина кабеля для режима с высокой пропускной способностью — 3 м
  • максимальная длина кабеля для режима с низкой пропускной способностью — 5 м
  • максимальное количество подключённых устройств (включая размножители) — 127
  • возможно подключение устройств, работающих в режимах с различной пропускной способностью к одному контроллеру USB
  • напряжение питания для периферийных устройств — 5 В
  • максимальный ток, потребляемый периферийным устройством — 500 мА

USB 1.1

Спецификация выпущена в сентябре 1998 года. Исправлены проблемы и ошибки, обнаруженные в версии 1.0. Первая версия, получившая массовое распространение. 15 мбит/с

USB 2.0

Логотип USB 2.0 High Speed

Спецификация выпущена в апреле 2000 года.

USB 2.0 отличается от USB 1.1 введением режима Hi-speed.

Для устройств USB 2.0 регламентировано три режима работы:

  • Low-speed, 10—1500 Кбит/c (клавиатуры, мыши, джойстики)
  • Full-speed, 0,5—12 Мбит/с (аудио-, видеоустройства)
  • High-speed, 25—480 Мбит/с (видеоустройства, устройства хранения информации)
Последующие модификации

Последующие модификации к спецификации USB публикуются в рамках Извещений об инженерных изменениях (англ. Engineering Change Notices — ECN). Самые важные из модификаций ECN представлены в наборе спецификаций USB 2.0 (англ. USB 2.0 specification package), доступном на сайте USB Implementers Forum.

  • Mini-B Connector ECN: извещение выпущено в октябре 2000 года.
  • Errata, начиная с декабря 2000: извещение выпущено в декабре 2000 года.
  • Pull-up/Pull-down Resistors ECN: извещение выпущено в мае 2002 года.
  • Errata, начиная с мая 2002: извещение выпущено в мае 2002 года.
  • Interface Associations ECN: извещение выпущено в мае 2003 года.
    • Были добавлены новые стандарты, позволяющие ассоциировать множество интерфейсов с одной функцией устройства.
  • Rounded Chamfer ECN: извещение выпущено в октябре 2003 года.
  • Unicode ECN: извещение выпущено в феврале 2005 года.
    • Данное ECN специфицирует, что строки закодированы с использованием UTF-16LE.
  • Inter-Chip USB Supplement: извещение выпущено в марте 2006 года.
  • On-The-Go Supplement 1.3: извещение выпущено в декабре 2006 года.
    • USB On-The-Go делает возможным связь двух USB-устройств друг с другом без отдельного USB-хоста. На практике одно из устройств играет роль хоста для другого.

USB OTG

Логотип USB OTG

USB OTG (аббр. от On-The-Go) — дальнейшее расширение спецификации USB 2.0, предназначенное для лёгкого соединения периферийных USB-устройств друг с другом без необходимости подключения к ПК. Например, цифровой фотоаппарат можно подключать к фотопринтеру напрямую, если они оба поддерживают стандарт USB OTG. К моделям КПК и коммуникаторов, поддерживающих USB OTG, можно подключать некоторые USB-устройства. Обычно это флэш-накопители, цифровые фотоаппараты, клавиатуры, мыши и другие устройства, не требующие дополнительных драйверов. Этот стандарт возник из-за резко возросшей в последнее время необходимости надёжного соединения различных устройств без использования ПК.

Хотя соединение USB OTG выглядит как одноранговое, на самом деле только создаётся такое ощущение — в действительности устройства «договариваются»: сами определяют, какое из них будет мастер-устройством (хостом), а какое — подчинённым. Одноранговый интерфейс USB существовать не может.

USB Wireless

Логотип USB wireless

USB wireless — технология USB (официальная спецификация доступна с мая 2005 года), позволяющая организовать беспроводную связь с высокой скоростью передачи информации (до 480 Мбит/с на расстоянии 3 метра и до 110 Мбит/с на расстоянии 10 метров).

23 июля 2007 года USB Implementers Forum (USB-IF) объявила о сертификации шести первых потребительских продуктов с поддержкой Wireless USB.[2]

USB 3.0

  • Area SD-PEU3N-2EL (USB 3.0 PCIe card), USB 3.0 хост на базе микросхемы µPD720200 фирмы Renesas

  • USB 3.0 хаб, демонстрационная плата на базе микросхемы VL810 фирмы VIA

Окончательная спецификация USB 3.0 появилась в 2008 году. Созданием USB 3.0 занимались компании Intel, Microsoft, Hewlett-Packard, Texas Instruments, NEC и NXP Semiconductors.

В спецификации USB 3.0 разъёмы и кабели обновлённого стандарта физически и функционально совместимы с USB 2.0, причём для однозначной идентификации разъёмы USB 3.0 принято изготавливать из пластика синего цвета. Кабель USB 2.0 содержит в себе четыре линии — пару для приёма/передачи данных, плюс и ноль питания. В дополнение к ним USB 3.0 добавляет ещё четыре линии связи (две витые пары), в результате чего кабель стал гораздо толще. Hовые контакты в разъёмах USB 3.0 расположены отдельно от старых в другом контактном ряду. Спецификация USB 3.0 повышает максимальную скорость передачи информации до 5 Гбит/с — что на порядок больше 480 Мбит/с, которые может обеспечить USB 2.0. Таким образом, скорость передачи возрастает с 60 Мбайт/с до 600 Мбайт/с и позволяет передать 1 Тб не за 8-10 часов, а за 40-60 минут.

Версия 3.0 отличается не только более высокой скоростью передачи информации, но и увеличенной силой тока с 500 мА до 900 мА. Таким образом, от одного хаба можно подпитывать большее количество устройств либо избавить сами устройства от отдельных блоков питания.

Фирмой Intel анонсирована[когда?] предварительная версия программной модели контроллера USB 3.0[3]. Но в октябре 2009 года появилась информация (от EE Times со ссылкой на сотрудника одной из крупнейших компаний по производству персональных компьютеров), что корпорация Intel решила повременить с внедрением поддержки USB 3.0 в свои чипсеты до 2011 года. Это решение привело к тому, что до 2011 года данный стандарт не стал массовым, т.к. пользователю было недостаточно просто купить материнскую плату, был необходим дополнительный адаптер.[4] Введение в третью аппаратную версию (англ. Rev.3) чипов Intel P/H/Q67 для построения материнских плат поддержки спецификации USB 3.0[5][6] частично решило данную проблему.

Хост-контроллер USB-3(xHCI) обеспечивает аппаратную поддержку потоков для команд, статусов, входящих и исходящих данных, что дает более полное использование пропускной способности USB-шины. Потоки были добавлены к протоколу USB 3.0 SuperSpeed ​​ для поддержки UASP.

Аппаратная поддержка 4 портов USB 3.0 реализована в 3-м поколении процессоров Intel Core чипсетов 7-й серии Ivy Bridge. Apple установила порты USB 3.0 в своих новых MacBook Air и MacBook Pro.

Linux поддерживает USB 3.0, начиная с версии ядра 2.6.31.[7]

В Windows 8 интерфейс USB 3.0 поддерживается без установки дополнительных драйверов.

Кабели и разъёмы USB

Кабели и разъёмы USB 1.x и 2.0

Спецификация 1.0 регламентировала два типа разъёмов: A — на стороне контроллера или концентратора USB и B — на стороне периферийного устройства. Впоследствии были разработаны миниатюрные разъёмы для применения USB в переносных и мобильных устройствах, получившие название Mini-USB. Новая версия миниатюрных разъёмов, называемых Micro-USB, была представлена USB Implementers Forum 4 января 2007 года.

Существуют также разъёмы типа Mini-AB и Micro-AB, с которыми соединяются соответствующие коннекторы как типа A, так и типа B.

Производителями электроники используется разъём, совместимый с Mini USB, содержащий 10 контактов, а не 5, как в оригинале (10-контактный штекер не войдёт в 5-контактный разъём). В частности, данное гнездо можно увидеть в телефонах под маркой Alcatel(TCL), Fly и Philips, где дополнительные контакты используются для возможности использования гарнитуры с микрофоном. Однако после перехода на Micro USB + Mini Jack, в рамках Европейской программы по стандартизации зарядных устройств, использование данного разъёма с 2012 года резко сократилось.

USB-A удачно сочетает долговечность и механическую прочность, несмотря на отсутствие винтовой затяжки. Однако уменьшенные варианты разъёмов, имеющие тонкие пластмассовые выступы, высоко выступающие из подложки гнезда, плохо переносят частое смыкание-размыкание и требуют более бережного обращения.

Сигналы USB (версии ≤2.x) передаются по двум проводам экранированного четырёхпроводного кабеля.

Номер контакта 4 3 2 1
Обозначение GND D+ D- VBUS
Цвет провода Чёрный Зелёный Белый Красный
Размещение проводников

Здесь GND — цепь «корпуса» для питания периферийных устройств, а VBus — +5 вольт, также для цепей питания. Данные передаются дифференциально по проводам D- и D+ (diff0 и diff1 соответственно, в терминологии официальной документации). Состояния «0» и «1» определяются по разности потенциалов между линиями более 0,2 В и при условии, что на одной из линий (D− в случае diff0 и D+ при diff1) потенциал относительно GND выше 2,8 В.[8] Дифференциальный способ передачи является основным, но не единственным (например, при инициализации устройство сообщает хосту о режиме, поддерживаемом устройством (англ. Full-Speed или англ. Low-Speed), подтягиванием одной из линий данных к V_BUS через резистор 1,5 кОм (D− для режима Low-Speed и D+ для режимов Full-Speed и High-Speed)[9].


Для соблюдения достаточного уровня сигнала в кабеле и недопускания его затухания требуется коррелировать длину кабеля с сечением проводников. Принята практика указания толщины сечения провода в AWG, например «28 AWG/1P…..».

Примерное соответствие маркировка кабеля (указание толщины провода в AWG) и соответствующая ей длина кабеля:
AWG Длина, не свыше (см)
28 81
26 131
24 208
22 333
20 500

Разъёмы USB 3.0 и их совместимость с USB 2.0

  • Все разъёмы USB, имеющие возможность входить в соединение друг с другом, рассчитаны на совместную работу. Также это достигается за счет электрической совместимости всех контактов разъёма USB 2.0 с соответствующими контактами разъёма USB 3.0. При этом разъём USB 3.0 имеет дополнительные контакты, не имеющие соответствия в разъёме USB 2.0 и, следовательно, при соединении разъёмов разных версий «лишние» контакты не будут задействованы, обеспечивая нормальную работу соединения версии 2.0.
  • Все гнёзда и штекеры между USB 3.0 Тип A и USB 2.0 Тип A рассчитаны на совместную работу.
  • Размер гнезда USB 3.0 Тип B несколько больше, чем это могло бы потребоваться для штекера USB 2.0 Тип B и более ранних. При этом предусмотрено подключение в эти гнезда и такого типа штекеров. Соответственно, для подключения к компьютеру периферийного устройства с разъёмом USB 3.0 Тип B можно использовать кабели обоих типов, но для устройства с разъёмом USB 2.0 Тип B — только кабель USB 2.0.
  • Гнезда eSATAp (eSATA/USB Combo) рассчитаны на подключение штекеров USB Тип A: USB 2.0 и USB 3.0, но в скоростном режиме USB 2.0.
  • Штекер eSATAp, как и прежде, ни в какую версию гнезда USB войти не может.
Изображения разъёмов USB 3.0
Тип A Тип B
Обычный Mini Micro Обычный Mini Micro
Коннектор USB 3.0 тип А [10]     Коннектор USB 3.0 тип B [11][12]   [13]   [14]
Расположение выводов соединителей USB 3.0 типа A
№ контакта A B micro B
1 VBUS (VCC) VBUS (VCC) VBUS (VCC)
2 D- D- D-
3 D+ D+ D+
4 GND GND ID
5 StdA_SSTX- StdA_SSTX- GND
6 StdA_SSTX+ StdA_SSTX+ StdA_SSTX-
7 GND_DRAIN GND_DRAIN StdA_SSTX+
8 StdA_SSRX- StdA_SSRX- GND_DRAIN
9 StdA_SSRX+ StdA_SSRX+ StdA_SSRX-
10 StdA_SSRX+
Экран Экран Экран Экран
Расположение контактов вилки USB 3.0 Micro-B‎

Также существуют разъёмы USB 3.0 Micro ещё двух типов: вилка USB 3.0 Micro-A и розетка USB 3.0 Micro-AB. Визуально отличаются от USB 3.0 Micro-B «прямоугольной» (не срезанной) частью разъёма с секцией USB 2.0, что позволяет избежать подключения вилки Micro-A в розетку Micro-B, а розетку Micro-AB делает совместимой с обеими вилками.

Розетка Micro-AB будет применяться в мобильных устройствах, имеющих бортовой USB 3.0 host контроллер. Для идентификации режима хост/клиент используется вывод 4 (ID) — в вилке Micro-A он замкнут на «землю».

Расположение выводов соединителей USB 3.0 Powered-B

Новый разъём USB 3.0 Powered-B спроектирован с использованием двух дополнительных контактов, что позволяет устройствам предоставлять до 1000 мА другому устройству, например, адаптеру Wireless USB. Это позволяет избежать необходимости в источнике питания для устройства, подключаемого к Wireless USB адаптеру, делая ещё один шаг к идеальной системе беспроводной связи (без отдельного питания). При обычных проводных подключениях к хосту или хабу эти два дополнительных контакта не используются.

Дополнительные контакты питания розетки USB 3.0 Powered-B

1 VBUS +5V Питание
2 USB D- USB 2.0 данные
3 USB D+
4 GND Земля
8 StdA_SSRX- SuperSpeed приём
9 StdA_SSRX+ SuperSpeed приём
7 GND_DRAIN Земля
5 StdA_SSTX- SuperSpeed передача
6 StdA_SSTX+ SuperSpeed передача
10 DPWR Дополнительное питание на устройство
11 GND_D Земля питания устройства

Классы устройств

Назначение USB-устройств определяется кодами классов, которые сообщаются USB-хосту для загрузки необходимых драйверов. Коды классов позволяют унифицировать работу с однотипными устройствами разных производителей. Устройство может поддерживать один или несколько классов, количество которых определяется количеством конечных точек (USB endpoints).

Описание кодов классов:[15]

Код Название Примеры использования / примечание
00h N/A Не задано
01h Audio Звуковая карта, MIDI
02h Communication Device (CDC) Модем, Сетевая карта, COM-порт
03h Human Interface Device (HID) Клавиатура, Мышь, Джойстик
05h Physical Interface Device (PID) Джойстик с поддержкой Force feedback
06h Image Веб-камера, Сканер
07h Printer Принтер
08h Mass Storage Device (MSD) USB-накопитель, Карта памяти, Картридер, цифровой проигрыватель, Цифровая фотокамера
09h USB hub USB-хаб
0Ah CDC Data Используется совместно с классом CDC
0Bh Smart Card Reader (CCID) Считыватель смарт-карт
0Dh Content security Биометрический сканер
0Eh Video Device Class Веб-камера
0Fh Personal Healthcare Индикатор пульса, медицинское оборудование
DCh Diagnostic Device Используется для проверки совместимости с USB
E0h Wireless Controller Bluetooth-адаптер
EFh Miscellaneous ActiveSync-устройства
FEh Application-specific IrDA-устройства, режим обновления прошивки (DFU)
FFh Vendor-specific На усмотрение производителя

Недостатки USB 2.0

Хотя пиковая пропускная способность USB 2.0 составляет 480 Мбит/с (60 Мбайт/с), на практике обеспечить пропускную способность, близкую к пиковой, не удаётся (~33,5 Мбайт/с на практике). Это объясняется достаточно большими задержками шины USB между запросом на передачу данных и собственно началом передачи. Например, шина FireWire, хотя и обладает меньшей пиковой пропускной способностью 400 Мбит/с, что на 80 Мбит/с (10 Мбайт/с) меньше, чем у USB 2.0, в реальности позволяет обеспечить бо́льшую пропускную способность для обмена данными с жёсткими дисками и другими устройствами хранения информации. В связи с этим разнообразные мобильные накопители уже давно «упираются» в недостаточную практическую пропускную способность USB 2.0.

Критика

Большинство разъёмов Mini и Micro USB не имеют достаточно надежного крепления к печатной плате, из-за чего, при достаточно высоких механических нагрузках, могут отрываться вместе с печатными дорожками и площадками, в большинстве случаев приводя к необходимости полной замены платы в связи с невозможностью надежного восстановления оторванных печатных дорожек. Данный недостаток наиболее часто проявляется в малогабаритных устройствах, например, в телефонах или карманных цифровых проигрывателях.[источник не указан 158 дней]

Протокол USB Mass Storage, представляющий собой метод передачи команд SCSI по шине USB, имеет бо́льшие накладные расходы, чем соответствующий ему протокол SBP-2 шины FireWire/1394. Поэтому при подключении внешнего диска или привода CD/DVD по FireWire удаётся достичь большей скорости передачи данных. Кроме того, USB Mass Storage не поддерживался в старых ОС (включая Windows 98), и требовал установки драйвера. SBP-2 же в них поддерживался изначально. Также в старых ОС (Windows 2000) протокол USB storage был реализован в урезанном виде, не позволяющем использовать функцию записи CD- и DVD-дисков на подключённом по USB дисководе, SBP-2 никогда не имел таких ограничений.

Шина USB строго ориентирована, поэтому соединение двух компьютеров требует дополнительного оборудования. Соединение оборудования без компьютера, например, принтера и сканера или же фотоаппарата и принтера было определено стандартом USB OTG, ранее же эти реализации были завязаны на конкретного производителя. Шина 1394/FireWire изначально не подвержена этому недостатку (например, можно соединить две видеокамеры).

Тем не менее, ввиду лицензионной политики Apple, а также значительно более высокой сложности оборудования, 1394 менее распространён, материнские платы многих компьютеров не имеют контроллера 1394. Что касается периферии, поддержка 1394 реализована во множестве корпусов для внешних накопителей на основе НЖМД (особенно премиум-сегмента) и приводов оптических дисков, мультимедиа интерфейсах, камкордерах.

Следует также отметить, что Apple использует в своих компьютерах и порт 1394b, известный как FireWire800, пиковая скорость передачи данных которого составляет 800 Мбит/сек.

См. также

Примечания

Ссылки

  • USB Implementers Forum, Inc.  (англ.)
  • USB Specifications (USB 3.0, USB 2.0, Wireless USB)  (англ.)
  • Обзор устройств USB 3.0  (рус.)
  • USB 3.0 — уже в разработке
  • USB 3.0. Новые подробности
  • Фотографии разъёмов USB 3.0
  • USB News  (нем.)
  • Распайка разъёма USB 1.1 и 2.0
  • Распайка разъёма USB (A, B, mini)
  • List of USB ID’s (Vendors, devices and interfaces)  (англ.)
  • Обзор по USB (+ сравнение различных интерфейсов с USB по нескольким параметрам)
  • USB in a NutShell (экстракт стандарта для разработчиков периферии)  (англ.)
  • Кабели и разъёмы USB 1.x и 2.0 — megaworldltd.ru, 2012
  • USB in a NutShell — перевод на русский язык
  • Lakeview Research — USB Central (For developers of USB devices, firmware, and host software.)  (англ.)
  • V-USB — программная реализация протокола USB для микроконтроллеров Atmel AVR.
  • Первое знакомство с USB 3.0 в качестве интерфейса ВЖД
  • SuperSpeed USB 3.0 FAQ (SuperSpeed USB 3.0 Вопросы и Ответы)  (англ.)
  • SuperSpeed USB 3.0 FAQ — перевод на русский язык
  • Яшкардин В.Л. USB. Спецификация универсальной последовательной шины.. SoftElectro (2011). Архивировано из первоисточника 25 августа 2011.
  • Виды USB-разъёмов и штекеров с точки зрения обычного пользователя — pc-hard.ru, 2012

Литература

  • Скотт Мюллер. Модернизация и ремонт ПК (глава 15 — Последовательный, параллельный и другие интерфейсы ввода/вывода — USB) = Upgrading and Repairing PCs. — 17 изд. — М.: «Вильямс», 2007. — С. 1016—1026. — ISBN 0-7897-3404-4

Leave a comment